
 

 

 

Assessing Human Information Processing in Lending Decisions: A Machine 

Learning Approach 

 

Miao Liu
1
 

The University of Chicago, Booth School of Business 

 

December 2019 

 

Abstract 

Effective financial reporting requires efficient information processing. This paper studies 

factors that determine efficient information processing. I exploit a unique small business 

lending setting where the entire codified demographic and accounting information set that 

loan officers use is observable (to the researcher). I decompose the loan officers’ decisions 

into a part driven by codified hard information and a part driven by uncodified soft 

information. I show that a machine learning model substantially outperforms loan officers 

in processing hard information. Using the machine learning model as a benchmark, I find 

that limited attention and overreaction to salient accounting information largely explain the 

loan officers’ weakness in processing hard information. However, the loan officers acquire 

more soft information after seeing salient accounting information, suggesting salience has a 

dual role: it creates bias in hard information processing, but facilitates attention allocation 

in new information acquisition. 

 

                                                             
1 mliu7@chicagobooth.edu. I am grateful to my dissertation committee members Philip Berger, Christian Leuz (chair), Sendhil 

Mullainathan, and Valeri Nikolaev for their guidance and support. I also appreciate helpful comments from Ray Ball, 

Pietro Bonaldi, Jonathan Bonham, Matthias Breuer, Robert Bushman, Jung Ho Choi, Anna Costello, Hans Christensen, John 

Gallemore, Pingyang Gao, Joao Granja, Anya Kleymenova, Yun Lee, Rebecca Lester, Ye Li, Jinzhi Lu, Yao Lu, Mark Maffett, 

Charles McClure, Danqing Mei, Michael Minnis, Maximilian Muhn, Sanjog Misra, Thomas Rauter, Ethan Rouen, Haresh Sapra, 

Douglas Skinner, Gurpal Sran, Andrew Sutherland, Rimmy Tomy, James Traina, Felix Vetter, Xian Xu, Anastasia Zakolyukina, 

workshop participants at Chicago Booth, CMU emerging scholar session, and LBS Trans-Atlantic Doctoral Conference. I am 

indebted to the company executives who preferred to remain anonymous for helpful discussions and access to data. I do not 

have a financial interest in the outcomes of this research. I gratefully acknowledge financial support from the University of 
Chicago Booth School of Business. Any errors are my own.  

mailto:Mliu7@chicagobooth.edu


1 

1. Introduction 

Research has shown that financial reporting facilitates decision-making and affects a wide range of 

financial and real outcomes (Beyer et al. 2010; Dechow et al. 2010; Leuz and Wysocki 2016; 

Roychowdhury et al. 2019). The extent to which the objective of financial reporting is met, however, 

depends on how decision-makers process the information. One strand of research in economics and 

psychology highlights human weaknesses in processing information, due to cognitive constraints 

(Blankespoor et al. 2019b) and behavioral biases (Kahneman 2011). Another strand in accounting and 

finance, however, emphasizes that humans have strengths in discovering new information (Goldstein and 

Yang 2017), especially soft information (Liberti and Petersen 2018). In this paper, I investigate the 

trade-off between human strengths and weaknesses in the context of credit information processed by loan 

officers in their lending decisions, using a machine learning model-based decision rule as a benchmark. 

I employ detailed loan-level data from a large Chinese small business lender. Loan officers observe hard 

information on borrowers’ demographics and accounting reports, exercise discretion to acquire additional 

soft information by making phone calls, and finally make lending decisions. While the loan officers might 

not process hard information efficiently, as predicted by theories of cognitive constraints and behavioral 

biases, they should play a crucial role in collecting soft information by interacting directly with borrowers, 

as demonstrated in other similar settings (e.g., Petersen and Rajan 1994, 1995). In addition, the officers 

determine when and how to acquire soft information after observing hard information, suggesting the two 

types of information may interact. I use this setting to study which factors impede efficient hard 

information processing and how these factors further affect soft information acquisition.  

Three challenges emerge when assessing information processing efficiency. First, it is difficult to study 

how information users process information if the underlying information is unobservable, as is usually the 

case. Second, which information to observe is often a choice. Consequently, different people might appear 

to process information differently not because they have varying abilities but because they have different 
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information sets. Third, evaluating errors requires a benchmark. Which is the “correct” way to process a 

given piece of information? While a benchmark can often be established in a laboratory (such as the 

correct answer to a test), one is usually missing in the real world.  

I combine my unique setting with a novel research design to overcome these challenges. Two key features 

of the setting help address the first two challenges. First, the data allows observation of the loan officers’ 

entire hard information set about a borrower, sidestepping the unobservability problem. Second, 

borrowers are randomly assigned to loan officers, meaning each officer has the same pool of borrowers on 

average. As a result, any systematic difference in lending decisions across officers stems from their 

differing abilities in processing information and, not because they are endogenously matched with 

different types of borrowers. This helps me to overcome the second challenge that the information set is 

usually an endogenous choice.  

To address the third challenge, I develop an approach using a machine learning model as a benchmark to 

assess human decisions. I split my data randomly into a training sample and a hold-out sample. I train a 

machine learning model on the training sample to predict a borrower’s repayment and design a feasible 

lending decision rule by reallocating larger loans to borrowers who are more likely to repay, as predicted 

by the model. Next, using the hold-out sample, I show that this model-based decision rule can boost the 

lender’s profit by at least 38%, making it a valid benchmark for examining loan officers’ limitations in 

processing hard information.  

To make the machine learning model a benchmark, I must address the fact that, while it only uses codified 

hard information as an input, loan officers can acquire additional soft information, including photos and 

phone calls. I decompose officers’ decisions into a part driven by codified hard information and a part 

driven by uncodified soft information. Specifically, I fit a separate machine learning model for each loan 

officer, this time to predict the officer’s lending decisions based on hard information. Unlike the first 

model, which predicts borrower repayment, the purpose of this one is to mimic how each loan officer 
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processes hard information. Soft information is then captured by the residual, as it represents variation in 

officers’ decisions that cannot be explained by hard information. To validate the residual as a measure of 

soft information, I show that it strongly predicts loan outcomes. 

These results suggest that while loan officers have weaknesses in analyzing hard information and are 

outperformed by machine learning, they have strengths in acquiring soft information. I next test which 

factors explain loan officers’ underperformance in processing hard information and whether these factors 

also affect their ability to acquire soft information. I rely on two streams of theory to guide my search.  

The first emphasizes bounded rationality (Blankespoor et al. 2019b). Agents in these models confront 

costs in processing information and allocate attention within their cognitive constraints. This line of 

theory predicts that loan officers can process only a subset of all useful variables. Regressing the fitted 

values of the two machine learning models on borrower characteristics using OLS, I find that, while the 

first model, which predicts borrower risk, identifies 147 variables with strong predictive power about 

repayment, the second one, which mimics how each loan officer processes hard information, suggests that 

officers only use between 25 to 56 variables in their decisions. Moreover, these 25 to 56 variables explain 

between 83% to 92% of the variation in officers’ decisions in these linear regressions, suggesting officers 

process hard information in a linear fashion. In contrast, the 147 variables explain only 66% of the 

variation in the first model’s prediction about borrower repayment, indicating machine learning’s ability 

to incorporate nonlinear signals in the data that are systematically ignored by loan officers. These results 

are consistent with information processing being costly.  

The second stream of theory emphasizes that, even in the set of variables used for decision-making, 

people make systematic probabilistic errors, often because they employ representativeness heuristics 

(Kahneman 2011). Bordalo et al. (2016) formalize this concept in economics as probability judgments 

based on the most distinctive differences between groups and show that representativeness can exaggerate 

perceived differences. In my setting, this line of theory predicts that loan officers will approve loan sizes 
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too small for borrower groups with distinct characteristics representative of high risk because such 

characteristics catch officers’ eye and exaggerate their perception of the risk. One such distinct 

characteristic of risky borrowers is negative salient information. Indeed, among borrowers who default, 

28.1% have (negative) salient characteristics, defined as large negative realizations in accounting 

variables. The proportion is only 15.8% among borrowers who do not default. Using the machine learning 

model as a benchmark, I find that loan officers overreact to salient information and approve loan sizes too 

small to borrowers with salient information, in line with such information being representative of a risky 

borrower. 

Having established that both bounded rationality and representativeness help explain loan officers’ 

underperformance in processing hard information, I next test how they affect soft information acquisition. 

Consider representativeness heuristics. Although theories do not directly model information acquisition, it 

is plausible that overreaction to salient hard information due to representativeness bias might impede soft 

information acquisition. Intuitively, interacting with borrowers with a biased perception can undermine 

officers’ ability to extract unbiased soft information signals. Perhaps surprisingly, however, I find that 

officers acquire more soft information after seeing salient hard information. Why would salience impede 

hard information processing but facilitate soft information acquisition? Theories of representativeness are 

silent on this question, but I next examine how bounded rationality helps explain this puzzling result. 

Theories of bounded rationality predict that acquiring new information is costly and thus that loan officers 

must allocate their effort to such activity. I build a simple model to show that, faced with information 

acquisition costs, salience can guide this allocation. In this model, a loan officer tries to infer a borrower’s 

type from hard accounting signal but faces uncertainty about the precision of the signal (for example, 

does a jump in cash flow reflect business fundamentals or noise?).
2
 The officer can incur a cost to acquire 

additional soft information on the precision of the accounting signal (for example, asking the borrower to 

                                                             
2 This setup is built on a stream of accounting theory considering the impact of earnings disclosures when investors face 

uncertainty over the variance of cash flows (Beyer 2009; Heinle and Smith 2017) or the precision of the earnings disclosure 

(Hughes and Pae 2004; Kirschenheiter and Melumad 2002; Subramanyam 1996).  



5 

explain the jump in cash flow). I show that it is more efficient to incur the cost to acquire soft information 

when the accounting signal has a larger realization (i.e., more salient). To see this, assume the signal is 

cash flow. The officer would have more incentive to call a borrower with a large jump in cash flow. This 

is because learning whether the jump is a precise or noisy signal tells the officer a lot about a borrower’s 

type, while learning whether a report of no jump in cash flow is precise reveals much less about a second 

borrower. Therefore salience serves a dual role: it distorts loan officers’ belief when processing hard 

information but facilitates their attention allocation in their acquisition of soft information.  

My findings suggest replacing loan officers with the machine can increase profits substantially. However, 

doing so would also sacrifice all the valuable soft information. Is there a way to combine the strengths of 

humans with machines, making them complements? I develop such a procedure in the final section. The 

key step is to train the machine learning algorithm on a subsample of data generated by the loan officers 

most skilled at acquiring soft information. The machine then puts more weight on hard variables that have 

higher correlations with useful soft signals and consequently captures a portion of the soft signals. I show 

that this procedure results in better decisions than humans or machines working alone, suggesting a means 

of combining humans and machines in settings where both hard and soft information matter. 

This paper contributes to three strands of literature. First, it provides new insights into the literature on 

investors’ information processing. I differentiate between bounded rationality theory and 

representativeness bias theory. Due to difficulty in observing the decision-maker’s information set, 

empirical studies under the bounded rationality framework have focused on various market outcomes as 

indirect evidence of information processing constraints. These outcomes include investors’ trading 

(Blankespoor et al. 2019a), consumer and manager’s use of tax rates (Chetty et al. 2009; Graham et al. 

2017), investors’ perceptions of different reporting formats (Hirshleifer et al. 2003), stock price 

responsiveness to disclosure (Hirshleifer et al. 2009, 2011; Dellavigna et al. 2009; Lawrence et al. 2018), 

and firms’ disclosure choices in response to shocks to investors’ information processing costs (Dehaan et 
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al. 2015; Blankespoor 2019; Abramova et al. 2019). Empirical studies under the representativeness bias 

framework provide sparse evidence outside of experimental settings, with a few recent exceptions (e.g., 

Mullainathan and Obermeyer 2019). 

My paper adds to both categories of research in three ways. First, by combining unique data with a novel 

approach, I provide direct evidence of bounded rationality and representativeness in human hard 

information processing in a non-experimental setting. Second, using machine learning as a benchmark, 

my results emphasize a trade-off between humans’ weakness in hard information processing and their 

strength in acquiring soft information, two aspects of information processing usually studied separately. 

Finally, my finding on the dual role of salience bridges these two lines of research. While salience 

impedes hard information processing, as predicted by representativeness, it facilitates the allocation of 

attention, a costly resource as emphasized by bounded rationality. This new result highlights the value of 

combining both kinds of models to understand human decision-making. 

Second, my paper contributes to the literature on soft and hard information and their differing roles in 

contracts (Liberti and Petersen 2018). Since soft information is hard to quantify, researchers have relied 

on indirect measures at bank-branch or loan-officer level, such as the geographical distance between 

lenders and borrowers (e.g., Petersen and Rajan, 1994, 2002; Granja et al. 2019), cultural distance 

between loan officers and borrowers (Fisman et al. 2017), or loan officer fixed effects (Bushman et al. 

2019). A notable exception is the work of Campbell et al. (2019), who use keywords in loan officers’ 

internal reports to construct soft information. Contrary to these studies, I design an approach to identify 

soft information embedded in officers’ individual lending decisions at the loan level. This approach 

allows me to investigate the interaction between hard and soft information and examine which factors 

impede or facilitate soft information acquisition both across and within loan officers. 

Finally, my paper relates to the nascent literature studying how machine learning tools can improve 

decision-making (e.g., Hoffman et al. 2018; Kleinberg et al. 2018; Einav et al. 2018; Bartlett et al. 2019; 
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Erel et al. 2019). I add to this literature in two ways. First, while most researchers focus on demonstrating 

human underperformance, I go a step further by searching for factors explaining underperformance.
3
 

Second, I document that humans have strengths, relative to machines, in acquiring soft information. A 

closely related paper is by Costello et al. (2019). They find that, in a randomized experiment, allowing 

humans to incorporate private information into a machine-based credit score improves loan outcomes. 

Using a different approach to recover private soft information, my paper also shows that soft information 

has value, consistent with theirs. My paper differs in that I focus on examining how cognitive constraints 

and behavioral factors affect hard information processing and soft information acquisition.  

The rest of the paper proceeds as follows. Section 2 describes the institutional setting and data. Section 3 

connects the setting to conceptual underpinnings and then lays out the research design. Section 4 

introduces the machine learning procedure used in the research design. Section 5 reports the main 

findings and interprets them in a theoretical framework. Section 6 builds on the research design and 

develops a technique to combine humans and machines. Section 7 concludes. 

2. Setting 

My data comes from a large Chinese lender with sales offices in 23 major cities spread across the country. 

The lender offers unsecured short-term cash loans to small businesses as well as personal loans. My 

sample contains all small business loans and runs through the lender’s entire operating history from 2011 

to 2015. As I will describe in detail in this section, the setting offers a unique opportunity to investigate 

human information processing because 1) I observe the entire set of codified information that loan 

officers observe, and 2) random assignment ensures that all loan officers with sufficient amount of 

observations face the same pool of borrowers. I restrict the sample to 28 officers who have approved at 

least 500 loan applicants. This restriction eliminates 8% of the sample. Due to random assignment, any 

loan officer level variation in contract terms and loan outcomes come from differences in loan officers’ 

                                                             
3 Mullainathan and Obermeyer (2019) also explore this direction. They show that bounded rationality and representative bias 

explain physicians’ inefficient use of test for heart attack using predictions from machine learning as a benchmark. 
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information processing, rather than differences in borrower characteristics.  

2.1. The Lender 

The lender on average receives 32,000 loan applications and approves 14,000 loans per year, with an 

average loan size of around 55,000 Chinese yuan ($8,000). Most loans have a maturity term between 12 

to 24 months. The lender diversifies risk by making small loans across regions and industries. None of the 

originated loans is sold or securitized. All borrowers face the same 24% to 25% effective annual interest 

rate. Fixed interest rates are common in China’s unsecured short-term small business credit market, and 

credit demand being much more responsive to the quantity margin than the price margin is a common 

feature of high-risk short-term lending markets in other economies as well.
4
 As the price of loans is fixed, 

loan officers’ decisions are solely on the quantity margin, namely loan size, and maturity. Since maturity 

is typically determined by the management team, based on the lender’s funding liquidity condition, 

leaving little discretion to loan officers, I focus on loan size as the main decision variable. 

