Assessment of Histotripsy Liquefaction with Multi-Modal Imaging In Vitro

Gregory J. Anthony, Viktor Bollen, Steffen Sammet, Kenneth B. Bader
Department of Radiology, University of Chicago, Chicago, IL, USA

Introduction and Purpose

- Histotripsy liquefies tissue via mechanical action of bubble clouds
 - Treatment of liver, kidney, prostate, thrombosis
- Multi-modal image guidance could improve clinical translation and treatment outcomes
 - Diagnostic ultrasound imaging visualizes bubble cloud activity
 - MRI visualizes changes in tissue structure

Materials and Methods

- Construct agarose phantoms with 15% v/v porcine red blood cell layers
- Initiate 1 MHz histotripsy insonations of 13 – 25 MPa peak negative pressure, 100 Hz pulse repetition frequency, 5 cycle pulse duration
- Acquire B-mode ultrasound and passive cavitation imaging (PCI) data during insonation
- Acquire 3T MR T1, T2W images, and T1, T2, and ADC maps
- Section phantoms and register liquefaction zones with diagnostic ultrasound/MRI images
- Assess prediction of liquefaction from diagnostic ultrasound imaging or MRI via ROC analysis

Results

- Phantom liquefaction, high PCI power and B-mode grayscale, and changes in MR parameters correlated well spatially
 - T1 increased in the liquefaction zone, and T2 exhibited spatially varying changes
 - Largest changes in T2 corresponded to areas of low PCI/B-mode grayscale intensity
 - T2W and gross imaging indicated changes in structure of the liquefaction zone as peak negative pressure increased
 - Areas under the ROC curve (AUCs) were significantly greater than 0.5, indicating improved prediction of liquefaction locations over guessing for all imaging modalities

Conclusions

- Ultrasound and MR imaging supply complimentary information regarding histotripsy liquefaction
- Multi-modal imaging with diagnostic ultrasound and MRI may improve assessment of histotripsy treatment zones
- This in vitro study is limited in its approximation of actual tissue liquefaction, and the results presented should be validated with in vivo studies

References

Acknowledgements

Funding provided by the NIH (Grants K12CA139169 and R01HL13334), Cancer Research Foundation, and the University of Chicago Comprehensive Cancer Center.