Early Silurian paired $\delta^{13}C_{\text{carb}}$ and $\delta^{13}C_{\text{org}}$ analyses from the Midcontinent of North America: Implications for paleoceanography and paleoclimate

Bradley D. Cramer⁎, Matthew R. Saltzman

Department of Geological Sciences, The Ohio State University, 125 S. Oval Mall, Columbus, Ohio, 43210, United States

Accepted 15 February 2007

Abstract

Paired $\delta^{13}C_{\text{carb}}$ and $\delta^{13}C_{\text{org}}$ samples from well-preserved marine carbonates of the Wayne Formation in central Tennessee were analyzed to test a previously proposed model of relative changes in atmospheric pCO_2 during the well-known Ireviken (early Wenlock) positive carbon isotope ($\delta^{13}C_{\text{carb}}$) excursion. Our investigation provides the first detailed $\delta^{13}C_{\text{org}}$ stratigraphy through this interval and documents a negative excursion in $\delta^{13}C_{\text{org}}$ associated with the positive $\delta^{13}C_{\text{carb}}$ excursion. This is consistent with the notion that the Ireviken positive $\delta^{13}C_{\text{carb}}$ excursion was associated with elevated global temperatures that began during an icehouse–greenhouse transition. Although our data are consistent with predictions made by the Silurian oceanographic model [Jeppsson, L., 1990. An oceanic model for lithological and faunal changes tested on the Silurian record. J. Geol. Soc. (Lond.) 147, 663–674], a link to global changes in atmospheric pCO_2 remains tenuous until it can be shown that the $\delta^{13}C_{\text{org}}$ trends shown herein can be reproduced globally.

Keywords: Carbon dioxide; Carbon isotope; Organic carbon; Llandovery; Wenlock; Glaciation

1. Introduction

Variations in atmospheric pCO_2 are commonly taken to be the main driver of climate change on geological timescales (Berner and Kothavala, 2001; Royer et al., 2004), although there is still considerable debate about this fundamental issue. Shaviv and Veizer (2003) have suggested that the cosmic ray flux record correlates more closely with the Phanerozoic paleotemperature estimates of Veizer et al. (2000) than recent CO2-driven global climate models. However, the CO2-driven models remain robust when the full spectrum of geologic data is compared to the isotopic proxy data (Royer et al., 2004). Thus, although a multi-proxy approach is necessary to fully evaluate proposed correlations between atmospheric pCO_2 and climate, this investigation examines paired carbon isotope analyses of carbonates and organic matter as a starting point for discussion of high-resolution changes in Silurian atmospheric pCO_2.

Positive $\delta^{13}C_{\text{carb}}$ excursions in marine carbonates are traditionally interpreted to reflect enhanced burial of organic matter in the global oceans. Furthermore, these events are frequently linked to drawdown of atmospheric carbon dioxide in scenarios of global environmental change (e.g. Vincent and Berger, 1985; Crowley and Berner, 2001). The information that may be used to test...
these hypotheses in lower Paleozoic sediments however, in the form of paired carbon isotope analyses of carbonates and organic matter (Kump and Arthur, 1999), is often lacking (see Royer et al., 2001 for discussion of pre-Quaternary atmospheric pCO2 proxies). This data can be used as a paleo-pCO2 barometer because the isotopic difference between carbonate and organic matter is dominated by photosynthetic fractionation (εp), which many authors have shown is in part dependent on the concentration of dissolved CO2 in sea water (e.g., Popp et al., 1989; Freeman and Hayes, 1992; Hayes et al., 1999).

The notion that positive δ13C excursions are the result of sequestration and burial of organic carbon in shallow epeiric seas has dominated Paleozoic carbon isotope literature. The fact that the overwhelming majority of organic carbon burial in the modern ocean takes place along continental margins (e.g. Berner and Canfield, 1989) has led researchers to apply a similar situation to the Paleozoic, assigning a causal relationship between individual epicontinental black shales and individual positive δ13C excursions (e.g. Joachimski and Buggisch, 1993; Brand et al., 2004). Positive δ13C excursions during the Silurian, however, show an increase in carbonate production and an expansion of carbonate platforms in epeiric seas not a coincidence with organic–carbon-rich black shales (Jeppsson, 1990; Bickert et al., 1997; Brunton et al., 1998; Munnecke et al., 2003; Cramer and Saltzman, 2005). The oceanographic model first developed by Jeppsson (1990), and later expanded by Cramer and Saltzman (2005), accounts for this discrepancy but still invokes an increase in organic carbon burial as the driver of the positive δ13C excursion. Our previous investigations have suggested that the Ireviken Excursion was the result of increased organic carbon burial in an anoxic deep ocean resulting from a change in the site of deep-water formation from high to low latitudes as the global climate warmed during the early Wenlock. Here, we present paired analyses of carbon isotopes in both carbonates and organic matter consistent with increasing atmospheric pCO2 during the onset of the early Sheinwoodian (Ireviken) δ13C excursion, revealing a complex relationship between atmospheric pCO2 and organic carbon burial during a global environmental perturbation (Table 1).