The whole lending process, from the borrower’s application to the final credit decision, typically takes 

one to two weeks. During the sample period, the lender has no algorithm to assign internal ratings to 

borrowers. As a result, lending decisions depend on how loan officers assess hard information and acquire 

soft information.
5
 I describe loan officers’ duties and incentives in the following section. 

2.2. Loan Officers 

There are on average 40 loan officers throughout the sample period. All loan officers work independently 

in the headquarter and do not have any regional or industry specialization. Loan officers do not solicit 

loans. Borrowers’ demographic information enters the lender’s system once an application file is filled out. 

                                                             
4 Loan contracts being sensitive on the quantity margin (loan size) but much less on the price margin (interest rate) is consistent 

with the credit rationing theory a la Stiglitz and Weiss (1981) and is confirmed by empirical findings in the US small business 

credit market (e.g. Petersen and Rajan 1994) and other high risk credit markets (e.g. Karlan and Zinman 2008). 
5 There are, however, certain rules that officers are required to follow. For example, the lender has a maximum lending amount 

of 500,000 yuan ($80,000). The lender only lends to borrowers whose age is between 20 and 60. Starting December 2012, the 

lender cannot lend to borrowers who cannot provide verified bank statement. 
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Field employees then visit borrowers’ business sites to collect additional accounting information, such as 

account receivables/payables and bank statements. These employees are required to take a few pictures of 

the borrower, the business site, and inventories (if available). After information collection is completed, 

the system randomly assigns the borrower to a loan officer in the headquarter.
6
  

Loan officers first make an accept/reject decision and, conditional on accepting, approve a loan size. The 

decisions are then randomly assigned to 12 credit managers for review. Credit managers can reject loans 

approved by loan officers, as happened in 20% of the sample. Credit managers also sometimes revise the 

approved loan size. These rejections and adjustments made by credit managers are generally based on the 

lender’s funding constraint, not on concerns about individual loan officer’s ability. The correlation 

between loan officer approved loan size and the final loan size is higher than 0.9. Loan officers have no 

further interaction with the borrower once a decision is made. In particular, loan officers do not monitor 

loans or participate in collecting overdue debts. 

In addition to a fixed salary, loan officers’ bonuses and promotion prospects are linked to the number of 

loans they approved as well as revenues generated from these loans. Based on this compensation scheme, 

I assume that the objective of loan officers is to maximize the repayment of each loan. Due to random 

assignment, each loan officer receives a diversified pool of borrowers across regions and industries. As a 

result, officers do not need to manage their own portfolios to avoid large exposure to a certain region or 

industry. In addition, since less than 5% of borrowers return for a second loan, loan officers do not have 

the incentive to lend to low-quality borrowers to form relationships so that they can later hold up these 

borrowers as in Rajan (1992). I drop all repeated borrowers.
7
 Other than a loan size cap, the lender does 

not impose other constraints on loan officers that might conflict with profit maximization.
8
 For these 

                                                             
6 In rare occasions, approximately 2% of the sample, a loan officer returns a randomly assigned borrower back to the pool. This 

happens when loan officers take days off before a decision is made or when they feel it is extremely difficult to make a decision. 

All my results remain after dropping these cases. 
7 Since my sample period covers the entire operating history, it is clear that all borrowers in sample are first-time borrowers.  
8 For example, since all the borrowers are privately owned small enterprises without government connections, there is no 

political concern for doing business in this market. 
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reasons, maximizing individual loan repayment reasonably describes a loan officers’ objective. 

2.3. Hard Information 

Loan officers observe codified demographic and accounting information through the internal system. The 

former is mostly self-reported by borrowers. While some information, such as age and gender, is easy to 

verify, other information, such as months living at the current address, is not. The lender obtains 

borrowers’ credit records from the central bank’s credit system. These reports contain information on 

borrowers’ credit history, such as number and types of loans, number of credit cards, and delinquencies. 

Accounting information is collected during field officers’ visits to the borrowers’ business sites. Overall, 

there are 70 hard information variables, all either submitted by borrowers or collected by field employees 

and made available to loan officers exogenously.
9
 Table 1 reports a complete list.  

2.4. Soft Information 

In addition to hard information, loan officers can acquire soft information from two sources. First, they 

have access to pictures of the borrower, borrower’s business site, and borrower’s inventory. These 

pictures are taken by field employees and made available to loan officers through the lender’s internal 

system. Since interpretations of pictures are ambiguous and vary across officers, I define them as soft 

information. Second, officers can call the borrower and the borrower’s family members or coworkers.
10

  

Figure 1 summarizes the information structure and decision process. First, borrower i fills out a loan 

application with demographic information. The lender then sends field employees to collect accounting 

information and take pictures. Next, the system randomly assigns borrower i to one of the J officers. 

Finally, the officer being assigned (call her officer j) processes codified information 𝑋𝑖, determines how 

much soft information 𝑠𝑖 she would like to produce and makes a lending decision based on 𝑋𝑖 and 𝑠𝑖. 

                                                             
9 Many variables are categorical. There are overall 205 variables if all categorical variables are converted to dummies.  
10 Personal conversations with loan officers suggest that this happens in half of the sample on average, but varies significantly 

across loan officers. 
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   Figure 1: Information Structure and Decision Process 

 

3. Conceptual Underpinnings and Research Design 

The small business lending setting provides a suitable laboratory to study information processing by loan 

officers. In this section, I first connect this setting to the conceptual underpinnings in my research 

question. I then lay out a research design to address my research question.  

3.1. Conceptual Underpinning 

3.1.1. Hard Information Processing 

I differentiate between two categories of theories that explain the inefficiencies in loan officers’ hard 

information processing. The first emphasizes bounded rationality, going back at least to the work of 

Herbert Simon (Simon 1955). These models focus on the limits of cognitive resources, such as attention, 

memory, or computation (Mullainathan 2002; Sims 2003; Gabaix 2014; Bordalo et al. 2019). Blankespoor 

et al. (2019b) survey applications of this class of models in accounting and finance. Bounded rationality is 

very natural in my setting: loan officers may not be able to attend to, process, or mentally represent the 
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rich set of data available on borrowers and so may instead resort to a simpler model of risk. I test two 

predictions from this class of models. First, if attention is costly and cognitive constraints bind, officers 

can process only a subset of useful signals. Second, research has shown that humans have particular 

difficulty perceiving nonlinear relationships between variables. These relationships are usually simplified 

and represented mentally in a linear fashion (Stango and Zinman 2009).
11

 For example, officers might 

recognize a borrower’s education background and industry as individually important but have difficulty 

seeing how they might interact in determining risk if education is more relevant in certain industries than 

others. I thus test whether officers systematically fail to incorporate nonlinear signals in their decisions. 

The second category of theory emphasizes that, even in the set of variables used for decision making, 

people make systematic probabilistic errors (Kahneman 2011; Benjamin 2019). An important class of 

model under this category studies representativeness heuristics and was first proposed in psychology by 

Kahneman and Tversky (1972) and Tversky and Kahneman (1974). Fischer and Verrecchia (1999; 2004) 

make early theoretical applications of representativeness heuristics in the accounting literature, focusing 

on trading and disclosure. Libby et al. (2002) and Bloomfield (2002) survey early experimental tests on 

such biases in accounting. Recently, Bordalo et al. (2016) formalize this concept in economics as 

probability judgments based on the most distinctive differences between groups and show that 

representativeness heuristics can exaggerate perceived differences between groups.
12

  

In my setting, the theory of representativeness predicts that loan officers approve loan sizes too small for 

borrower groups with characteristics representative of high risk, because such characteristics catch 

officers’ eye and exaggerate their perception of the risks. One such distinctive characteristic that is both 

relevant and have large sample in my setting is salient information, defined as large negative realizations 

                                                             
11 Wagenaar and Sagaria (1975) and Wagenaar and Timmers (1978, 1979) provide initial experimental evidence of this 

phenomenon. 
12 Bordalo et al. (2016) use this formalization to generate gender stereotypes. In recent years, this theoretical framework has been 

shown to explain a wide range of financial and economic outcomes, including consumer behavior (Bordalo et al. 2013b), 

corporate investment (Gennaioli et al. 2015), aggregate stock returns (Greenwood and Shleifer, 2014), cross-sectional stock 

returns (Bordalo et al. 2019), bank lending standards (Baron and Xiong 2017, Fahlenbrach et al. 2017), corporate bond returns 

(Greenwood and Hansen 2013), and credit cycles (Lopez-Salido et al. 2017; Bordalo et al. 2018). It also has been a leading 

framework to explain the various episodes of the global financial crisis and its aftermath (Gennaioli and Shleifer 2018). 

https://www.sciencedirect.com/science/article/pii/S2214635018300546#b30
https://www.sciencedirect.com/science/article/pii/S2214635018300546#b31
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in accounting variables (e.g., a large negative jump in cash flows). If loan officers consider such 

information as being representative of a “bad type” of borrower, they might overreact. Indeed, among 

borrowers who default, 28.1% are salient, defined as having at least one accounting variable whose value 

falls into 5% in the left tail of the distribution of that variable across all borrowers. This proportion is only 

15.8% among borrowers who do not default, making negative salient information a distinctive difference 

between good and bad borrowers. Based on this prediction, I test whether loan officers on average 

approve loan sizes that are too small to borrowers with negative salient information.
13

 

A remark is in order for my definition of salience. The literature does not provide a uniform definition. 

Empirical papers often adopt a functional definition by assuming that something is more salient if it is 

more visible (e.g., Chetty et al. 2009). Theoretical research has established more rigorous definitions by 

stating that what is salient depends on what the decision-maker compares it to. Bordalo et al. (2013) 

define the salience of an attribute of a particular good to a consumer (e.g., the price of a particular bottle 

of wine) as the distance between its value and the average value of that attribute across all goods available 

to the consumer (e.g., the average price of all wine on the menu). Similarly, Bordalo et al. (2012) define 

the salience of a particular payoff of a lottery as the difference between its value and the average payoff 

yielded by all other available lotteries in that state. My definition that a borrower characteristic is more 

salient if it has a large (negative) realization fits well with both the functional definition in empirical 

research, because large realizations are rare and thus more noticeable, and the more rigorous theoretical 

definition, because large realizations of a characteristic have a greater distance from the average of that 

characteristic across all borrowers. 

3.1.2. Soft Information Acquisition 

Despite any inefficiency in hard information processing, loan officers should play a crucial role in 

                                                             
13 Another borrower group potentially subject to representativeness bias consists of female borrowers as in the model of Bordalo 

et al. (2016). In appendix B, I test whether gender stereotypes explain loan officers’ underperformance. It is important to note that, 

as discussed in Dobbie et al. (2019), my setting is not powerful enough to distinguish between gender bias due to 

representativeness and that is taste-based. 
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collecting and processing qualitative and costly-to-verify soft information, as documented in other similar 

settings (e.g., Petersen and Rajan 1994, 1995; Agarwal and Hauswald 2010; Michels 2012; Cassar et al. 

2015; Iyer et al. 2016; Campbell et al. 2019). For example, loan officers in my setting extract valuable 

signals by initiating and sustaining conversations with borrowers and it is hard to train a computer to 

mimic humans’ adaptability in conversations.
14

 In addition, loan officers observe hard information before 

determining whether and how to acquire soft information, and certain features of hard information can 

trigger soft information acquisition. For example, when observing unusual patterns in cash flows, loan 

officers typically make calls and ask the borrower for an explanation. Consequently, factors that impede 

hard information processing might also affect soft information acquisition.  

In settings with no friction, information acquisition is usually modeled under the rational expectation 

equilibrium framework in which investors learn about a fundamental (e.g., a borrower’s type) by 

acquiring a signal of it (e.g., Verrecchia 1982; Diamond 1985). This framework imposes that investors’ 

belief about the fundamental coincides with its true underlying distribution. If representativeness distorts 

loan officers’ beliefs in my setting, such that their perception of a borrower’s type differs from the 

borrower’s true type, the acquired soft information might be polluted.
15

 Intuitively, talking to a borrower 

but starting with an incorrect belief might make the conversation less effective. I thus test whether soft 

information acquisition is less efficient when the borrower has salient information. 

3.2. Research Design 

My research design has three components. First, assessing information processing by loan officers 

requires a benchmark. In section 3.2.1, I discuss the rationale for using machine learning as such a 

                                                             
14 Hardening soft information plays a key role in the history of the credit scoring (Kraft 2015; Liberti and Petersen 2018). 
Although it is possible to ask loan officers to assign scores to borrowers based on conversations, and then feed scores to a model, 

we still need officers to acquire soft information before scores can be assigned. Moreover, such a process inevitably lose 

information as different people might interpret the same conversation differently, making scores hard to compare across officers. 
15 In mathematical terms, denote the true borrower type as θ~N(θ̅, 𝜎). Under a rational expectation equilibrium, acquired soft 

information x is modeled as a signal that equals θ plus a noise term ε, x = θ + ε, where ε has mean 0. Consequently, the signal 

x is an unbiased measure of θ. In contrast, if loan officers have a distorted belief about the borrower’s type θ′~N(θ̅′, 𝜎) such 

that θ̅′ ≠ θ̅, the acquired soft information x’ might become x′ = θ′ + ε, which is a biased measure of the true type θ. 



15 

benchmark. Second, machine is a useful benchmark for hard information processing, but not soft 

information acquisition. In section 3.2.2, I describe an approach to decompose officers’ decisions into a 

part driven by hard information and a part driven by soft information. Third, an ideal comparison between 

humans and machines requires randomly assigning borrowers to each. Since all my data is generated by 

human decisions, I do not have a counterfactual about what loan outcome would be if a different loan size 

were to be assigned by a machine. In section 3.2.3, I address this challenge by estimating a causal 

parameter between loan outcome and size and using this parameter to recover the counterfactual outcome. 

3.2.1. Machine Learning as a Benchmark 

Suppose we observe the outcome of a decision made in the previous period: 

𝐻𝑢𝑚𝑎𝑛 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝐼𝑛𝑓𝑜𝑡) → 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑡+1 

How should we assess strengths and weaknesses of Human Decision(Infot)? Defining decision error 

requires a benchmark. Such a benchmark is generally absent in the real world because the ideal, error-free 

decision is unobservable. One potential solution is to use the outcome (𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑡+1) as the benchmark. 

This approach has two limitations. First, it is usually impossible to know what Outcome𝑡+1 would be if 

no error were to exist in 𝐻𝑢𝑚𝑎𝑛 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝐼𝑛𝑓𝑜𝑡). As a result, we can only cross-sectionally estimate 

errors of worse decision-makers versus better ones. Second, any unpredictable shock between t and t+1 

that change 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑡+1 should not be used in assessing decision at t. In my setting, this means that any 

unpredictable shock to a borrower’s willingness and ability to repay should not be used to evaluate loan 

officers’ decisions. But since shocks are often not observable and cannot be separated from 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑡+1, 

they would inevitably induce bias if I were to follow this approach.
16

 

To avoid these difficulties, I instead use a machine learning model to predict a borrower’s risk (e.g., 

expected repayment), using only information available at t and treat this machine prediction as the 

                                                             
16 This point has been raised by Einav et al. (2018). 
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benchmark. If the model makes considerably fewer decision errors than loan officers, this helps me avoid 

the challenge that human error-free decision is unobservable. Since machine predictions are based only on 

information available when human decisions are made, it also avoids the look-ahead problem. Denote 𝑋𝑡 

as the set of machine-readable information. I train a machine learning model 𝑀() that maps 𝑋𝑡 into a 

machine predicted borrower riskiness and then further map this machine predicted riskiness into a loan 

contract. Call this loan contract 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑡: 

𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑡 = 𝑀(𝑋𝑡)                           (1) 

It is important to ensure that the machine-based contract is feasible. In particular, does the lender have 

sufficient funding to implement this contract? Moreover, would the borrower accept this contract if it 

differed from the original one? To achieve feasibility, I follow a conservative approach with four steps. 

Step 1: For each month, sort borrowers by their machine predicted riskiness.
17

 

Step 2: For the same month, sort the original human assigned contracts by loan size. 

Step 3: Reallocate human-assigned loan sizes to borrowers according to the machine-predicted riskiness, 

where bigger loans are reallocated to borrowers with lower machine-predicted riskiness. 

Step 4: If machine-based loan size exceeds the borrower’s requested loan amount, I reset the 

machine-based loan size equal to the borrower’s requested loan amount. 

Figure 2 illustrates a hypothetical example with 3 borrowers (i=1,2,3). Suppose the model predicts that 

borrowers 1, 2, and 3 have small, medium, and large risk, respectively. And suppose loan officers give 

medium, small, and large loans to borrowers 1, 2, and 3, respectively. My machine-based decision rule 

would first reallocate the large loan to borrower 1, the medium loan to borrower 2, the small loan to 

borrower 3 and then reset the reallocated loan size to the requested loan size if the latter is smaller.  

                                                             
17 I defer the details of how I train the machine learning model to Section 4. 
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Figure 2: Generating machine-based Contracts 

With Steps 1–3, I do not allow the machine to transfer funds across months as the lender might face 

time-varying funding liquidity shocks. Neither do I allow the model to optimize loan size distribution 

within a month. This step ensures that the strategy is feasible under the lender’s credit supply constraint.  

With respect to credit demand, there are two scenarios to consider. First, would a borrower accept the 

machine-based loan size 𝑀(𝑋𝑖,𝑡) if it were bigger than the original loan size? Second, would a borrower 

accept the machine-based loan size if it were smaller than the original loan size? Step 4 deals directly with 

the first scenario by not allowing the machine-based contract to surpass borrowers’ credit requests. This is 

not an important constraint. Most borrowers request an amount far larger than the approved loan size, and 

only 0.17% request loans smaller than the approved size. Figure A1 in the appendix reports a histogram of 

excess demand, defined as the difference between requested and approved loan size, together with a 

histogram of actual approved loan size. The median excess demand is greater than the 93rd percentile of 

the approved loan size. This universal under-funding is consistent with credit rationing theory, such as by 

Stiglitz and Weiss (1981), and is a common feature in other highly risky credit markets (Adams et al. 

2009).
18

 Indeed, I only need to take Step 4 for less than 3% of the sample to implement 𝑀(𝑋𝑖).  

Next, I consider the second scenario. 14% of approved loans are turned down by borrowers. I, therefore, 

                                                             
18 While such gaps could be the result of a strategic game where borrowers request larger loans and anticipate underfunding, it is 

unlikely to explain all of the variation. Early repayment fees and immediate first month payment make the costs of excessive 

borrowing non-trivial. In addition, the average borrower may not be able to predict the loan officer’s own lending preference.  
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test whether underfunding is a primary reason that some borrowers turn down an approved offer. The 

results are reported in Table A1. Controlling for credit demand (i.e., requested loan size), column (3) 

suggests that reducing approved loan size from the 75th percentile (60,000 yuan or $9,000) to the 25th 

percentile (27,000 yuan or $4,000) raises the probability of turning down an offered loan by 11.7%.
19

 

Since this effect is modest, I do not adjust for the likelihood of borrowers turning down a loan if the 

machine-based loan is smaller than the original loan. I revisit this assumption in the robustness checks. 

Having established the rationale for using the machine learning model as the benchmark and a feasible 

implementation strategy, to make an apples-to-apples comparison between human decisions and this 

benchmark, I must take into account that loan officers have access to private, soft information not 

available to the machine. In the next section, I discuss a method that decomposes human decisions into 

variation driven by hard information 𝑋𝑖 and variation driven by soft information 𝑠𝑖: 

𝐻𝑢𝑚𝑎𝑛 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 = 𝐻(𝑋𝑖) + 𝑠𝑖                         (2) 

3.2.2. Hard and Soft Information: a Decomposition 

To perform decomposition (2), I must observe the entire hard information set 𝑋𝑖 and know what 𝐻() 

looks like. My data satisfies the first requirement. To obtain 𝐻(), I search for the combination of 𝑋𝑡 that 

best explains each loan officer’s usage of hard information. This is not an inference problem, but rather a 

prediction problem suitable for machine learning (Mullainathan and Spiess 2017). Specifically, I allow 

different officers to have different 𝐻() and train a machine learning model for each officer j to predict 

her decision, call it 𝐻𝑗(𝑋𝑖,𝑡). Unlike 𝑀(𝑋), whose purpose is to predict borrower risk, the purpose of 

𝐻𝑗(𝑋𝑖,𝑡) is to mimic officer j’s behavior in processing hard information Xi,t. Importantly, 𝐻𝑗(𝑋𝑖,𝑡) 

captures any limitation or bias that officer j might have in processing Xi,t. Finally, I recover soft 

information si,j,t as the difference between officer j’s actual decision and 𝐻𝑗(𝑋𝑖,𝑡): 

                                                             
19 11.7% = (60,000-27,000)*0.355/100,000 
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si,j,t = 𝐿𝑜𝑎𝑛_𝑆𝑖𝑧𝑒𝑖𝑡
𝑗

− 𝐻𝑗(𝑋𝑖,𝑡)                            (3) 

Note that (3) identifies variations in si,j,t across loans but not its average effect in (2) as it is absorbed in 

the intercept of 𝐻(𝑋𝑖). One concern is that some variation in 𝐿𝑜𝑎𝑛_𝑆𝑖𝑧𝑒𝑖𝑡
𝑗

 might be driven by human 

noise, such as mood and sentiment. Research suggests that mood generates noise in human information 

processing (Hirshleifer and Shumway 2003; Bushee and Friedman 2016; Dehaan et al. 2016; Cortes et al. 

2016). Such noise is pooled with soft information in 𝑠𝑖,𝑗,𝑡. To test whether there is a valid signal about 

borrower’s risk in 𝑠𝑖,𝑗,𝑡, I show that soft information identified by (3) predicts loan performance. 

In Figure 7, I compute the standard deviation of si,j,t for each officer and plot it against two measures of 

officer performance—the average default rate and average profit rate, defined as (total repayment – loan 

size)/loan size. If si,j,t captures a valid signal, officers better at acquiring soft information should have 

larger dispersion in si,j,t. Indeed, Figure 7 shows that officers with larger dispersion in si,j,t have lower 

default rates and generate higher profits. Switching from officer-level to loan-level evidence, Table 2 

shows that si,j,t strongly predicts loan profit at the loan level. For example, column (3) indicates that 

moving 𝑠𝑖,𝑗,𝑡 from 25% percentile (-0.67) to 75% percentile (0.56) is associated with 1.5% higher profit 

rate. These tests confirm that soft information identified by (3) captures valid signal about borrower risk.  

To summarize what I have gained so far, Figure 3 provides an overview of my methodological framework. 

I observe hard information set Xt and actual human-determined loan contracts 𝐿𝑜𝑎𝑛_𝑆𝑖𝑧𝑒𝑖𝑡
𝑗

 (second 

box in the left column) directly from data. In section 3.2.1, I train a machine learning model 𝑀(𝑋𝑡) (first 

box in the right column) and obtain machine-based loan contracts (second box in the right column). In 

section 3.2.2, I decompose 𝐿𝑜𝑎𝑛_𝑆𝑖𝑧𝑒𝑖,𝑡
𝐻  into 𝐻(𝑋𝑖,𝑡) and 𝑠𝑖,𝑡 (first box in the left column). The final 

step is to compare the performance of 𝑀(𝑋𝑖,𝑡) and 𝐻(𝑋𝑖,𝑡). If 𝑀(𝑋𝑖,𝑡) considerably outperforms 

𝐻(𝑋𝑖,𝑡), it can be used as a valid benchmark to study errors in 𝐻(𝑋𝑖,𝑡). Here, I face the lack of a 
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counterfactual problem. While the performance of 𝐻(𝑋𝑖,𝑡) + 𝑠𝑖,𝑡 is readily observable (third box in the 

left column), neither the performance of 𝐻(𝑋𝑖,𝑡) nor the performance of 𝑀(𝑋𝑖,𝑡) is observable.  

That is, to the extent that a borrower’s repayment behavior is a function of loan size, this behavior would 

certainly differ if no soft information is used (i.e., 𝐻𝑗(𝑋𝑖,𝑡) ≠ 𝐻𝑗(𝑋𝑖,𝑡) + 𝑠𝑖,𝑗,𝑡) or a different loan 

contract is assigned by the machine (i.e., 𝑀(𝑋𝑖𝑡) ≠ 𝐻𝑗(𝑋𝑖,𝑡) + 𝑠𝑖,𝑗,𝑡). In the next section, I describe a 

method to generate these unobservable counterfactuals. 

 

 

 
 
 
 
 
 

 

  

Figure 3: Overview of Methodological Framework 

3.2.3. Generating Counterfactual 

The goal of this section is to generate the following two unobserved counterfactuals. 

1. The loan outcome if no soft information were used in loan officers’ decisions: The counterfactual 
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2. The loan outcome if the loan size were determined by the machine: The counterfactual decision rule 
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keeping everything else fixed. The first counterfactual requires estimating changes in loan outcome when 

loan size changes by 𝑠𝑖,𝑗,𝑡. The second counterfactual requires estimating changes in loan outcome when 

loan size changes by 𝑀(𝑋𝑖,𝑡) − 𝐿𝑜𝑎𝑛_𝑆𝑖𝑧𝑒𝑖𝑡
𝐻  Denote the parameter governing the (causal) relation 

between changes in loan size and changes in loan outcome by 𝛽:  

∆𝑅𝑒𝑝𝑎𝑦 = 𝛽∆𝐿𝑜𝑎𝑛_𝑆𝑖𝑧𝑒                             (4) 

Once 𝛽 is estimated, the two counterfactuals can be generated by 

𝑅𝑒𝑝𝑎𝑦𝑖,𝑡+1
𝐻𝑎𝑟𝑑 = 𝑅𝑒𝑝𝑎𝑦𝑖,𝑗,𝑡+1

𝐻 + 𝛽𝑠𝑖,𝑗,𝑡                        (5) 

𝑅𝑒𝑝𝑎𝑦𝑖,𝑡+1
𝑀 = 𝑅𝑒𝑝𝑎𝑦𝑖,𝑗,𝑡+1

𝐻 + 𝛽(𝑀(𝑋𝑖,𝑡) − 𝐿𝑜𝑎𝑛_𝑆𝑖𝑧𝑒𝑖,𝑗,𝑡
𝐻 )               (6) 

I examine two measures of loan outcomes. The first is 𝑅𝑒𝑝𝑎𝑦_𝑅𝑎𝑡𝑖𝑜, defined as the total repayment 

amount over the loan amount. Total repayment includes interest payments, management fees, early 

repayment fees, and principal repayment. My second measure of loan outcome 𝑅𝑒𝑝𝑎𝑦_𝐷𝑜𝑙𝑙𝑎𝑟 is simply 

total dollar repayment (i.e., nominator of 𝑅𝑒𝑝𝑎𝑦_𝑅𝑎𝑡𝑖𝑜). I estimate (4) for both measures and obtain 

 𝛽𝑟𝑎𝑡𝑖𝑜 for 𝑅𝑒𝑝𝑎𝑦_𝑅𝑎𝑡𝑖𝑜 and 𝛽𝑑𝑜𝑙𝑙𝑎𝑟 for 𝑅𝑒𝑝𝑎𝑦_𝐷𝑜𝑙𝑙𝑎𝑟. 

Both measures are useful because their strengths lie in different aspects. Since 𝑅𝑒𝑝𝑎𝑦_𝑅𝑎𝑡𝑖𝑜 is unit free, 

it better captures a borrower’s type in that a higher quality borrower repays a higher proportion of 

obligations, irrespective of loan size. On the contrary, 𝑅𝑒𝑝𝑎𝑦_𝐷𝑜𝑙𝑙𝑎𝑟 has a dollar unit. 𝛽𝑑𝑜𝑙𝑙𝑎𝑟 thus 

confounds the effect of 𝛽𝑟𝑎𝑡𝑖𝑜 with a mechanical effect that larger loans on average have more money 

paid back. Therefore the economic meaning of 𝛽𝑑𝑜𝑙𝑙𝑎𝑟  is hard to interpret. 𝛽𝑑𝑜𝑙𝑙𝑎𝑟 , however, has 

practical value in that it maps dollar changes in loan size directly to dollar changes in profit, facilitating 

model performance comparison. For this reason, I focus on 𝛽𝑟𝑎𝑡𝑖𝑜 when discussing the underlying 

economics and use 𝛽𝑑𝑜𝑙𝑙𝑎𝑟 when computing profits for each counterfactual. 
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One point is worth discussing before diving into details about estimating 𝛽s. The four-step rule to 

implement 𝑀(𝑋𝑖,𝑡) specified in section 3.2.1 does not depend on how precisely 𝛽 is estimated. This is 

because I merely reallocate credit across borrowers and any change in loan outcome induced by some 

borrower receiving a larger loan should be offset by some other borrower receiving a loan smaller by the 

same amount.
20

 In equation (6), it implies that the term 𝛽(𝑀(𝑋𝑖,𝑡) − 𝐿𝑜𝑎𝑛_𝑆𝑖𝑧𝑒𝑖,𝑗,𝑡
𝐻 ) disappears after 

aggregating across borrowers.
21

 Consequently, the entire profit gain by implementing 𝑀(𝑋𝑖,𝑡) comes 

from reallocating larger (smaller) loans to borrowers who are more (less) likely to repay, as predicted by 

𝑀(𝑋𝑖,𝑡). Nonetheless, it is useful to estimate 𝛽 for other strategies to implement 𝑀(𝑋𝑖,𝑡).  

 

 

 

 

Figure 4: Economic Channels Captured by 𝜷𝑶𝑳𝑺 

It is helpful to first consider an OLS estimator for (4). In principle, there are four economic channels that 

connect loan size and repayment, summarized in Figure 4. First, adverse selection predicts a negative 

relationship as the low-quality type has the incentive to self-select larger loans (Jaffee and Russell 1976). 

Second, screening serves as a counterforce where loan officers try to assign larger loans to the 

high-quality type. Third, moral hazard predicts a negative relation since borrowers who receive larger 

loans have an incentive to take too much risk ex-post (Stiglitz and Weiss, 1981) because they have less 

skin-in-the-game. Finally, the theory of liquidity constrained entrepreneur suggests a positive relationship 

because more funding allows more positive NPV projects to be undertaken and improves repayment 

                                                             
20 This is not true for cases that require Step 4. But since such cases represent less than 3% of the sample, and the adjustments 

made in Step 4 for these cases are typically small, these cases only have a marginal effect. 
21 The only assumption required for this logic is that the relation between loan size and profit is linear as specified in (4). Figure 

A2 in the appendix provides reduced-form supporting evidence that this relation is linear throughout the range of loan size. 
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ability (Evans and Jovanovic, 1989; Holtz-Eakin et al. 1994).
22

 

The OLS estimator pools all four effects. But for the purpose of generating the counterfactuals, my goal is 

to capture the two ex-post effects of changing loan size and eliminate the two ex-ante selection effects. 

This is because the counterfactuals should capture what happens to a borrower’s repayment behavior if a 

different loan size is assigned to the same borrower. If loan officers’ screening effort cannot eliminate 

adverse selection (i.e., the ex-ante selection effect is negative), 𝛽𝑂𝐿𝑆 underestimates 𝛽.  

I exploit random assignment and use officers’ average loan size as an instrument for actual loan size to 

estimate the causal relationship between loan size and repayment. Since all officers face the same pool of 

borrowers due to random assignment, their average loan size (i.e., “leniency”) should be orthogonal to 

borrower characteristics and affect repayment only through officer-specific characteristics, such as their 

style or level of risk aversion. In this way, the IV estimator is not polluted by borrowers with different 

characteristics, observable or unobservable, systematically self-selecting into different loan contracts. 

Specifically, I run the following 2SLS regression. 