2. Geologic background

A major faunal crisis known as the Ireviken Event spans the Llandovery–Wenlock boundary (as defined

Table 1

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12.75</td>
<td>2.20</td>
<td></td>
<td></td>
<td>−25.78</td>
<td></td>
<td></td>
<td>27.98</td>
<td>98.72</td>
<td></td>
</tr>
<tr>
<td>12.00</td>
<td>1.14</td>
<td>1.47</td>
<td>−0.33</td>
<td>−26.80</td>
<td>−26.49</td>
<td>−0.31</td>
<td>27.94</td>
<td>97.46</td>
<td></td>
</tr>
<tr>
<td>11.50</td>
<td>1.06</td>
<td>1.03</td>
<td>0.03</td>
<td>−26.90</td>
<td>−26.18</td>
<td>−0.72</td>
<td>27.96</td>
<td>96.21</td>
<td></td>
</tr>
<tr>
<td>10.75</td>
<td>0.89</td>
<td>0.97</td>
<td>−0.08</td>
<td>−24.83</td>
<td>−25.65</td>
<td>0.82</td>
<td>25.72</td>
<td>96.91</td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>0.96</td>
<td>0.92</td>
<td>0.04</td>
<td>−25.22</td>
<td>−25.78</td>
<td>0.56</td>
<td>26.18</td>
<td>92.60</td>
<td></td>
</tr>
<tr>
<td>9.25</td>
<td>0.91</td>
<td>1.00</td>
<td>−0.08</td>
<td>−27.30</td>
<td>−26.20</td>
<td>−1.10</td>
<td>28.21</td>
<td>96.42</td>
<td></td>
</tr>
<tr>
<td>8.75</td>
<td>1.12</td>
<td>1.00</td>
<td>0.12</td>
<td>−26.07</td>
<td>−26.99</td>
<td>0.92</td>
<td>27.19</td>
<td>94.27</td>
<td></td>
</tr>
<tr>
<td>8.25</td>
<td>0.96</td>
<td>1.02</td>
<td>−0.06</td>
<td>−27.60</td>
<td>−26.30</td>
<td>−1.30</td>
<td>28.56</td>
<td>96.96</td>
<td></td>
</tr>
<tr>
<td>7.75</td>
<td>0.99</td>
<td>1.01</td>
<td>−0.02</td>
<td>−25.22</td>
<td>−26.55</td>
<td>1.33</td>
<td>26.21</td>
<td>93.70</td>
<td></td>
</tr>
<tr>
<td>7.25</td>
<td>1.08</td>
<td>1.09</td>
<td>−0.01</td>
<td>−26.82</td>
<td>−25.95</td>
<td>−0.87</td>
<td>27.90</td>
<td>97.24</td>
<td></td>
</tr>
<tr>
<td>6.75</td>
<td>1.19</td>
<td>1.22</td>
<td>−0.03</td>
<td>−25.80</td>
<td>−26.59</td>
<td>0.79</td>
<td>26.99</td>
<td>96.57</td>
<td></td>
</tr>
<tr>
<td>6.25</td>
<td>1.39</td>
<td>1.44</td>
<td>−0.05</td>
<td>−27.16</td>
<td>−25.47</td>
<td>−1.69</td>
<td>28.55</td>
<td>98.31</td>
<td></td>
</tr>
<tr>
<td>5.75</td>
<td>1.75</td>
<td>1.75</td>
<td>0.00</td>
<td>−23.44</td>
<td>−25.96</td>
<td>2.52</td>
<td>25.19</td>
<td>97.12</td>
<td></td>
</tr>
<tr>
<td>5.25</td>
<td>2.10</td>
<td>2.23</td>
<td>−0.14</td>
<td>−27.29</td>
<td>−25.77</td>
<td>−1.52</td>
<td>29.39</td>
<td>95.14</td>
<td></td>
</tr>
<tr>
<td>4.75</td>
<td>2.86</td>
<td>2.32</td>
<td>0.54</td>
<td>−26.57</td>
<td>−26.39</td>
<td>−0.18</td>
<td>29.43</td>
<td>98.95</td>
<td></td>
</tr>
<tr>
<td>4.25</td>
<td>2.00</td>
<td>2.73</td>
<td>−0.73</td>
<td>−25.31</td>
<td>−26.01</td>
<td>0.70</td>
<td>27.31</td>
<td>95.28</td>
<td></td>
</tr>
<tr>
<td>3.75</td>
<td>3.33</td>
<td>3.09</td>
<td>0.24</td>
<td>−26.14</td>
<td>−26.57</td>
<td>0.43</td>
<td>29.47</td>
<td>96.66</td>
<td></td>
</tr>
<tr>
<td>3.25</td>
<td>3.94</td>
<td>3.55</td>
<td>0.40</td>
<td>−28.27</td>
<td>−27.17</td>
<td>−1.10</td>
<td>32.21</td>
<td>89.55</td>
<td></td>
</tr>
<tr>
<td>2.75</td>
<td>3.37</td>
<td>3.41</td>
<td>−0.04</td>
<td>−27.09</td>
<td>−28.49</td>
<td>1.40</td>
<td>30.46</td>
<td>91.69</td>
<td></td>
</tr>
<tr>
<td>2.25</td>
<td>2.92</td>
<td>3.25</td>
<td>−0.33</td>
<td>−30.11</td>
<td>−28.77</td>
<td>−1.34</td>
<td>33.03</td>
<td>92.01</td>
<td></td>
</tr>
<tr>
<td>1.75</td>
<td>3.45</td>
<td>3.40</td>
<td>0.05</td>
<td>−29.12</td>
<td>−29.26</td>
<td>0.14</td>
<td>32.57</td>
<td>92.01</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>3.84</td>
<td>3.67</td>
<td>0.17</td>
<td>−28.55</td>
<td>−28.69</td>
<td>0.14</td>
<td>32.39</td>
<td>94.33</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>3.73</td>
<td>3.83</td>
<td>−0.10</td>
<td>−28.41</td>
<td>−28.44</td>
<td>0.03</td>
<td>32.14</td>
<td>92.27</td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>3.91</td>
<td>3.54</td>
<td>0.37</td>
<td>−28.37</td>
<td>−27.95</td>
<td>−0.42</td>
<td>32.28</td>
<td>92.80</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>2.99</td>
<td>3.49</td>
<td>−0.51</td>
<td>−27.06</td>
<td>−27.81</td>
<td>0.75</td>
<td>30.05</td>
<td>86.73</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>3.58</td>
<td></td>
<td>−28.00</td>
<td></td>
<td></td>
<td></td>
<td>31.58</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maddox Mbr. Wayne Fm., Newsom Roadcut Nashville, TN.