First Stage: 𝐿𝑜𝑎𝑛_𝑆𝑖𝑧𝑒𝑖,𝑗,𝑡
𝐻 = 𝛾𝐿𝑒𝑛𝑖𝑒𝑛𝑐𝑦𝑗 + 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖,𝑗,𝑡                (7) 

𝑆𝑒𝑐𝑜𝑛𝑑 𝑆𝑡𝑎𝑔𝑒: 𝑅𝑒𝑝𝑎𝑦𝑖,𝑗,𝑡+1
𝐻 = 𝛽𝐼𝑉𝐿𝑜𝑎𝑛_𝑆𝑖𝑧𝑒̂

𝑖,𝑗,𝑡
𝐻 + 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖,𝑗,𝑡 

𝐿𝑒𝑛𝑖𝑒𝑛𝑐𝑦𝑗 is defined as the average loan size by officer j. 𝑅𝑒𝑝𝑎𝑦𝑖,𝑗,𝑡+1
𝐻  is the observed repayment ratio 

or dollar repayment. Table 3 reports the results of (7). In both Panel A (𝑅𝑒𝑝𝑎𝑦_𝑅𝑎𝑡𝑖𝑜) and Panel B 

(𝑅𝑒𝑝𝑎𝑦_𝐷𝑜𝑙𝑙𝑎𝑟), the IV estimates are larger than the OLS estimates, consistent with the previous 

conjecture that OLS estimator is biased downward due to adverse selection. Note that this result is 

unlikely to be driven by weak IV, as the first stage is very strong.  

                                                             
22 It is well understood in the empirical contract literature that βOLS pools adverse selection and moral hazard effects in the 

consumer credit market and insurance market (Adam et al. 2009; Chiappori and Salanie 2000). I add a liquidity constraint effect 

since the borrowers are entrepreneurs and the amount of credit should affect repayment by changing future cash flows. 
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One might worry that 𝐿𝑒𝑛𝑖𝑒𝑛𝑐𝑦𝑗 captures an officer’s ability to acquire soft information because officers 

good at this might have the confidence to approve larger loans. This is unlikely to violate the exclusion 

restriction condition if officers only use soft information to make decisions at the intensive margin (i.e., 

loan size) but not at the extensive margin (i.e., whether to grant the loan). The identification assumption is 

that leniency can only affect repayment through its impact on loan size. Since officers do not interact with 

borrowers after the contract is signed, they can only affect repayment through loan size. There is no other 

channel at the intensive margin that officers with different soft information acquisition abilities can affect 

repayment differently other than loan size. However, if officers use soft information to make grant/reject 

decisions as well, 𝛽𝐼𝑉 might overestimate 𝛽. This is because if more lenient officers are better at using 

soft information to reject bad borrowers, they will face a better pool of borrowers at the intensive margin, 

leading to inflated 𝛽𝐼𝑉. I therefore interpret 𝛽𝐼𝑉 as the upper bound and 𝛽𝑂𝐿𝑆 as the lower bound of 𝛽. 

In robustness checks, I show that my results are robust to any value of 𝛽 within this range. 

All the pieces in Figure 3 are now complete and ready to take to data. Since I use machine learning tools 

extensively, I take a short detour in the next section to introduce the procedure to train these models. 

4. Machine Learning Models 

Machine learning is a powerful tool for prediction problems
23

. In my setting, it involves fitting a model 

𝑀(𝑋) on borrower characteristics X to predict an outcome, such as loan repayment. In principle, one can 

fit 𝑀(𝑋) with OLS. OLS usually does not perform well in prediction problems, however, because it 

imposes a linear functional form on 𝑀(𝑋). For example, if the effect of borrower’s education on 

repayment depends on the borrower’s industry, OLS does not capture this interactive feature, unless one 

puts in an interaction between education and industry. Without strong theoretical reasons to guide which 

                                                             
23 Hastie et al. (2009) provide comprehensive treatment of machine learning models. Varian (2014), Mullainathan and Spiess 

(2017), and Athey and Imbens (2019) provide introductions to machine learning for economic research. Though my focus is on 

prediction, an emerging strand of literature studies how machine learning can aid causal inference (e.g. Belloni, et al. 2014; Athey 

and Imbens 2017). In the accounting literature, machine learning models have been used to predict misstatements and fraud 

(Bertomeu et al. 2018; Bao et al. 2020) and in textual analysis (Li 2010; Loughran and Mcdonald 2016; Brown et al. 2020). 
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interactions to include in 𝑀(𝑋), it is computationally infeasible to put in all pairwise interactions in OLS 

because the number of variables would far exceed the number of observations.  

As alternatives, many machine learning models do not impose a priori what to include but let the data 

“speak” to identify variables and interactions that have out-of-sample predictive power. This approach is 

problematic for inference but suitable for prediction problems (Mullainathan and Spiess 2017). Following 

prior research (Bertomeu et al. 2018; Kleinberg et al. 2018), I use gradient boosted decision trees (GBM) 

as my main model (Friedman 2001). I test whether my results are robust to other models in the robustness 

checks. To emphasize the importance of the ability of machine learning models to capture nonlinear and 

interactive signals in the data, I also report results that use OLS to fit 𝑀(𝑋). 

 

 

 

 

 

Figure 5: Regression Tree Example 

The basic building block of GBM is a decision tree, in which the data are divided through a sequence of 

binary splits. Figure 5 illustrates an example. To predict loan repayment, the first split might be a 

borrower’s education (whether the borrower has a college degree). In the next step, we can split each of 

the two nodes created by that first split by different variables, such as industry (whether the borrower is in 

retail). Based on these two characteristics, the sample of borrowers is divided into three categories. The 

predicted repayment of a new borrower in the hold-out sample who falls into category i is set to equal to 

the average repayment of borrowers in the training sample in category i. This sequential procedure allows 
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for a high degree of interactivity in the data, a key advantage of machine learning models over OLS.  

I use machine learning for two purposes. Figure 6 demonstrates the analysis strategy for both purposes. 

First, I train a model 𝑀(𝑋) to predict a borrower’s repayment. An accurate evaluation of 𝑀(𝑋) requires 

being performed out-of-sample. I, therefore, divide the whole sample randomly into a training sample that 

𝑀(𝑋) is fitted on and then use the remaining data, a hold-out sample, to evaluate 𝑀(𝑋) against 𝐻(𝑋). 

This is a standard procedure to prevent 𝑀(𝑋) from appearing to do well simply because it is being 

evaluated on data it has already seen. A concern with this strategy is that, at each period t, it allows 𝑀(𝑋) 

to see future data not available to loan officers. To rule out this as the main reason for 𝑀(𝑋)’s 

outperformance, I use a second strategy that trains 𝑀(𝑋) month-by-month by feeding it with data up to 

month t and compare its performance with loan officers out-of-sample in month t+1. 

 

Figure 6: Data Partition, Model Training, and Model Evaluation 

The second purpose of using machine learning is to predict loan officer decisions. I train a separate model 

𝐻𝑗
𝑀(X) for each officer j’s decision, allowing different officers to have different models to process X. 

After obtaining 𝐻𝑗
𝑀(𝑋), I compare the performance of 𝐻𝑗

𝑀(𝑋) with that of 𝑀(𝑋) on the hold-out 

sample by evaluating their ability to generate profits (or equivalently, to rank borrowers correctly).  
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The performance of a GBM model depends on a few parameters.
24

 Following standard practice (e.g., 

Kleinberg et al. 2018), I search for the optimal values of these parameters using fivefold cross-validation. 

I then estimate the final model using the full training sample. In robustness checks, I test whether my 

main results are robust to other machine learning models, including Random Forest, LASSO, and Neural 

Nets. I describe the details of the GBM and other models in the online appendix.  

5. Results 

In this section, I first test whether 𝑀(𝑋) outperforms loan officers. If so, 𝑀(𝑋) can be used as a valid 

benchmark to assess loan officers’ weaknesses in processing hard information. Then I explore which 

factors best explain the different decisions and performance between 𝑀(𝑋) and loan officers' hard 

information processing. I next examine how these factors affect loan officers’ soft information acquisition. 

Finally, I interpret these findings using a unifying theoretical framework. 

5.1. Human Performance and Machine Performance 

Table 4 compares human and machine performance using the loan profit aggregated over the entire 

hold-out sample as a performance measure.
25

 I compare the performance of three types of decisions: A) 

the observed loan officer decision based on both hard and soft information H(Xt) + St, B) the officer 

decision based on hard information only H(Xt), and C) the machine decision M(Xt).  

The actually observed profit is 15.6%, as shown in column 2. The difference between columns 1 and 2 is 

due to the effect of soft information. This should be interpreted as a lower bound for the contribution of 

soft information for two reasons. First, some soft signal is captured by 𝐻(𝑋) if hard and soft information 

is correlated. This happens if, for example, officers ask specific questions when they observe certain 

patterns in hard information. Second, as discussed in Section 3.2.2, since soft information is identified as 

                                                             
24 These parameters include the depth of each tree, the total number of trees averaged together, and the weighting scheme for 

each subsequent tree. 
25 Profit is defined as the repayment ratio (Total Repayment – Total Lending/Total Lending). 
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the residual term, its average effect is absorbed in the intercept and not identified. Moving to column 4, 

the GBM model generates a profit rate of 21.5%, a 38% increase from observed profit. To demonstrate 

the importance of the machine learning model’s ability to capture nonlinear and interactive features of the 

data, I report in column 3 the performance of 𝑀(𝑋) trained with OLS. The 13.5% profit generated is 

worse than human performance and far worse than 𝑀(𝑋) trained with GBM. Table A2 in the appendix 

shows similar results with other machine learning models. 

Another way to see the different performances between loan officers and the machine is to compare how 

they differ in ranking borrowers. While machine learning models (OLS and GBM) produce predicted 

profit as output, which can be used to infer their rankings of borrowers, it is not immediately clear how 

loan officers rank borrowers. Since officers have an incentive to assign larger loans to higher-quality 

borrowers, conditional on credit demand, I regress observed loan size on requested loan size and treat the 

residual as a basis for officers’ ranking through revealed preference. Indeed, this residual is small for a 

borrower who receives a small loan, despite having requested a large loan, indicating officers perceive 

this borrower as less profitable. I obtain the officers’ ranking of borrowers by sorting this residual. 

For each of the three models (human, OLS, and GBM), I first sort borrowers into deciles by their rankings. 

I then compute the average observed profit for each decile of borrowers. A model performs better if loans 

it predicts to be more profitable (and thus ranks higher) are indeed more profitable. Figure 8 plots average 

observed profits across predicted profit deciles as predicted by each model. A better performing model 

should have a more positive slope in the graph. Two messages emerge. First, while GBM has a clear 

positive slope throughout all deciles, OLS and human models are rather flat, suggesting their predicted 

profit does not match well with observed profit.
26

 Second, compared to GBM, officers show similar 

                                                             
26 Flat curve does not mean loan officers (or OLS) give out loans randomly (or have zero predication ability). If loan officers (or 

OLS) have zero screening ability and give out loans randomly, their curves should be downward sloping, due to adverse selection. 

An easy way to see this is through the standard asset substitution argument of Jensen and Meckling (1976). Suppose there are two 

borrowers with the same expected future cash flows but different levels of risk. The first borrower’s future cash flow is 0.5 for 

sure. The second borrower has a future cash flow of 0 or 1, each with a probability of 0.5. Borrower 2 is riskier and thus a worse 

type from a lender’s perspective. Borrower 1 will not accept any loan obligation larger than 0.5. In contrast, borrower 2 will 

accept loan obligation up to 1 when there is limited liability to protect the downside. Therefore adverse selection suggests that 
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ability to differentiate borrowers in middle deciles but have severe trouble toward the two tails. Table 5 

reports the performance of the three models in the tails. It is clear that borrowers who GBM identifies as 

bad (good) indeed have bad (good) observed profits. On the contrary, borrowers who officers and OLS 

identify as bad generate the same level of profit as borrowers they identify as good. Figure A3 and Table 

A3 in the appendix show similar results with other machine learning models. 

The machine learning model might outperform because it does not have human limitations or because it 

has access to more data. To rule out the latter as the main explanation, I train a model month-by-month by 

feeding it with data up to month t and compare its performance with loan officers in month t+1. Figure 9 

reports the results. The model starts to show its superiority in the sixth month, and its advantage increases 

over time. Since most loan officers work much more than six months, this result suggests that the amount 

of data is not the most important factor explaining the performance gap. Figure A4 in the appendix shows 

that this result generalizes to other machine learning models. As additional supporting evidence, I will 

show in the next section that officers’ bias does not disappear with experience.  

To sum up, I have shown strong evidence that the machine learning model substantially outperforms loan 

officers, making it a valid benchmark to assess weaknesses in human decisions. The substantial gap in 

performance suggests that loan officers mis-rank a considerable number of borrowers when compared to 

the machine. Figure 10 plots the distribution of the mis-ranking. Bar X represents the percentage of 

borrowers that officers rank X deciles away from the machine’s ranking. Officers rank 74% of borrowers 

more than one decile away and 22% of borrowers more than five deciles away from machine’s ranking.  

5.2. Assessing Hard Information Processing 

I first study whether cognitive constraint helps explain the human underperformance, as predicted by 

bounded rationality theories. I examine whether loan officers can only process a subset of useful variables. 

                                                                                                                                                                                                    
worse type borrowers select bigger loans, leading to a downward sloping curve if loans are handed out randomly. 
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To show this, I regress 𝑀(𝑋) and each H𝑗
𝑀(X) on the entire set of X using an OLS forward stepwise 

selection procedure. This procedure begins with an empty model and adds in variables in X one by one. In 

each step, a variable that has the lowest p-value is added. The procedure stops if no variable left has a 

p-value smaller than 5% if added. Figure 11 reports the results. Among a total of 205 codified variables, 

𝑀(𝑋) (performer 0 on the vertical axis) finds 147 useful to predict loan outcomes. In contrast, officers 

use only 25 to 56 of these variables in their decisions. I next test whether officers systematically fail to 

incorporate nonlinear signals in their lending decisions. I compare the R-squared of the stepwise OLS 

regressions in Figure 11 and report the results in Figure 12. The 147 variables that 𝑀(𝑋) uses explain 66% 

of the variation in its predictions, the much smaller sets of variables that loan officers use explain a much 

larger portion of the variation in their decisions, ranging from 83% to 92%. This finding suggests that, 

while loan officers process information in a linear fashion, the machine learning model captures a 

remarkable nonlinear and interactive feature of the data that contains useful signals of borrowers’ risk.  

Having established that cognitive constraint impedes hard information processing, I move on to test 

whether loan officers systematically make probabilistic errors, as predicted by theories of 

representativeness heuristics. In particular, I test whether salient information explain loan officers’ 

mis-ranking of borrowers in the following regression. 

𝑀𝑖𝑠𝑡𝑟𝑎𝑛𝑘𝑖𝑛𝑔𝑖𝑗𝑡
𝐾 = 𝛽𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑒𝑖𝑗𝑡 + 𝜀𝑖𝑡 

𝑀𝑖𝑠𝑡𝑟𝑎𝑛𝑘𝑖𝑛𝑔𝑖𝑗𝑡
𝐾  is a 0-1 indicator variable turning on if officer j ranks borrower i more than K deciles 

away from machine’s ranking. I consider K=1 and K=5. 𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑒 is an indicator equals 1 if the 

borrower has at least one accounting variable whose value falls into 5% in the left tail of the distribution 

of that variable across all borrowers. Table 6 (for K=1) and Table 7 (for K=5) summarize the results. 

Column (2) in Table 6 suggests that loan officers are 28% more likely to mis-rank when they observe 

salient information in borrowers’ hard information. Table 7 changes the outcome variable from K=1 to 

https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/types-of-variables/
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K=5 (i.e., a borrower is ranked by loan officers at least five deciles away from her machine ranking). All 

results are similar but more pronounced. Table A4 and A5 in the appendix provide further supporting 

evidence by changing the dependent variable from absolute mis-ranking to directional mis-ranking. 

Consistent with theories of representativeness, loan offices tend to rank borrowers with salient 

information too low comparing to the machine.
27

  

Do biases disappear with experience? Loan officers in my sample have a large dispersion of working 

experience at the lender, ranging from having processed 1,089 to 7,531 loan applications, with a median 

of 3,793 applications.
28

 In Table 8, I split the sample into loans that are processed by officers with above 

and below median experience (i.e., 3,793 applications) and test whether experience affects biases. If 

anything, the results suggest that experience worsens biases. Why this is the case is outside the scope of 

this paper and is left for future research. But at the minimum, it provides strong evidence that having 

access to less data does not explain loan officers’ underperformance.  