a Base of section is the unconformity making the base of the Wayne (top of the Brassfield).
by the placement of the GSSP at Leasows, United Kingdom) and marks a major climatic turning point during the Silurian (Jeppsson, 1990). A pronounced positive excursion (Ireviken Excursion) in the carbon isotope ratio of marine carbonates began during the Ireviken Event and lasted through much of the early Wenlock (Sheinwoodian) (Munnecke et al., 2003; Cramer and Saltzman, 2005; Eriksson and Calner, 2005). We take the maximum rate of positive change in the $\delta^{13}C_{\text{carb}}$ isotope record to define the base of the excursion at datum 4 of the Ireviken Extinction Event (Jeppsson, 1987; Munnecke et al., 2003), and have placed the end of the excursion within the Lower Kockelella walliseri Zone as shown on Gotland, Sweden (Eriksson and Calner, 2005). Jeppsson (1990) proposed that the Llandovery–Wenlock boundary interval marked a major transition between climate states as Earth moved from a Late Ordovician–Early Silurian icehouse world back to a middle Paleozoic greenhouse and evidence of Early Silurian glaciation in South America and a major coeval eustatic regression in North America indicates that post-glacial transgression coincided with the Ireviken Excursion (Murphy et al., 1979; Grahn and Caputo, 1992; Diaz-Martinez, 1997, 2007; Grahn, 1998; Cramer and Saltzman, 2005, 2007).