5.3. Assessing Soft Information Acquisition 

The results in the previous section suggest that salience impede hard information processing, as predicted 

by the theory of representativeness heuristics. Next, I study how salience affects their ability to acquire 

new soft information, a task where human strength may lie.  

In Table 9, I split the sample into a subsample with borrowers who have salient information and a 

subsample without. A different pattern emerges. Soft information produced on the salient subsample has 

stronger predictive power on loan repayment, as evidenced by both the magnitude of coefficient and the 

R-squared. To provide further supporting evidence, the following table shows that the standard deviation 

of soft information, si,j,t, is 40% larger for the salient subsample. Therefore, while Table 9 indicates that 

                                                             
27 Table A6-A8 in the appendix report that the findings in Table 6 are robust to using other machine learning models as 

benchmarks, including Random Forest (Table A6), LASSO (Table A7), and Neural Nets (Table A8). Results in Table 7 also 

generalize to these other machine learning models (untabulated). 
28 These numbers include rejected loan applications. 
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per unit of si,j,t contains a greater signal of a borrower’s risk for the salient subsample, loan officers also 

produce more amount (i.e., dispersion) of si,j,t for the salient subsample. In addition, officers spend 13% 

more time processing borrowers with salient information. 

Std of Soft Info     Loan Processing Time (Min)   

salient (n= 7,766) 0.17  

 

salient (n= 7,766) 77 

non-salient (n=26,113) 0.12    non-salient (n=26,113) 68 

 

Why would salience impede hard information processing but facilitate soft information acquisition? 

Existing theories are silent on this issue. In the next section, I present a simple model to explain this 

result. 

5.4. Interpretation 

In this model, a loan officer tries to infer a borrower’s type θ~N(0,1) from a hard accounting signal X. 

X measures θ up to a random noise, ε~N(0, 𝜎𝜀
2): 

X = θ + ε 

The loan officer faces uncertainty in the accounting signal’s precision σε
2. For example, cash flow is an 

accounting signal for θ. But without knowing the borrower’s payment policy with her customers, the 

officer does not know for sure how noisy cash flow is as a signal. Therefore σε
2 is a random variable, 

rather than a known constant, to the officer. I model this in a simple way by assuming σε
2 to be binomial: 

σε
2 = {

H  with probability 1/2
L  with probability 1/2

 

 

This setup is similar to accounting theories considering the impact of earnings disclosures when investors 

face uncertainty over the variance of cash flows (Beyer 2009; Heinle and Smith 2017) or the precision of 

earnings disclosures (Hughes and Pae 2004; Kirschenheiter and Melumad 2002; Subramanyam 1996). I depart 
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from this literature by studying how uncertainty in signal precision 𝜎𝜀
2 affects information user’s incentive to 

acquire another signal on 𝜎𝜀
2. In particular, I assume that the officer has an option to acquire additional soft 

information by incurring a cost C. I model this soft information as a signal on 𝜎𝜀
2. For example, the loan 

officer can call the borrower and ask directly about her customer payment policy. To make the model 

simple and similar to that of Grossman and Stiglitz (1980), I assume the officer can completely resolve 

the uncertainty if she acquires additional soft information. That is, by incurring a cost C, the loan officer 

learns whether 𝜎𝜀
2 is H or L. 

I assume that the loan officer has a standard quadratic loss function and thus has the goal to learn the mean of 

θ, conditional on her information set. Denote the lowercase x as the realization of the accounting signal X. I 

prove in the following proposition that the loan officer chooses to acquire additional soft information if and 

only if the magnitude of x is large enough. 

Proposition 1: The loan officer chooses to incur cost 𝐶 to acquire additional soft information if and only if  

𝑥2 > 𝐶 𝑉𝑎𝑟(
1

1+𝜎𝜀
2)⁄ .                                (8) 

Proof: In the appendix 

1

1+𝜎𝜀
2 is the precision of the accounting signal, relative to the variance of fundamental (which equals 1). 

The right-hand side of condition (8) states that the officer has more incentive to acquire soft information 

when the cost of doing so is low and when the variance of the precision of the accounting signal is high. 

The reason for the latter is that resolving uncertainty is more valuable when the uncertainty is high. The 

left-hand side of (8) highlights the key takeaway. It says that the officer has more incentive to acquire soft 

information if the accounting signal is more salient, as measured by the magnitude of realization x. The 

intuition, building on the previous example, is that learning a borrower’s customer payment policy has 

more value when the borrower has bigger jumps in her cash flows. Therefore salience serves as an 

attention allocation device that helps the officer decide when and where to pay costly attention. 



34 

This simple model shows that salience has a dual role: It distorts belief but at the same time helps 

attention allocation. Two important implications follow. First, the dual role of salience bridges the theory 

of bounded rationality and the theory of representativeness heuristics. While salience impedes hard 

information processing, as predicted by representativeness, it facilitates attention allocation, a costly 

resource, as emphasized by bounded rationality. This result highlights the value of combining the two 

categories of theories to understand human decision-making. Second, hiding salient information might 

improve humans’ ability to process hard information but with the cost of losing an attention allocation 

device. This trade-off echoes a fundamental principle in economics. When there are multiple frictions 

(e.g., cognitive constraint and behavioral bias), it cannot be presumed that removing one will necessarily 

improve overall efficiency because other frictions might become more severe.  

6. Combining Human and Machine Strength to Make Better Decisions  

Although the machine substantially outperforms humans in my setting, simply replacing humans with the 

machine would sacrifice valuable soft information in si,t. Is there a way to combine human strength and 

machine strength so that we can make better decisions than machines or humans working alone? In this 

section, I propose an approach to achieve this.  

To see the intuition, first note that officers acquire soft information after observing hard information, 

making soft and hard information correlated. For example, a key finding in section 5 is that much of the 

soft information is acquired after officers observe some salient feature of 𝑋𝑖,𝑡. The key to this approach is 

to exploit such correlation and train 𝑀(𝑋𝑡) on a subsample generated by officers with better soft 

information acquisition skills. Intuitively, 𝑀(𝑋𝑡) trained in this way can better capture useful soft signals 

by putting more weights on variables in 𝑋𝑖,𝑡 that have a higher correlation with useful signals in si,t, 

which is otherwise not observable by the machine. This approach also filters out human noise in si,t, 

since noise does not predict loan outcome and thus will not be captured by 𝑀(𝑋𝑡). 
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This procedure is particularly useful when there is a large dispersion in soft information acquisition skills 

across loan officers. Figure 13 confirms this. I regress repayment rate on si,t for each officer j’s sample 

with a full set of controls and time fixed effects. I then plot the coefficient of si,t for each officer j as a 

measure of soft information acquisition skills. The graph shows that, whereas si,t produced by officers 

with low soft information acquisition skills has no predictive power on loan repayment, that produced by 

high skill officers strongly predicts repayment.    

In Table 10, I divide the whole training sample into three subsamples by loan officers’ soft information 

acquisition ability as identified in Figure 13. I then show that 𝑀(𝑋𝑡) trained on the highest ability 

subsample outperforms that trained on the other two subsamples and, more importantly, outperforms that 

trained on the whole sample. Comparing column (1) (whole sample) and column (3) (soft = medium) 

reveals a trade-off. While training on a subsample with high ability enhances the machine’s power to 

capture more valuable soft information, it also significantly shrinks the sample size and reduces the 

machine’s power to capture signals in hard information. A promising future research direction is to 

develop an optimal weighting procedure that keeps the whole sample but gives observations from humans 

with higher soft information acquisition skills larger weights.  

This technique is generic and should be generalizable to other settings and industries. An important 

implication is that it is productive to keep and hire humans with high soft information acquisition ability, 

even if they have low overall performance due to poor hard information processing skills, because their 

strengths complement those of machines.  

7. Discussion and Conclusion 

Accounting information facilitates decision-making to the extent that it is properly processed by investors. 

Which factors determine information processing efficiency is not well understood (Blankespoor et al. 

2019b). In this paper, I investigate such factors by leveraging a unique lending setting where the entire 
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hard information set used by loan officers is observable. I show that a machine learning model 

substantially outperforms loan officers in processing hard information. Using the machine learning model 

as a benchmark, I find that limited attention and overreaction to salient information largely explain loan 

officers’ weakness in processing hard information. However, officers acquire more soft information after 

seeing salient hard information, suggesting salience has a dual role: it creates bias in hard information 

processing, but facilitates attention allocation in soft information acquisition. 

My finding on the attention allocation role of salience may generalize from soft information acquisition 

by loan officers in my setting to acquisition of any type of information by investors in other markets. 

Research highlights the key role of information acquisition to mitigate frictions in the capital market 

(Goldstein and Yang 2017; Blankespoor et al. 2019b) and the credit market (Minnis 2011; Berger et al. 

2017; Breuer et al. 2017; Carrizosa and Ryan 2017; Ertan et al. 2017; Lisowsky et al. 2017; Minnis and 

Sutherland 2017; Sutherland 2018; Darmouni and Sutherland 2019). In such settings, although salience 

can induce overreaction and inefficiency in information processing, it might still be a desirable feature of 

disclosure as it facilitates attention allocation and increases new information discovery. I leave such a 

trade-off between the quality of information processing and the total amount of information discovered in 

other markets for future research. 

My methods to 1) decompose human decisions into hard information processing and soft information 

discovery and 2) evaluate human ranking using machine ranking as a benchmark are applicable to settings 

without randomization. Generating unobservable counterfactuals (such as loan profit under a machine 

decision), however, requires random assignment. Randomization is not uncommon in other high-risk 

markets for small short-term loans (for example, the UK lender in Dobbie et al. 2019 and Liberman et al. 

2019, and the call-center loans of the US credit union in Campbell et al. 2019). In addition, this approach 

can be applied to two other types of settings. The first is laboratory and field experiments, where humans 

(e.g., auditors) are randomly matched with objects (Duflo et al. 2013, 2018; Cole et al. 2015; see Floyd 
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and List 2016 for a survey). The second is settings with an exogenously determined rotation policy, (for 

example, routinely reassigning loan officers to different borrowers as in Hertzberg et al. 2010 and Fisman 

et al. 2017). In these settings, my approach for generating counterfactual outcomes is readily applicable. 

Advances in AI never fail to stir the public’s fear.
29

 There is no doubt that technological progress will 

continuously reshape the relation between humans and machines, creating more research questions and 

challenges. What seems clear today, as this paper tries to demonstrate, is that AI can be a tool, rather than 

a threat, to help clarify what makes us human. 

 

 

 

 

 

 

 

 

 

 

 

                                                             
29

 Recently there has been a heated debate in academia on how AI might create unemployment (Acemoglu et al. 2018, 2019), 

polarization (Autor et al. 2015), inequality, and social imbalance (Rajan 2019). 
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Figure 7  

The Relation between Soft Information and Loan Performance (Officer Level) 

 

Note: The figure presents the relation between an officer-level measure of soft information acquisition 

and loan outcome. The vertical axis measures average profit (red) or average default rate (yellow) for 

each loan officer. Profit is defined as (total repayment – loan size)/loan size. Default is an indicator 

variable that equals one if a borrower fails to fully repay all her loan obligation. The horizontal axis 

measures each loan officer’s soft information acquisition ability, defined as the standard deviation of 

loan-level soft information, 𝑠𝑖𝑗𝑡, for each loan officer.  
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Figure 8  

Observed Profit across Predicted Profit Deciles 

 

Note: The figure presents the relation between the average observed profit of loans in each predicted 

profit decile as predicted by each model (human, OLS, and GBM). A model performs better if loans it 

predicts to be more profitable (and thus ranks higher) are indeed more profitable, indicating the model 

ranks borrowers closer to borrowers’ true ranking. Therefore, a better performing model should have a 

more positive slope in the graph. To obtain the GBM (OLS) curve, I first predict a borrower’s loan 

repayment (i.e., profit) using the 𝑀(𝑋) trained by GBM (OLS). Next, for each month, I sort all 

borrowers in the hold-out sample into deciles by their GBM (OLS) predicted profit and then pool 

borrowers in the same decile across months together. Finally, for each decile, I compute its average 

observed profit. The GBM (OLS) curve tracks average observed profit for each predicted profit decile as 

predicted by GBM (OLS). To obtain the Human curve, I first regress observed loan size on the requested 

loan amount and keep the residual. Next, for each month, I sort all borrowers in the hold-out-sample into 

deciles by this residual and then pool borrowers in the same decile across months together. Finally, for 

each decile, I compute its average observed profit. The observed profit rate is defined as (total repayment 

– loan size)/loan size.  
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Figure 9  

Monthly Performance Comparison between Machine Learning and Loan Officers 

 

Note: This figure compares loan officers’ performance with the machine learning model (GBM)’s 

performance month by month. The solid curve is the observed monthly profit of loans (i.e., aggregate loan 

profit rate for each month). Profit is defined as (total repayment – loan size)/loan size. The dashed curve 

is the out-of-sample monthly profit of the machine learning model (GBM) in month t trained with data up 

to month t-1.    
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Figure 10  

Distribution of Human and Machine Disagreement 

 

Note: This figure presents the distribution of disagreement between loan officers and the machine 

learning model in their ranking of borrowers in the hold-out sample. Bar X represents the percentage of 

borrowers that loan officers rank X deciles away from the machine learning model’s ranking. To obtain 

the decile ranking of borrowers by loan officers, I first regress observed loan size on the requested loan 

amount and keep the residual. Next, for each month, I sort all borrowers in the hold-out sample into 

deciles by this residual and then pool borrowers in the same decile across months together. To obtain the 

decile ranking of borrowers by the machine learning model, I first predict a borrower’s loan repayment 

using the 𝑀(𝑋) trained by GBM. Next, for each month, I sort all borrowers in the hold-out sample into 

deciles by their GBM predicted repayment and then pool borrowers in the same decile across months 

together. 
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Figure 11  

Number of Variables Used by the Machine Learning Model and Each Loan Officer  

 

Note: This figure presents whether the machine learning model uses far more variables to predict loan 

outcomes than each loan officer uses in her decision. I regress the fitted values of 𝑀(𝑋) and each 

H𝑗
𝑀(X) on the entire set of borrower characteristics X using an OLS forward stepwise selection procedure. 

This procedure begins with an empty model and adds in variables in X one by one. In each step, a 

variable that has the lowest p-value is added. The procedure stops if no variable left has a p-value smaller 

than 5% if added. Among a total of 205 borrower characteristics, the machine learning model (performer 

0 on the vertical axis) finds 147 useful to predict loan outcomes. In contrast, officers use 22 to 56 of these 

variables in their decisions, suggesting that cognitive constraint is an important factor explaining their 

underperformance. 
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Figure 12  

The Proportion of Variation (R
2
) Explained by Linear Projection 

 

Note: This figure presents if loan officers systematically fail to incorporate nonlinear signals in their 

lending decisions. It reports the R-squared of the stepwise OLS regressions in Figure 11. The 147 

variables that the machine learning model (Performer 0 on the vertical axis) uses explain 66% of the 

variation in its predictions. The much smaller sets of variables that loan officers use in their decisions 

explain a much larger portion of the variation in their decisions, ranging from 83% to 92%.  
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Figure 13  

Loan Officer Soft Information Acquisition Skill 

 

Note: The figure plots soft information acquisition ability for each loan officer. To measure this ability, I 

regress loan repayment rate (i.e., profit) on the loan-level measure of soft information si,t for each officer 

j with a full set of controls and time fixed effects. This graph plots the coefficient of si,t in these 

regressions for each officer j with its 95% confidence interval. For each officer, the coefficient of si,t 

measures the average ability of her acquired soft information to predict loan profit, and thus captures her 

soft information acquisition skill.  
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Table 1  

List of Variables 

Continuous Variables 

Loan Contracts 

loan size (yuan) 

loan maturity (months) 

 
Demographic Information 

Age 

number of children 

number of months living in the current address 

monthly earning (yuan) 

number of months working in the current company 

 
Accounting Information - Credit 

history max loan amount 

history loan overdue period 

history loan overdue amount 

history number of mortgage loans 

history number of other types of loans 

number of credit cards 

number of credit card issuing banks 

number of loan issuing banks 

Number of outstanding loans 

 
Accounting Information - Cash Flow 

annual profit (self-reported) 

monthly revenue from bank statement 

monthly rent payment from bank statement 

monthly short-term debt payment from bank statement 

monthly long-term debt payment from bank statement 

monthly total cash flows from bank statement 

 

Note: This table reports a full list of codified variables available to the loan officers through the lender’s 

internal system. To preserve the confidentiality of the lender that provided the data, I do not report the 

summary statistics for these variables. 
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Table 1 (cont’d)  

List of Variables 

Discrete Variables 

Demographic Info Accounting Info – Credit Accounting Info - Current Assets/Liabilities 

gender if have secured loan Buyer 

male Yes have >= 2 Fortune Global 500 buyers 

female No have>= 3 Fortune Chinese 500 buyers 

education if have a business loan have >=5 buyers 

college or above Yes have <5 buyers 

3-year college No no buyer information provided 

high school if have a mortgage loan Supplier 

junior high or below Yes have >= 2 Fortune Global 500 suppliers 

marriage status No have>= 3 Fortune Chinese 500 suppliers 

married 

 

have >=5 suppliers 

unmarried Accounting Info – Industry have <5 suppliers 

other Restaurant no supplier information provided 

residential type food processing account receivable 

self-owned Retail <50% of  revenue, average age <30 days 

family-owned hotel and accommodation <50% of  revenue, average age <45 days 

rental finance and insurance <50% of  revenue, average age <60 days 

dorm ICT <50% of  revenue, average age <90 days 

reside with wholesale trade >=50% of  revenue 

self retail trade no account receivable information provided 

with parents resident services account payable 

with spouse textile and garment manufacturing <50% of  revenue, average age <30 days 

with co-workers Entertainment <50% of  revenue, average age <45 days 

with relatives scientific and polytechnic services <50% of  revenue, average age <60 days 

with others Leasing <50% of  revenue, average age <90 days 

job status Construction >=50% of company revenue 

self-employed Manufacturing no account payable information provided 

employee 

 

Inventory 

other Accounting Info – Location >10% of company revenue 

if house owner 23 cities >20% of company revenue 

yes 

 

>30% of company revenue 

no 

 

>50% of company revenue 

if have insurance 

 

no inventory information provided 

yes 

 
 

no 

 
 

if have automobile 

 
 

yes 

 
 

no     
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Table 2  

The Relation between Soft Information and Loan Outcome  

Dependent = Profit       

 
(1) (2) (3) (4) 

     
Soft Info 0.144*** 0.148*** 0.129*** 0.128*** 

 
(7.58) (7.48) (7.24) (7.22) 

  
 

 
 Control N N Y Y 

Time Fixed N Y Y Y 

Officer 

Fixed 
N Y N Y 

R2 0.003 0.016 0.055 0.056 

     
N 33,879 33,879 33,879 33,879 

 

Note: This table reports if loan-level measure of soft information, si,t, predicts loan outcome. The 

dependent variable is loan profit, defined as the repayment ratio = (total repayment – loan size)/loan size. 

Soft Info is si,t estimated in equation (3) using the decomposition method in section 3.2.2. Control 

variables include all codified borrower characteristics. T-stats are in parentheses. Standard errors are 

clustered by loan officers. 

 

*** significance at 1% level 

** significance at 5% level 
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Table 3  

Causal Relation between Loan Size and Loan Outcome 

Dependent = Repay Ratio       

 
OLS 2SLS 

 
(1) (2) (3) (4) 

 
    IV=Leniency IV=Leniency 

Loan Size 0.010  0.053*** 0.522*** 0.613** 

 
(1.66) (7.34) (7.54 ) (1.97) 

     

 

    First-Stage 

   
0.561*** 0.154*** 

   
(5.17) (4.6) 

     
Controls N Y N Y 

Time Fixed N Y N Y 

N 33,879 33,879 33,879 33,879 

 

Dependent = Repay Dollar       

 
OLS 2SLS 

 
(1) (2) (3) (4) 

 
    IV=Leniency IV=Leniency 

Loan Size 0.167*** 0.223*** 0.544*** 0.714** 

 
(11.78) (15.30) (13.42) (2.55) 

     

 

    First-Stage 

   
0.561*** 0.154*** 

   
(5.17) (4.60) 

     
Controls N Y N Y 

Time Fixed N Y N Y 

N 33,879 33,879 33,879 33,879 

 

Note: This table reports regression of repayment ratio (Panel A) or repayment dollar (Panel B) on loan 

size. Column (3) and (4) use officer leniency as an instrument for loan size. Officer leniency is the 

average loan size for each officer. Control variables include all codified borrower characteristics. T-stats 

are in parentheses. Standard errors are clustered by loan officers. 

 

*** significance at 1% level 

** significance at 5% level 
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Table 4  

Model Performance: Human vs. Machine Learning 

Model Performance (1) (2) (3) (4) 

(Profit Rate) Human Human ML(OLS) ML(GBM) 

 
H(X) H(X)+S M(X) M(X) 

Hold-out Sample 0.140  0.156  0.135  0.215  

(n=6,776)         
 

Note: This table reports profit generated by each model aggregated across all loans in the hold-out sample. 

Profit for each loan is defined as (total repayment – total loan size)/total loan size. In column (1), 𝐻(𝑋) 

represents the loan officers’ decision rule based on hard information only. In column (2), 𝐻(𝑋)+S 

represents loan officers’ observed decisions based on both hard and soft information. So 15.6% in column 

(2) is the lender’s actual profit. Column (3) and (4) are generated by machine decisions 𝑀(𝑋) trained 

with OLS and GBM, respectively. 
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Table 5 

Model Performance: Human vs. Machine in the Tails 

  Average Observed Loan Profit Rate 

Predicted Profit Percentile Human ML(OLS) ML(GBM) 

10% 0.15  0.15  -0.16  

20% 0.15  0.14  0.03  

30% 0.14  0.15  0.13  

    80% 0.14  0.15  0.25  

90% 0.17  0.16  0.26  

100% 0.17  0.14  0.28  
 

Note: The table presents the average observed profits in each tail decile of predicted profit as predicted by 

each of the three models. To obtain the GBM (OLS) deciles of predicted profit, I first predict a borrower’s 

loan repayment using the 𝑀(𝑋) trained by GBM (OLS). Next, for each month, I sort all borrowers in the 

hold-out sample into deciles by their GBM (OLS) predicted repayment and then pool borrowers in the 

same decile across months together. Finally, for each decile, I compute its average observed repayment 

rate (i.e. profit). To obtain the Human predicted profit, I first regress observed loan size on the requested 

loan amount. Next, for each month, I sort all borrowers in the hold-out-sample into deciles by this 

residual and then pool borrowers in the same decile across months together. Finally, for each decile, I 

compute its average observed repayment rate (i.e. profit). Observed repayment rate (i.e. profit) is defined 

as (total repayment – loan size)/loan size.  
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Table 6 

 Explaining Human Mis-ranking  

Dependent = Misranking (H(X) vs. M(X)) 

 
Probit 

 
(1) (2) 

 
  

 Salience 0.275*** 0.279*** 

 

(6.71) (6.72) 

  
 R2 0.006  0.011  

 
  

Officer Fixed N Y 

N 6,776 6,776 

 

Note: This table reports results from Probit regressions of the loan officer’s mis-ranking of borrowers on 

behavioral factors. The dependent variable is an indicator of mis-ranking that equals one if a borrower is 

ranked by loan officers more than 1 decile away from her ranking by the machine learning model 𝑀(𝑋). 

S𝑎𝑙𝑖𝑒𝑛𝑐𝑒 is an indicator equals 1 if at least one accounting variable whose value falls into 5% in the left 

tail of the distribution of that variable across all borrowers. T-stats are in parentheses. Standard errors are 

clustered by loan officers. 

 

*** significance at 1% level 

** significance at 5% level 
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Table 7 

 Explaining Human Mis-ranking (2) 

Dependent = High Misranking (H(X) vs. M(X)) 

 
Probit 

 
(1) (2) 

 
  

 Salience 0.391*** 0.392*** 

 
(12.30) (12.49) 

  
 R2 0.014  0.020  

 
  

Officer Fixed N Y 

N 6,776 6,776 

 

Note: This table reports results from Probit regressions of the loan officer’s mis-ranking of borrowers on 

behavioral factors. The dependent variable is an indicator of mis-ranking that equals one if a borrower is 

ranked by loan officers more than 5 deciles away from her ranking by the machine learning model 𝑀(𝑋). 

S𝑎𝑙𝑖𝑒𝑛𝑐𝑒 is an indicator equals 1 if at least one accounting variable whose value falls into 5% in the left 

tail of the distribution of that variable across all borrowers. T-stats are in parentheses. Standard errors are 

clustered by loan officers. 

 

*** significance at 1% level 

** significance at 5% level 
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Table 8 

 Human Mis-ranking by Experience 

Dependent = Misranking (H(X) vs. M(X))   

 
Low Experience High Experience 

 
(1) (2) (3) (4) 

 
    

  Salience 0.189*** 0.192*** 0.372*** 0.377*** 

 

(5.32) (5.16) (5.39) (5.47) 

    
 R2 0.003  0.011  0.011  0.013  

 
    

Officer Fixed N Y N Y 

N 6,776 6,776 6,776 6,776 

 

Dependent = High Misranking (H(X) vs. M(X))   

 
Low Experience High Experience 

 
(1) (2) (3) (4) 

 
    

  Salience 0.328*** 0.331*** 0.456*** 0.454*** 

 
(6.41) (6.44) (16.64) (16.61) 

    
 R2 0.010  0.019  0.019  0.022  

 
    

Officer Fixed N Y N Y 

N 6,776 6,776 6,776 6,776 

 

Note: The dependent variable is an indicator of mis-ranking that equals one if a borrower is ranked by 

officers more than 1 decile away (Panel A) or 5 deciles away (Panel B) from her ranking by the machine 

learning model 𝑀(𝑋). Experience is measured by the total loan applications processed. A borrower falls 

into a High (Low) Experience sample if the application is processed by an officer with the above (below) 

median experience. S𝑎𝑙𝑖𝑒𝑛𝑐𝑒 is an indicator equals 1 if at least one accounting variable whose value 

falls into 5% in the left tail of the distribution of that variable across all borrowers. T-stats are in 

parentheses. Standard errors are clustered by loan officers. 

 

*** significance at 1% level 

** significance at 5% level 
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Table 9 

Salience and Soft Information Acquisition 

Dependent = Profit           

 
Whole Sample Non-salient Sample Salient Sample 

 
(1) (2) (3) (4) (5) (6) 

 
      

   Soft Info 0.126*** 0.127*** 0.120*** 0.121*** 0.129*** 0.131*** 

 
(7.21) (7.22) (6.52) (6.65) (4.64) (4.86) 

  
 

  
  Control Y Y Y Y Y Y 

Time Fixed Y Y Y Y Y Y 

Officer Fixed N Y N Y N Y 

R2 0.055  0.056  0.056  0.057  0.102  0.102  

       
N 33,879 33,879 26,113 26,113 7,766 7,766 

 

Note: This table reports results from regressions of loan profit on soft information. The dependent 

variable is the loan repayment ratio, a measure of profit, defined as (total repayment – loan size)/loan size.  

Soft Info is si,t estimated in equation (3) using the decomposition method in section 3.3.2. Control 

variables include all codified borrower characteristics. Column (1) and (2) are taken from Table 2. 

Column (3) and (4) are results on a subsample in which borrowers have no salient information. Column 

(5) and (6) are results on a subsample in which borrowers have at least one salient accounting variable. 

An accounting variable is defined as salient if its value falls into 5% in the left tail of the distribution of 

that variable across all borrowers. T-stats are in parentheses. Standard errors are clustered by loan officers. 

 

*** significance at 1% level 

** significance at 5% level 
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Table 10  

Combining Human Strength and Machine Strength 

Performance of M(X)         

 
(1) (2) (3) (4) 

 
Whole Sample Soft = High Soft = Medium Soft = Low 

    
 Profit 0.215 0.22 0.201 0.189 

   
 

 
Training Sample 33,879 10,293 11,864 11,722 

Testing Sample  6,766 6,766 6,766 6,766 

 

Note: This table presents the total profit for each model aggregated across all borrowers in the hold-out 

sample. Profit is defined as (total repayment – total loan size)/total loan size. Column (1) is taken from 

Table 4. Column (2) through (4) report profits from 𝑀(𝑋) trained on three subsamples divided by loan 

officers’ soft information production ability. Officer’s soft information production ability is measured by 

the coefficient of si,j,t in an officer-by-officer regression that regresses loan repayment ratio on si,j,t, a 

full set of controls and time fixed effects (Figure 13).  
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Appendix A: Additional Figures and Tables 

Appendix B: Results on Gender Bias 

Appendix C: Proof of Proposition 1 

Appendix D: Machine Learning Models in Details 

 D.1. OLS 

 D.2. Tree Models 

  D.2.1. Boosting 

  D.2.2. Random Forest 

D.3. Neural Network 

D.4. LASSO 
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Appendix A: Additional Figures and Tables 

Figure A1  

Approved Loan Size and Excess Loan Demand 

 

Note: This figure reports a histogram of excess demand, defined as the difference between requested and 

approved loan size, together with a histogram of actual approved loan size. The median excess credit 

demand (1.3) is greater than the 93rd percentile of the approved loan size. 
 

 

 

 

 

 

 

 

0
1
0

2
0

3
0

P
e
rc

e
n
t

-5 0 5 10
Excess Credit Demand

0.17% sample < 0; medium = 1.3

Histogram of Excess Credit Demand

0
1
0

2
0

3
0

P
e
rc

e
n
t

0 1 2 3 4 5
Approved Loan Size

 

Histogram of Approved Loan Size



66 

Figure A2  

Linear Relation between Loan Size and Loan Profit 

 

Note: This figure reports a binscatter of dollar profit against loan size. The dollar profit rate is defined as 

total loan repayment in dollars. It shows that the relationship between loan size and dollar profit, as 

specified in (4), is linear throughout the range of loan size.  

 

 

 

 

 

 

 

 

0
.1

.2
.3

.4
.5

D
o
lla

r 
P

ro
fi
t

0 1 2 3
Loan Size



67 

Figure A3 

Observed Profit across Predicted Profit Deciles for Each Model 

 

Note: The figure presents the relation between the average observed profit of loans in each predicted 

profit decile as predicted by each model. A model performs better if loans it predicts to be more profitable 

(and thus ranks higher) are indeed more profitable, indicating the model ranks borrowers closer to 

borrowers’ true ranking. Therefore, a better performing model should have a more positive slope in the 

graph. For each of the four machine learning model (GBM, Random Forest, LASSO, and Neural Nets), I 

first predict a borrower’s loan repayment (i.e., profit) using the 𝑀(𝑋) trained by the model. Next, for 

each month, I sort all borrowers in the hold-out sample into deciles by their model predicted profit and 

then pool borrowers in the same decile across months together. Finally, for each decile, I compute its 

average observed profit. The curve then tracks the average observed profit for each predicted profit decile 

as predicted by the model. To obtain the Human curve, I first regress observed loan size on the requested 

loan amount and keep the residual. Next, for each month, I sort all borrowers in the hold-out-sample into 

deciles by this residual and then pool borrowers in the same decile across months together. Finally, for 

each decile, I compute its average observed profit. The observed profit rate is defined as (total repayment 

– loan size)/loan size. Details of each machine learning model are given in appendix B. 
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Figure A4 

Monthly Performance Comparison between Machine Learning and Loan Officers 

 

Note: This figure compares loan officers’ performance with each of the four machine learning model’s 

performance month by month. The dashed curve is the observed monthly profit of loans (i.e., aggregate 

loan profit rate for each month). Profit is defined as (total repayment – loan size)/loan size. The solid 

curves are the out-of-sample monthly profits of the four machine learning models in month t trained with 

data up to month t-1. Details of each machine learning model are given in appendix B. 
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Table A1  

The relation between Loan Size and Loan Offer Turndown 

Dependent = Turndown Indicator     

 
Probit 

 
(1) (2) (3) 

 
      

Approved Loan Size -0.271*** -0.292*** -0.355*** 

(100,000 yuan) (-10.76) ( -11.27) (-12.75) 

Requested Loan Size 0.164*** 0.173*** 0.150*** 

(100,000 yuan) (19.33) (20.38) (17.58) 

    
Controls N N Y 

Time Fixed N Y Y 

Officer Fixed N Y Y 

R2 0.02  0.03  0.05  

N 40,087 40,087 40,087 

 

Note: This table represents the results of the linear probability regression of a turndown indicator on 

approved loan size and requested loan size. Turndown equals one if a loan is approved but turned down 

by the borrower. Approved Loan Size is the loan amount approved by loan officers. Requested Loan Size 

is the loan amount requested by the borrower in the loan application. T-stats are in parentheses. Standard 

errors are clustered by the loan officer. 