The Ireviken $\delta^{13}C_{\text{carb}}$ excursion has been documented world wide (Fig. 1), but this investigation represents the first high-resolution paired $\delta^{13}C_{\text{carb}}$ and $\delta^{13}C_{\text{org}}$ stratigraphy. Our paired analyses of $\delta^{13}C_{\text{carb}}$ and $\delta^{13}C_{\text{org}}$ are from the Midcontinent of North America from a section west of Nashville, Tennessee known as Newsom Roadcut (Fig. 2). This section was sampled for conodont biostratigraphy by Barrick (1983) and $\delta^{13}C_{\text{carb}}$ stratigraphy by Cramer and Saltzman (2005).

3. Methods and results

3.1. Methods

The Maddox Member of the Wayne Formation was sampled at 25 cm intervals for $\delta^{13}C_{\text{carb}}$ analysis (Cramer...
and Saltzman, 2005) and roughly every other sample was taken for paired δ^{13}C$_{\text{carb}}$ and δ^{13}C$_{\text{org}}$ analyses for this investigation. Samples were cut and polished to expose fresh surfaces and placed in a sonic bath to remove any loose organic matter. Polished slabs were microdrilled to generate \sim 1.5 g of powder, with a preference for micrite and fine-grained carbonate (Saltzman, 2002). The major advantage of micrite and fine-grained carbonate as the sampling medium is the ability to sample at any resolution in any carbonate section, therefore not being limited to sections or intervals where brachiopods are present. Micritic sampling has been shown to faithfully record the original isotopic signature of Paleozoic marine waters (Saltzman, 2001), and brachiopods and micritic samples from the same outcrops produce nearly identical results (compare Munnecke et al., 1997 with Bickert et al., 1997).

Organic carbon samples were reacted with HCl to remove carbonate and heated at 85 °C to remove remaining water. Samples were cleaned, homogenized, and dried before being loaded into 6mm quartz tubes containing a stoichiometrically excessive amount of organic-free cupric oxide. Samples were degassed under vacuum for a minimum of 1 h, sealed using a gas/oxygen torch, and reacted at 800 °C for 24 h. The resultant CO$_2$ was cryogenically separated from any water or other non-condensable by-products of the reaction. The purified CO$_2$ was transferred to a 6 mm Pyrex tube and detached from the extraction line using a gas/oxygen torch. The isotopic composition of the δ^{13}C of the CO$_2$ was determined using a Finnigan MAT Delta S mass spectrometer. Data are reported relative to the VPDB scale, and accuracy and precision of NBS 22 standard was maintained at better than ±0.12‰. Isotopic analyses were carried out at the University of Michigan.

3.2. Data analysis

Sedimentary δ^{13}C$_{\text{org}}$ of TOC (total organic carbon) trends are controlled by an array of factors. Heterotrophic reworking, changes in the dominant primary producer, varying terrestrial organic carbon input, kinetic isotope effects from varying metabolic pathways, as well as the isotopic composition and concentrations of dissolved CO$_2$ have all been shown to affect δ^{13}C$_{\text{org}}$ (Hinga et al., 1994; Hayes et al., 1999; Kienast et al., 2001). In addition, diagenetic factors such as thermal maturation and migration of hydrocarbons can affect δ^{13}C$_{\text{org}}$. A brief discussion of the relative importance of these factors is included below.

Respiratory remineralization of organic matter in the sediment column under oxic conditions can produce an enrichment ($\leq 1.5\%$o) in δ^{13}C$_{\text{org}}$ (Hayes et al., 1989; Gong and Hollander, 1997; Fischer et al., 1998). This isotopic enrichment increases in sediments deposited beneath an anoxic water column (Fischer et al., 1998) where it can reach as high as 3.0‰. The sediments in our section were deposited in a shallow epeiric sea under mostly well-oxygenated conditions.

The influence of terrestrial input of organic carbon on our data is minimized in part by the interval of time we are studying. The Ireviken Excursion, during the Lower Silurian predates the proliferation of land plants during the Devonian (Algeo and Scheckler, 1998) therefore reducing the possible influence of terrestrial organic carbon. However, Stricanne et al. (2006) have demonstrated a quantitative increase in terrestrial spores (specimens per gram of sediment) during the Lau (Late Silurian) positive δ^{13}C$_{\text{org}}$ excursion and although no such data exists for the earlier Ireviken Excursion, we cannot rule out the possibility of some input of organic matter from land. Changes in the dominant species of marine primary producer have also been shown to affect δ^{13}C$_{\text{org}}$ analysis of TOC (Pancost et al., 1999). In their late Middle Ordovician example, an abundance of compounds inferred to be from an uncommon organic-walled microfossil Gloeocapsomorpha prisca overprinted the global δ^{13}C$_{\text{org}}$ signal making δ^{13}C$_{\text{org}}$ values heavier.