 

*** significance at 1% level 

** significance at 5% level 
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Table A2 

Model Performance: Human vs. Machine Learning 

Model Performance (1) (2) (3) (4) (5) (6) (7) 

(Profit Rate) Human Human OLS GBM RF LASSO NNet 

 
H(X) H(X)+S M(X) M(X) M(X) M(X) M(X) 

Hold-out Sample 0.140  0.156  0.135  0.215  0.208  0.192  0.228  

(n=6,776)               
 

Note: This table reports profit generated by each model aggregated across all loans in the hold-out sample. 

Profit for each loan is defined as (total repayment – total loan size)/total loan size. In column (1), 𝐻(𝑋) 

represents the loan officers’ decision rule based on hard information only. In column (2), 𝐻(𝑋)+S 

represents loan officers’ observed decisions based on both hard and soft information. So 15.6% in column 

(2) is the lender’s actual profit. Column (3)-(7) are generated by machine decisions 𝑀(𝑋) trained with 

OLS, GBM, Random Forest, LASSO, and Neural Nets, respectively. Details of each machine learning 

model are given in appendix B. 
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Table A3 

Model Performance: Human vs. Machine in the Tails 

  Average Observed Loan Profit Rate 

Predicted Profit Percentile Human OLS GBM RF LASSO NNet 

10% 0.15  0.15  -0.16  -0.16  -0.14  -0.16  

20% 0.15  0.14  0.03  0.01  0.02  0.03  

30% 0.14  0.15  0.13  0.13  0.14  0.14  

       80% 0.14  0.15  0.25  0.22  0.21  0.26  

90% 0.17  0.16  0.26  0.25  0.24  0.26  

100% 0.17  0.14  0.28  0.26  0.26  0.30  
 

Note: The table presents the average observed profits in each tail decile of predicted profit as predicted by 

loan officers (Human) and each machine learning model(OLS, GBM, Random Forest, LASSO, and 

Neural Nets). For each of the machine learning models, to obtain the deciles of model predicted profit, I 

first predict a borrower’s loan repayment using the 𝑀(𝑋) trained by the model. Next, for each month, I 

sort all borrowers in the hold-out sample into deciles by their model predicted repayment and then pool 

borrowers in the same decile across months together. Finally, for each decile, I compute its average 

observed repayment rate (i.e. profit). To obtain the loan officer's (Human) predicted profit, I first regress 

observed loan size on the requested loan amount. Next, for each month, I sort all borrowers in the 

hold-out-sample into deciles by this residual and then pool borrowers in the same decile across months 

together. Finally, for each decile, I compute its average observed repayment rate (i.e. profit). Observed 

repayment rate (i.e. profit) is defined as (total repayment – loan size)/loan size. Details of each machine 

learning model is given in appendix B. 
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Table A4 

 Explaining Human Mis-ranking  

Panel A: Dependent = Over-ranking (H(X) vs. M(X)) 

 
Probit 

 
(1) (2) 

 
  

 Salience -1.281*** -1.288*** 

 

(-23.83) (-23.35) 

  
 R2 0.099  0.105  

 
  

Officer Fixed N Y 

N 6,776 6,776 

 

Panel B: Dependent = Under-ranking (H(X) vs. M(X)) 

 
Probit 

 
(1) (2) 

 
  

 Salience 1.298*** 1.306*** 

 

(26.86) (26.30) 

  
 R2 0.138  0.143  

 
  

Officer Fixed N Y 

N 6,776 6,776 

 

Note: This table reports results from probit regressions of the loan officer’s over-ranking (Panel A) and 

under-ranking (Panel B) of borrowers on behavioral factors. The dependent variable in Panel A is an 

indicator of over-ranking that equals one if a borrower is ranked by loan officers more than 1 decile above 

from her ranking by the machine learning model 𝑀(𝑋). The dependent variable in Panel B is an indicator 

of under-ranking that equals one if a borrower is ranked by loan officers more than 1 decile below from 

her ranking by the machine learning model 𝑀(𝑋). S𝑎𝑙𝑖𝑒𝑛𝑐𝑒 is an indicator equals 1 if at least one 

accounting variable whose value falls into 5% in the left tail of the distribution of that variable across all 

borrowers. T-stats are in parentheses. Standard errors are clustered by loan officers. 

 

*** significance at 1% level 

** significance at 5% level 
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Table A5 

Explaining Human High Mis-ranking  

Panel A: Dependent = High Over-ranking (H(X) vs. M(X)) 

 
Probit 

 
(1) (2) 

 
  

 Salience -1.395*** -1.413*** 

 

(-11.47) (-11.25) 

  
 R2 0.071  0.082  

 
  

Officer Fixed N Y 

N 6,776 6,776 

 

Panel B: Dependent = High Under-ranking (H(X) vs. M(X)) 

 
Probit 

 
(1) (2) 

 
  

 Salience 1.238*** 1.252*** 

 

(25.89) (25.82) 

  
 R2 0.171  0.177  

 
  

Officer Fixed N Y 

N 6,776 6,776 

 

Note: This table reports results from probit regressions of the loan officer’s high over-ranking (Panel A) 

and high under-ranking (Panel B) of borrowers on behavioral factors. The dependent variable in Panel A 

is an indicator of high over-ranking that equals one if a borrower is ranked by loan officers more than 5 

decile above from her ranking by the machine learning model 𝑀(𝑋). The dependent variable in Panel B 

is an indicator of high under-ranking that equals one if a borrower is ranked by loan officers more than 5 

decile below from her ranking by the machine learning model 𝑀(𝑋). S𝑎𝑙𝑖𝑒𝑛𝑐𝑒 is an indicator equals 1 

if at least one accounting variable whose value falls into 5% in the left tail of the distribution of that 

variable across all borrowers. T-stats are in parentheses. Standard errors are clustered by loan officers. 

 

*** significance at 1% level 

** significance at 5% level 
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Table A6 

 Explaining Human Mis-ranking Using Alternative Machine Learning Model (Random Forest) 

Dependent = Misranking (Officer vs. ML(RF)) 

 
Probit 

 
(1) (2) 

 
  

 Salience 0.292*** 0.296*** 

 

(7.11) (7.12) 

  
 R2 0.006  0.011  

 
  

Officer Fixed N Y 

N 6,776 6,776 

 

Note: This table reports results from probit regressions of the loan officer’s mis-ranking of borrowers on 

behavioral factors. The dependent variable is an indicator of mis-ranking that equals one if a borrower is 

ranked by loan officers more than 1 decile away from her ranking by the machine learning model 𝑀(𝑋). 

𝑀(𝑋) is trained using Random Forest. S𝑎𝑙𝑖𝑒𝑛𝑐𝑒 is an indicator equals 1 if at least one accounting 

variable whose value falls into 5% in the left tail of the distribution of that variable across all borrowers. 

T-stats are in parentheses. Standard errors are clustered by loan officers. 

 

*** significance at 1% level 

** significance at 5% level 
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Table A7 

 Explaining Human Mis-ranking Using Alternative Machine Learning Model (LASSO) 

Dependent = Misranking (Officer vs. ML(Lasso)) 

 
Probit 

 
(1) (2) 

 
  

 Salience 0.228*** 0.230*** 

 

(6.22) (6.26) 

  
 R2 0.005  0.010  

 
  

Officer Fixed N Y 

N 6,776 6,776 

 

Note: This table reports results from probit regressions of the loan officer’s mis-ranking of borrowers on 

behavioral factors. The dependent variable is an indicator of mis-ranking that equals one if a borrower is 

ranked by loan officers more than 1 decile away from her ranking by the machine learning model 𝑀(𝑋). 

𝑀(𝑋) is trained using LASSO. S𝑎𝑙𝑖𝑒𝑛𝑐𝑒 is an indicator equals 1 if at least one accounting variable 

whose value falls into 5% in the left tail of the distribution of that variable across all borrowers. T-stats are 

in parentheses. Standard errors are clustered by loan officers. 

 

*** significance at 1% level 

** significance at 5% level 
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Table A8 

 Explaining Human Mis-ranking Using Alternative Machine Learning Model (Neural Nets) 

Dependent = Misranking (Officer vs. ML(Neural Nets)) 

 
Probit 

 
(1) (2) 

 
  

 Salience 0.327*** 0.337*** 

 

(7.83) (7.87) 

  
 R2 0.006  0.012  

 
  

Officer Fixed N Y 

N 6,776 6,776 

 

Note: This table reports results from probit regressions of the loan officer’s mis-ranking of borrowers on 

behavioral factors. The dependent variable is an indicator of mis-ranking that equals one if a borrower is 

ranked by loan officers more than 1 decile away from her ranking by the machine learning model 𝑀(𝑋). 

𝑀(𝑋) is trained using Neural Nets. S𝑎𝑙𝑖𝑒𝑛𝑐𝑒 is an indicator equals 1 if at least one accounting variable 

whose value falls into 5% in the left tail of the distribution of that variable across all borrowers. T-stats are 

in parentheses. Standard errors are clustered by loan officers. 

 

*** significance at 1% level 

** significance at 5% level 
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Appendix B: Results on Gender Bias 

The theory of representativeness predicts that loan officers approve loan sizes too small for borrower 

groups with characteristics representative of high risk, because such characteristics exaggerate officers’ 

perception of the risks. I focus on borrowers with salient information as one such group in the main body 

of the paper. Another borrower group potentially subject to representativeness bias consists of female 

borrowers. According to the Chinese Private Enterprises Survey (CPES), a national survey from 1993 to 

2018, female entrepreneurs represent only around 10% of their sample. If gender stereotypes affect loan 

officers’ expectations, as in the model of Bordalo et al. (2016), such that they do not perceive females as 

“typical entrepreneurs,” they may underestimate the potential profitability of lending to women.  

In this appendix, I test whether gender stereotypes together with salient information explain loan officers’ 

mis-ranking of borrowers in the following regression. It is important to note that, as discussed in Dobbie 

et al. (2019), this regression is not powerful enough to distinguish between gender bias due to 

representativeness as in Bordalo et al. (2016) and that due to taste-based bias as in Becker (1957, 1993).  

𝑀𝑖𝑠𝑡𝑟𝑎𝑛𝑘𝑖𝑛𝑔𝑖𝑗𝑡
𝐾 = 𝛽1𝐺𝑒𝑛𝑑𝑒𝑟𝑖𝑗𝑡 + 𝛽2𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑒𝑖𝑗𝑡 + 𝜀𝑖𝑡 

𝑀𝑖𝑠𝑡𝑟𝑎𝑛𝑘𝑖𝑛𝑔𝑖𝑗𝑡
𝐾  is a 0-1 indicator variable turning on if officer j ranks borrower i more than K deciles 

away from machine’s ranking. I consider K=1 and K=5. 𝐺𝑒𝑛𝑑𝑒𝑟 is an indicator that equals 1 if the 

borrower is a male. 𝑆𝑎𝑙𝑖𝑒𝑛𝑐𝑒 is an indicator equals 1 if the borrower has at least one accounting variable 

whose value falls into 5% in the left tail of the distribution of that variable across all borrowers. I examine 

the relative importance of these factors in explaining human decision errors by testing their relative ability 

to explain variation in mis-ranking. Table B1 (for K=1) and Table B2 (for K=5) summarize the results.  

Table B1 suggests that a male borrower is 6.8% less likely to be mis-ranked. This result is consistent with 

findings in other credit markets (Campbell et al. 2019; Dobbie et al. 2019). Salience is a much stronger 

factor to explain mis-ranking. Loan officers are 28.1% more likely to mis-rank when they observe salient 
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information in borrowers’ accounting. In addition, salience is the dominant factor in explaining the 

R-squared of the variation in mis-ranking. Table B2 changes the outcome variable from K=1 to K=5 (i.e., 

a borrower is ranked by loan officers at least five deciles away from her machine ranking). All results are 

similar but more pronounced.  

Table B3 tests if biases disappear with experience. As in Table 8, I split the sample into loans that are 

processed by officers with above and below median experience (i.e., 3,793 applications) and test whether 

experience affects biases. Similar to salience bias, gender bias does not disappear with experience.  

In Table B4, I divide the sample by borrower’s gender and test whether soft information acquisition is 

hampered by gender stereotypes. As benchmarks, I report in Columns (1) and (2) whole-sample results, 

taken from Table 2. Columns (3) to (6) show that loan officers acquire less soft information when the 

borrower is a female, suggesting that gender stereotypes impede soft information acquisition. Intuitively, 

talking to a borrower but starting with an incorrect belief might make the conversation less effective. 
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Table B1 

 Explaining Human Mis-ranking  

Dependent = Misranking (H(X) vs. M(X)) 

  
  

 
Probit 

 
(1) (2) (3) (4) 

 
    

  Gender=Male -0.065** 
 

-0.069** -0.068** 

 
(-2.07) 

 
(-2.19) (-2.18) 

    
 Salience 

 
0.275*** 0.276*** 0.281*** 

 
 

(6.71) (6.66) (6.72) 

    
 R2 0.000  0.006  0.007  0.012  

 
    

Officer Fixed N N N Y 

N 6,776 6,776 6,776 6,776 

 

Note: This table reports results from Probit regressions of the loan officer’s mis-ranking of borrowers on 

behavioral factors. The dependent variable is an indicator of mis-ranking that equals one if a borrower is 

ranked by loan officers more than 1 decile away from her ranking by the machine learning model 𝑀(𝑋). 

𝐺𝑒𝑛𝑑𝑒𝑟 is an indicator that equals 1 if the borrower is a male. S𝑎𝑙𝑖𝑒𝑛𝑐𝑒 is an indicator equals 1 if at 

least one accounting variable whose value falls into 5% in the left tail of the distribution of that variable 

across all borrowers. T-stats are in parentheses. Standard errors are clustered by loan officers. 

 

*** significance at 1% level 

** significance at 5% level 
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Table B2 

 Explaining Human Mis-ranking (2) 

Dependent = High Misranking (H(X) vs. M(X))   

 
Probit 

 
(1) (2) (3) (4) 

 
    

  Gender=Male -0.109*** 
 

-0.121*** -0.114*** 

 
(-3.77) 

 
(-4.07) (-3.85) 

    
 Salience 

 
0.391*** 0.394*** 0.395*** 

 
 

(12.3) (12.53) (12.65) 

    
 R2 0.001  0.014  0.015  0.021  

 
    

Officer Fixed N N N Y 

N 6,776 6,776 6,776 6,776 

 

Note: This table reports results from Probit regressions of the loan officer’s mis-ranking of borrowers on 

behavioral factors. The dependent variable is an indicator of mis-ranking that equals one if a borrower is 

ranked by loan officers more than 5 deciles away from her ranking by the machine learning model 𝑀(𝑋). 

𝐺𝑒𝑛𝑑𝑒𝑟 is an indicator that equals 1 if the borrower is a male. S𝑎𝑙𝑖𝑒𝑛𝑐𝑒 is an indicator equals 1 if at 

least one accounting variable whose value falls into 5% in the left tail of the distribution of that variable 

across all borrowers. T-stats are in parentheses. Standard errors are clustered by loan officers. 