The conodont alteration index (CAI) of specimens collected by Barrick (1983) is ≤ 1.5, which indicates that burial temperatures never exceeded 100 °C (cf. Epstein et al., 1977). These temperatures are unlikely to have played a major role in the trends we observe (temperatures approaching those of oil generation are required to significantly alter δ^{13}C$_{\text{org}}$; Hayes et al., 1999). Furthermore, thermal maturation due to overburden or regional

![Fig. 3. Generalized curve showing the relationship between Δ (the isotopic difference between δ^{13}C$_{\text{carb}}$ and δ^{13}C$_{\text{org}}$) and atmospheric CO$_2$ levels; modified from Kump and Arthur (1999).](image-url)
tectonism should have affected the entire section equally and therefore is an unlikely cause of any excursion in our data.

Even with these complications, δ\(^{13}\)C\(_{\text{org}}\) analysis of TOC has been shown to faithfully record the original isotopic trend when compared with compound specific δ\(^{13}\)C\(_{\text{org}}\) analysis of short chain n-alkanes as well as acyclic isoprenoids pristane, phytane and hopane from identical samples (Joachimski et al., 2002). The baseline values of the different analyses varied by a few per mille but the trends shown were practically identical. For these reasons we do not use our data to calculate empirical values for CO\(_2\), but instead calculate Δ\(^{13}\)C, which is the isotopic difference between δ\(^{13}\)C\(_{\text{carb}}\) and δ\(^{13}\)C\(_{\text{org}}\). An inverse square relationship (Fig. 3) exists between Δ\(^{13}\)C and atmospheric pCO\(_2\) (Kump and Arthur, 1999). As Δ increases, atmospheric pCO\(_2\) increases and therefore, we use changes in Δ as a proxy for changes in atmospheric pCO\(_2\).

3.3. Results

Values of δ\(^{13}\)C\(_{\text{carb}}\) begin near +2.0‰ at the base of the Wayne Formation and quickly increase to nearly +4.0‰ within the first 50 cm, while δ\(^{13}\)C\(_{\text{org}}\) values begin near −28.0‰ and decrease to a minimum of −30.0‰ within the first few meters (Fig. 4). The δ\(^{13}\)C\(_{\text{carb}}\) values record a positive excursion and reach two distinct peaks. The first reaches a high of +3.91‰ at 0.50 m above the base of the Maddox, and the second peak of +3.94‰ occurs at 3.25 m. Values of δ\(^{13}\)C\(_{\text{org}}\) record a negative excursion with only one peak of −30.1‰ at 2.25 m above the base of the Maddox. The peak in δ\(^{13}\)C\(_{\text{org}}\) values occurs between the δ\(^{13}\)C\(_{\text{carb}}\) peaks. The δ\(^{13}\)C\(_{\text{org}}\) curve returns to baseline before δ\(^{13}\)C\(_{\text{carb}}\). The isotopic difference (Δ) increases during the excursion to a maximum of 33.0‰ at 2.25 m before returning to a baseline near 28.0‰ after the excursion.

4. Discussion

The oceanographic model presented by Jeppsson (1990) and later expanded by Cramer and Saltzman (2005) makes predictions about changes in ocean chemistry and atmospheric pCO\(_2\). It has been suggested (Jeppsson, 1990; Cramer and Saltzman, 2005) that the Ireviken Excursion was the result of increased organic carbon burial rates in the deep oceans that began during a transition from icehouse to greenhouse conditions. Our data indicate that a positive excursion in δ\(^{13}\)C\(_{\text{carb}}\) coincided with a minimum in δ\(^{13}\)C\(_{\text{org}}\) values. Therefore Δ\(^{13}\)C, here used as a proxy for paleo-pCO\(_2\), shows elevated values and high atmospheric pCO\(_2\) during the Ireviken Excursion.

A change in the site of deep-water formation at the end of the Late Ordovician–Early Silurian icehouse state is consistent with the isotopic results. Jeppsson (1990) suggested that the early Wenlock climatic optimum...
caused a shift in deep-water formation from high to low latitudes, which led to deep-ocean anoxia and enhanced preservation of organic carbon (Bralower and Thierstein, 1984; Herbert and Sarmiento, 1991; Cramer and Saltzman, 2005). The increased sequestration and burial of 12C (as organic matter) in the deep ocean produced the positive δ^{13}C$_{\text{carb}}$ excursion while the elevated atmospheric pCO$_2$ that produced the climatic optimum was responsible for the negative δ^{13}C$_{\text{org}}$ excursion. During the middle of the Ireviken Excursion Δ^{13}C values reach as much as 33.0‰ and may therefore indicate the presence of sulfide oxidizing or other chemoautotrophic bacteria (Hayes et al., 1999). Canfield (1998) and Kump et al. (2005) discuss the possibility of a euxinic deep ocean during times of marine biotic crises and increased organic carbon burial in the deep ocean. Although strata immediately prior to the onset of the excursion are not recorded in the sampled section, it appears that during the early part of the Ireviken Excursion, atmospheric pCO$_2$ was increasing despite high organic carbon burial rates (Fig. 5). Only later during the Ireviken Excursion does atmospheric pCO$_2$ respond to high organic carbon burial rates in the expected manner where increased organic carbon burial tends to force the oceans to compensate by drawing down atmospheric pCO$_2$ (Kump and Arthur, 1999). Organic carbon burial acts as a buffer for atmospheric pCO$_2$, limiting the magnitude of fluctuations in global climate. The oceanographic system appears to respond to the elevated global temperatures during the Ireviken Excursion in the following sequence: 1) deglaciation; 2) change in the site of deep-water formation from high to low latitudes; 3) decreased oxygenation of the deep ocean; 4) increased organic carbon burial rates in the deep ocean producing the positive δ^{13}C$_{\text{carb}}$ excursion; 5) drawdown of atmospheric pCO$_2$ that compensates for increased organic carbon burial; 6) decreasing global temperatures; 7) re-establishment of latitudinal thermal gradient and a shift in deep-water formation back to high latitudes, which re-oxygenated the deep ocean and ended the Ireviken Excursion. This oceanographic system may have exerted a restorative control over atmospheric pCO$_2$ during the early–middle Paleozoic. The trigger of the Ireviken Excursion and coincident rise in atmospheric pCO$_2$ that led to deglaciation remains uncertain. Based on high-resolution correlations (Jeppsson, 1997), the Ireviken Excursion lasted roughly two million years. Therefore, the elevated atmospheric pCO$_2$ was likely related to a perturbation in the long-term carbon cycle. The Salinic Orogeny occurred at roughly the same time along eastern Laurentia (Goodman and Brett, 1994; Cramer et al., 2006) as the late Llandovery (South American) glaciation (Cramer and Saltzman, 2007) and could provide a link via changes in silicate weathering (e.g., Raymo, 1994). The early Wenlock transgression represents one of the highest
slowing the release of CO2 into the atmosphere. The increased space was reduced, diminishing carbonate production and burial, and the Paleozoic, the total area of shallow shelf and epeiric sea settings pelagic environment was considerably reduced. During regression in (black line), the production and preservation of carbonate in the Paleozoic, prior to the proliferation of planktic calcifying organisms carbonate in the deep ocean during sea-level lowstands. In the lower (grey line) this effect is small, because the modern ocean preserves carbonate in the deep ocean during sea-level lowstands. Today Paleozoic, prior to the proliferation of planktic calcifying organisms (black line), the production and preservation of carbonate in the pelagic environment was considerably reduced. During regression in the Paleozoic, the total area of shallow shelf and epeiric sea settings was reduced, diminishing carbonate production and burial, and slowing the release of CO2 into the atmosphere. The increased space available for carbonate production and burial during transgression produces a concomitant increase in CO2 liberation to the atmosphere. This serves as a positive (reinforcing) feedback for global warming or cooling during the Paleozoic.