 

*** significance at 1% level 

** significance at 5% level 
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Table B3 

 Human Mis-ranking by Experience 

Dependent = Misranking (H(X) vs. M(X))   

 
Low Experience High Experience 

 
(1) (2) (3) (4) 

 
    

  Gender=Male -0.050 -0.046 -0.090*** -0.092*** 

 
(-0.92) (-0.87) (-2.65) (-2.57) 

    
 Salience 0.188*** 0.192*** 0.375*** 0.379*** 

 

(5.27) (6.71) (5.39) (5.46) 

    
 R2 0.004  0.011  0.012  0.013  

 
    

Officer Fixed N Y N Y 

N 6,776 6,776 6,776 6,776 

 

Dependent = High Misranking (H(X) vs. M(X))   

 
Low Experience High Experience 

 
(1) (2) (3) (4) 

 
    

  Gender=Male -0.128*** -0.117*** -0.114** -0.111** 

 
(-4.14) (-3.88) (-2.14) (-2.05) 

    
 Salience 0.331*** 0.334*** 0.460*** 0.458*** 

 
(6.60) (6.62) (15.70) (15.73) 

    
 R2 0.011  0.020  0.021  0.023  

 
    

Officer Fixed N Y N Y 

N 6,776 6,776 6,776 6,776 

 

Note: The dependent variable is an indicator of mis-ranking that equals one if a borrower is ranked by 

officers more than 1 decile away (Panel A) or 5 deciles away (Panel B) from her ranking by the machine 

learning model 𝑀(𝑋). Experience is measured by the total loan applications processed. A borrower falls 

into a High (Low) Experience sample if the application is processed by an officer with the above (below) 

median experience. 𝐺𝑒𝑛𝑑𝑒𝑟 is an indicator that equals 1 for male borrowers. S𝑎𝑙𝑖𝑒𝑛𝑐𝑒 is an indicator 

equals 1 if at least one accounting variable whose value falls into 5% in the left tail of the distribution of 

that variable across all borrowers. T-stats are in parentheses. Standard errors are clustered by loan officers. 

*** significance at 1% level 

** significance at 5% level 
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Table B4 

Gender and Soft Information Acquisition 

Dependent = Profit           

 
Whole Sample Borrower = Male Borrower = Female 

 
(1) (2) (3) (4) (5) (6) 

 
      

   Soft Info 0.129*** 0.128*** 0.153*** 0.135*** 0.112*** 0.104*** 

 
(7.24) (7.22) (7.74) (7.09) (3.64) (3.69) 

  
 

  
  Control Y Y Y Y Y Y 

Time Fixed Y Y Y Y Y Y 

Officer Fixed N Y N Y N Y 

R2 0.055  0.056  0.004  0.060  0.002  0.074  

       
N 33,879 33,879 26,075 26,075 7,804 7,804 

 

Note: This table reports results from regressions of loan profit on soft information. The dependent 

variable is the loan repayment ratio, a measure of profit, defined as (total repayment – loan size)/loan size. 

Soft Info is si,t estimated in equation (3) using the decomposition method in section 3.2.2. Control 

variables include all codified borrower characteristics. Column (1) and (2) are taken from Table 2. 

Column (3) and (4) are results on a subsample with male borrowers. Column (5) and (6) are results on a 

female borrower subsample. T-stats are in parentheses. Standard errors are clustered by loan officers. 

 

*** significance at 1% level 

** significance at 5% level 
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Appendix C: Proof of Proposition 1 

Denote β =
1

1+𝜎𝜀
2, and β̅ = E(β) =

1

2

1

𝐻+1
+

1

2

1

𝐿+1
. First, consider the case where the loan officer does not 

pay the cost C to resolve uncertainty in 𝜎𝜀
2. In this case, the conditional mean of θ is 

a = E(θ | x) 

By Law of Iterated Expectation, we have 

a = E(θ | x) = E{E(θ | x, 𝜎𝜀
2) | x} 

= E(βx | x) = β̅𝑥 

The loan officer’s expected quadratic loss is  

L = E[(θ − a)2 | x] 

= E{E[(θ − a)2| x, 𝜎𝜀
2) | x} 

= E{E(θ2 − 2θβ̅𝑥 + β̅2x2| x, 𝜎𝜀
2) | x} 

= E{E(β2x2 + Var(θ | x, 𝜎𝜀
2) − 2β̅2𝑥 + β̅2x2| x, 𝜎𝜀

2) | x} 

= E{Var(θ | x, 𝜎𝜀
2)} + x2𝑉𝑎𝑟(β) 

Next, consider the loan officer’s expected loss if she pays cost C to resolve uncertainty in 𝜎𝜀
2. 

L =
1

2
𝐸{(θ −

1

𝐻 + 1
𝑥)

2

 | x} +
1

2
𝐸{(θ −

1

𝐿 + 1
𝑥)

2

 | x} + C 

=
1

2
Var(θ | x, H) +

1

2
Var(θ | x, L) + C 

= E{Var(θ | x, 𝜎𝜀
2)} + C 

The proposition follows by comparing the expected losses for these two cases. 
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Appendix D: Machine Learning Models in Details 

This section describes the collection of machine learning models that I use. I aim to provide a sufficiently 

in-depth description of the models so that a reader having no machine learning background can 

understand the basic model structure.  

In its most general form, a borrower i’s future repayment can be written as an additive prediction error 

model: 

𝑅𝑒𝑝𝑎𝑦𝑖,𝑡+1 = 𝐸𝑡(𝑅𝑒𝑝𝑎𝑦𝑖,𝑡+1) + 𝑒𝑟𝑟𝑜𝑟𝑖,𝑡+1                     (D1) 

where  

Et(Repayi,t+1) = M(Xi,t)                              (D2) 

The objective is to find a representation of Et(Repayi,t+1) as a function of borrower characteristics Xi,t 

that maximizes the out-of-sample explanatory power for realized Repayi,t+1. Various machine learning 

models are deployed to estimate such representation M(). In the machine learning language, variables in 

Xi,t are called predictors. As a useful benchmark, I start with the least complex method, the simple linear 

predictive regression model estimated via ordinary least squares (OLS). 

 

D.1. OLS 

The OLS model imposes that conditional expectations M() can be approximated by a linear function of 

borrower characteristics Xi,t and the parameter vector θ 

M(Xi,t; θ) = Xi,t
′ θ                                (D3) 

This model does not allow for nonlinear effects or interactions between predictors. Denote 𝑁 as the total 
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No

 
 Industry 

= Retail 

Yes 

number of observations in the training sample, estimation of model D3 uses a standard least squares, or 

“L2”, objective function: 

L(θ) =
1

𝑁
∑ (𝑅𝑒𝑝𝑎𝑦𝑖,𝑡+1 − M(Xi,t; θ)𝑁

𝑖=1 )2                     (D4) 

Minimizing L(θ) yields the familiar pooled OLS estimator.  

 

D.2. Tree Models 

Model (D3) does not captures individual borrower characteristics’ nonlinear and interactive impacts on 

Repayi,t+1. One way to add non-linear and interactive effects is to include higher-order and interactive 

terms of Xi,t. However, multi-way interactions increase the parameterization combinatorially, leading the 

number of parameters to estimate quickly surpass the number of observations. Without a priori 

assumptions for which interactions to include, the linear model becomes computationally infeasible.  

 

 

 

 

 

 

Figure D1: Regression Tree Example 

Regression trees have become a popular machine learning approach for incorporating multi-way predictor 

interactions. Tree models are fully nonparametric. Figure 5, reproduced here, illustrates a basic building 

block of a decision tree, in which the data are divided through a sequence of binary splits. To predict 

Education 
= College 

Industry 
= Retail 

Category  
1 

No Yes

 
 Industry 

= Retail 

Category  
2 

Category  
3 
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𝑅𝑒𝑝𝑎𝑦𝑖,𝑡+1, the first split might be a borrower’s education (whether the borrower has a college degree). In 

the next step, we can split each of the two nodes created by that first split by different variables, such as 

industry (whether the borrower is in retail). Based on these two characteristics, the sample of borrowers is 

divided into three categories. The predicted repayment of a new borrower in the hold-out sample who 

falls into category i is set to equal to the average repayment of borrowers in the training sample in 

category i. This sequential procedure allows for a high degree of interactivity in the data, a key advantage 

of machine learning models over OLS. 

Formally, the prediction of a tree, T, with K leaves (terminal nodes), and depth L (number of branches), 

can be written as 

M(Xi,t; θ, K, L) = ∑ θ𝑘𝟏{X𝑖,𝑡∈𝐶𝑘(𝐿)}
𝐾
𝑘=1                      (D3) 

where 𝐶𝑘(𝐿) is one of the K partitions of the data. Each partition is a product of up to L indicator 

functions of the predictors. The constant associated with partition k (denoted θ𝑘) is defined to be the 

sample average of outcomes within the partition. In the example of Figure D1, the prediction equation is 

M(Xi,t; θ, K, L) = θ11{edu≠college}1{ind≠retail} + θ21{edu≠college}1{ind=retail} + θ31{edu=college} 

To grow a tree is to find partitions that best discriminate among the potential outcomes. The specific 

predictor upon which a branch is based (education and industry in Figure D1), and the specific value 

where the branch is split (college degree and retail in Figure D1), is chosen to minimize forecast error. I 

follow the literature and use the algorithm of Breiman et al. (1984) with a L2 loss for each branch of the 

tree: 

L(θ, C) =
1

|𝐶|
∑ (𝑅𝑒𝑝𝑎𝑦𝑖,𝑡+1 − θX𝑖,𝑡∈𝐶 )2                      (D4) 

|𝐶| denotes the number of observations in partition C. Given C, the optimal choice of θ is θ =
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1

|𝐶|
∑ 𝑅𝑒𝑝𝑎𝑦𝑖,𝑡+1X𝑖,𝑡∈𝐶  (i.e., the average value of realized repayment in that branch).  

The machine learning literature is much more concerned with over-fitting than the standard statistics or 

econometrics literature. Researchers attempt to select flexible models that fit well, but not so well that 

out-of-sample prediction is compromised. Regularization is an essential technique used in all machine 

learning models to achieve high performance in out-of-sample prediction by putting restrictions on model 

flexibility. That is, instead of directly optimizing an objective function, say minimizing the sum of 

squared residuals (e.g., L(θ, C) in (D4)), a term is added to the objective function to penalize the 

complexity of the model. The amount of regularization is governed by one or a handful of parameters, 

called tuning parameters, in the penalization term. The values of the tuning parameters are determined 

explicitly by the out-of-sample predictive performance using a data-driven model selection technique 

called cross-validation. 

Decision trees are known to be prone to overfit, and therefore must be heavily regularized. I consider two 

popular regularizers that combine forecasts from many different trees into a single forecast. 

 

D.2.1. Boosting 

The first regularization method is “boosting”, which recursively combines forecasts from many 

over-simplified trees (Friedman et al, 2000; Friedman 2001). The boosting procedure, usually referred to 

as gradient boosted models (GBM), starts by fitting a shallow tree (e.g., with depth L=1). This 

over-simplified tree is a weak predictor with large bias in the training sample. Next, a second simple tree 

(with the same depth) is used to fit the prediction residuals from the first tree. Forecasts from these two 

trees are added together to form an ensemble prediction of the outcome, but the forecast component from 

the second tree is shrunken by a factor 𝑣 ∈ (0,1) to help prevent the model from overfitting the residuals. 

At each new step n, a shallow tree is fitted to the residuals from the model with n-1 trees, and its residual 
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forecast is added to the total with a shrinkage weight of 𝑣. This iteration is performed until there are a 

total of N trees in the ensemble. The final output is therefore an additive model of shallow trees with three 

tuning parameters (L, 𝑣, N). I choose these parameters using 5-fold cross-validation. Details of the 

implementation algorithm are described below. 

Algorithm: Gradient Boosted Tree 

 Initialize the predictor as M0 = 0; 

 for n from 1 to N do 

  Compute for each i=1,2,…,N, the negative gradient of the loss function L(): 

ε𝑖,𝑡+1 ← −
∂L(𝑅𝑒𝑝𝑎𝑦𝑖,𝑡+1, 𝑀)

∂𝑀
|𝑀=𝑀𝑛−1(Xi,t) 

  Grow a (shallow) regression tree of depth L with dataset {(Xi,t, ε𝑖,𝑡+1): ∀𝑖, ∀𝑡} 

f𝑛(. ) ← M(Xi,t; θ, L) 

  Update the model by  

M𝑛(. ) ← M𝑛−1(. ) + vf𝑛(. ), 

  where v is a tuning parameter that controls the step length 

end 

Result: The final model output is 

M𝑁 ((Xi,t; v, N, L)) = ∑ 𝑣

𝑁

𝑛=1

f𝑛(. ). 

 

D.2.2. Random Forest 

Random forest is another ensemble method that combines forecasts from many different simplified trees 

(Brieman, 2001). The baseline procedure draws N different bootstrap samples of the data, fits a separate 

regression tree to each, then averages their forecasts. Trees for individual bootstrap samples tend to be 

deep and overfit, making their individual predictions inefficiently variable. Averaging over multiple 
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predictions reduces this variation, thus stabilizing the trees’ predictive performance. The intuition is the 

same as in “wisdom of the crowds” where independent noises coming from each individual model are 

washed out in aggregate. Depth L of the trees and number of bootstrap samples N are the tuning 

parameters. I choose these parameters using 5-fold cross-validation. Details of the implementation 

algorithm are described below. 

Algorithm: Random Forest 

 for n from 1 to N do 

  Generate Boostrap samples {(𝑋𝑖,𝑡, 𝑅𝑒𝑝𝑎𝑦𝑖,𝑡+1): (𝑖, 𝑡) ∈ 𝐵𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝(𝑛)} from the training dataset, for 

which a tree is grown. At each step of splitting, use only a random subsample of all features. Write the 

resulting nth tree as: 

M𝑛(Xi,t L, 𝜃𝑛) = ∑ 𝜃𝑛
𝑘

2𝐿

𝑘=1

𝟏{X𝑖,𝑡∈𝐶𝑘(𝐿)} 

end 

Result: The final model output is 

M𝑁(Xi,t; N, L) =
1

𝑁
∑ M𝑛(Xi,t L, 𝜃𝑛)

𝑁

𝑛=1

. 

 

D.3. Neural Networks 

A neural network model consists of an input layer of raw predictors, one of more hidden layers that 

interact and nonlinearly transform the predictors, and an output layer that aggregates hidden layers into an 

ultimate outcome prediction. Analogous to axons in a biological brain, layers of the networks represent 

groups of “neurons” with each layer connected by “synapses” that transmit signals among neurons of 

different layers. Figure D2 shows two illustrative examples. 
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Figure D2: Neural Network Example 

The number of units in the input layer is equal to the dimension of the predictors, which is set to four in 

this example. The left panel shows the simplest possible network that has no hidden layers. Each of the 

predictor signals is amplified or attenuated according to a five-dimensional parameter vector θ, that 

includes an intercept and one weight parameter per predictor. The output layer aggregates the weighted 

signals into the forecast θ0 + ∑ Xjθj
4
j=1 . That is, the simplest neural network is equivalent to a linear 

regression model. 

The model can incorporate more flexible functional forms by adding hidden layers between the inputs and 

output. The right panel of Figure D2 shows an example with one hidden layer that contains five neurons. 

Each neuron draws information linearly from all of the input units, just as in the simple network on the 

left. Then, each neuron applies a nonlinear “activation function” f to its aggregated signal before sending 

its output to the next layer. For example, the second neuron in the hidden layer transforms inputs into an 

output as X2
(1)

= f(θ2,0
(0)

+ ∑ Xjθ2,j
(0)

)4
j=1 . Lastly, the results from each neuron are linearly aggregated into 

an ultimate output forecast: 

M(Xi,t; θ) = θ0
(1)

+ ∑ Xj
(1)

θj
(1)

5

j=1

 

Thus, in the right panel of Figure D2, there are a total of 31 = (4+1)*5+6 parameters.   
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D.4. LASSO 

The simple OLS model is bound to fail in the presence of many predictors. When the number of 

predictors approaches the number of observations, the linear model becomes inefficient or even 

inconsistent. It begins to overfit noise rather than extracting signal. A common machine learning approach 

for imposing parameter parsimony is to append a penalty to the OLS objective function in order to favor 

more parsimonious specifications. LASSO is one popular such penalized linear model with a loss 

function: 

L(θ; . ) = L(θ) + φ(θ; . ) 

LASSO specifies a penalty functionφ(θ; . ) = 𝜆 ∑ |θ𝑗|𝑃
𝑗=1 . The tuning parameter 𝜆 is chosen using 5-fold 

cross-validation. 
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