Fig. 6. Consequences of changes in eustatic sea level on atmospheric CO2 due to the 'coral reef effect' (simplified from Ridgwell et al., 2003). Because the deposition of CaCO3 results in the liberation of CO2 to the atmosphere, eustatic changes that affect carbonate production and burial will impact atmospheric CO2 levels. Today (grey line) this effect is small, because the modern ocean preserves carbonate in the deep ocean during sea-level lowstands. In the lower Paleozoic, prior to the proliferation of planktic calcifying organisms (black line), the production and preservation of carbonate in the pelagic environment was considerably reduced. During regression in the Paleozoic, the total area of shallow shelf and epeiric sea settings was reduced, diminishing carbonate production and burial, and slowing the release of CO2 into the atmosphere. The increased space available for carbonate production and burial during transgression produces a concomitant increase in CO2 liberation to the atmosphere. This serves as a positive (reinforcing) feedback for global warming or cooling during the Paleozoic.

sea levels in the Silurian and may have reduced silicate weathering enough to induce increased atmospheric pCO$_2$. Furthermore, increased aridity at low latitudes during the early Wenlock (Bickert et al., 1997) would have reduced weathering and riverine burial of organic carbon, lowering CO$_2$ consumption (France-Lanord and Derry, 1997). Thus the high silicate weathering (Salinic Orogeny) and high CO$_2$ consumption (increased moisture) during the late Llandovery was followed by a period of low silicate weathering and CO$_2$ consumption during the early Wenlock (high sea level, increased aridity) that contributed to increasing atmospheric pCO$_2$ and deglaciation at the onset of the Ireviken Excursion.

Another contributing factor was the relative lack of planktic calcifiers during the lower Paleozoic. Due to the fact that carbonate production in the lower Paleozoic was limited to shelf and epicontinental sea environments, carbonate production and burial (and consequently atmospheric pCO$_2$) were highly sensitive to changes in sea level (Ridgwell et al., 2003). In the modern ocean, the reduction in neritic carbonate production and burial during sea-level lowstands is compensated by increased pelagic carbonate preservation, which helps attenuate changes in atmospheric pCO$_2$ caused by eustatic sea-level change. During the lower Paleozoic however, the ocean–atmosphere system would have been much more volatile (Fig. 6) due to paucity of pelagic carbonate production and preservation.

5. Conclusions

This investigation highlights the importance of paired δ^{13}C$_{\text{carb}}$ and δ^{13}C$_{\text{org}}$ analyses to paleoclimatology and paleoceanography. Although meaningful empirical calculations of Paleozoic atmospheric pCO$_2$ are still out of reach due to the multiplicity of estimated or approximated factors in most data sets, our data (pending verification from other localities) provides considerable insight into the nature of changes to the global carbon cycle through this interval of the Silurian. The data presented herein indicate a complex relationship between organic carbon burial and atmospheric pCO$_2$, where changes in the fraction of carbonate versus organic carbon being buried (f_{org}) act as a buffer for atmospheric pCO$_2$ in the long-term carbon cycle. It appears that changes in atmospheric pCO$_2$ were the driving factor for the Ireviken Excursion, which is represented by both a positive δ^{13}C$_{\text{carb}}$ excursion and a negative δ^{13}C$_{\text{org}}$ excursion. During the Ireviken Excursion, high atmospheric pCO$_2$ directly led to the negative δ^{13}C$_{\text{org}}$ excursion and was ultimately responsible for the positive δ^{13}C$_{\text{carb}}$ excursion by altering deep-ocean circulation and increasing organic carbon burial.

Although the negative excursion in δ^{13}C$_{\text{org}}$ during the early Wenlock has been demonstrated from the Newsom Roadcut section alone, work is underway to replicate this result from other sections. We hope this investigation will draw greater attention to the need for high-resolution study of paired δ^{13}C$_{\text{org}}$ and δ^{13}C$_{\text{carb}}$ during the Paleozoic.

Acknowledgments

We would like to thank T. Algeo, J. Barrick, D. Katz, and an anonymous reviewer for making this a stronger manuscript. The stable isotope laboratories of the University of Michigan (L. Wingate) and Erlangen University, Germany (M. Joachimski) are also gratefully acknowledged for sample analysis and technical support. L. Jepsson, D. Loydell, M. Kleffner, and A. Munnecke are thanked for many insightful conversations and access to unpublished data.

References

Kienast, M., Calvert, S.E., Pelejero, C., Grimalt, J.O., 2001. A critical review of marine sedimentary $\delta^{13}C_{\text{org}}-p\text{CO}_2$ estimates: new palaeorecords from the South China Sea and a revisit of other low-latitude $\delta^{13}C_{\text{org}}-p\text{CO}_2$ records. Glob. Biogeochem. Cycles 15, 113–127.

