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Effects of Study Duration, Frequency of Observation, and
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Polynomial Change
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Consider a study in which 2 groups are followed over time to assess group differ-
ences in the average rate of change, rate of acceleration, or higher degree polyno-
mial effect. In designing such a study, one must decide on the duration of the study,
frequency of observation, and number of participants. The authors consider how
these choices affect statistical power and show that power depends on a standard-
ized effect size, the sample size, and a person-specific reliability coefficient. This
reliability, in turn, depends on study duration and frequency. These relations enable
researchers to weigh alternative designs with respect to feasibility and power. The
authors illustrate the approach using data from published studies of antisocial
thinking during adolescence and vocabulary growth during infancy.

In assessing treatment effects, evaluating preven-
tion programs, and describing the correlates of human
growth or change, a common analytic goal is to assess
group effects on individual trajectories (cf. Bryk &
Raudenbush, 1987; Francis, Fletcher, Stuebing, Da-
vidson, & Thompson, 1991; Huttenlocher, Haight,
Bryk, & Seltzer, 1991; Laird & Ware, 1982; Muthen
& Curran, 1997; Rogosa & Willett, 1985; Willett &
Sayer, 1994). In one simple but important case, par-
ticipants are randomly assigned to treatments and are
then monitored over time. Each participant's trajec-
tory is a linear function of age or time, characterized
by an intercept and a rate of change. The primary aim
of the study is to assess the average treatment effect
on the rate of change. In other studies, random as-
signment does not occur, but the aim remains similar:
to compare groups on linear rates of change. Some-
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times, however, growth or change is curvilinear, and
the aim is to assess treatment effects on the rate of
acceleration. For example, Huttenlocher et al. (1991)
studied gender differences in the acceleration of vo-
cabulary during the second year of life. These cases
have two features in common.

First, an individual trajectory of growth or change
is characterized by a polynomial function. A first-
degree polynomial characterizes individual trajecto-
ries in terms of an intercept and a rate of change,
whereas a second-degree polynomial adds an accel-
eration parameter. Higher degree polynomials, al-
though less prominent in the literature, are possible.
For example, a third-degree polynomial allows study
of changes in acceleration. Second, the key hypothesis
involves group differences in one or more polynomial
change parameters. These include group differences
in intercepts, linear rates of change, rates of accelera-
tion, and so on.

We refer to such examples as studies of group dif-
ferences in polynomial change. In planning these
studies, one must consider trade-offs between the du-
ration of the study, frequency of observation, and
number of participants. We propose and illustrate a
framework for managing such trade-offs. We develop
a model for treatment effects on polynomial change
coefficients and represent the variance of an estimated
group difference as an explicit function of duration,
frequency, and sample size. We introduce a standard-
ized effect size for group differences in polynomial
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change components and show that power depends on
a noncentrality parameter, \, for the F distribution,
defined as X = nS2a/4, where n is the sample size, 8
is the standardized effect size, and a is the person-
specific reliability coefficient commonly printed out
by software for hierarchical models.1 The reliability
coefficient a, in turn, is shown to be a simple function
of study duration, frequency of observation, between-
person variance in change, and within-person vari-
ance. This approach yields simple power computa-
tions that enable researchers to study these trade-offs
as they plan longitudinal studies. We illustrate the
approach using data on antisocial thinking during ado-
lescence, which focused on a first-order polynomial,
and a second study of vocabulary growth that focused
on a second-order polynomial.

Background

A growing literature provides guidance on sample
size and statistical power for group comparisons using
repeated measures designs. For example, Bloch
(1986) considered sample size and power for repeated
measures designs assuming an underlying compound
symmetry model for the variances and covariances of
the repeated measures. That article also considered
how variation between and within participants, to-
gether with cost considerations, affects power. Ro-
chon (1991) extended this logic to include repeated
measures having an autoregressive covariance struc-
ture. Muthen and Curran (1997) considered power for
detecting group differences under the assumption of
randomly varying linear growth rates. They varied the
study duration and frequency of time points as well as
number of participants per treatment in assessing
power and also considered power for testing interac-
tion effects among age, treatments, and participants'
initial status. This work provided large-sample power
approximations for a range of linear growth models
for sample sizes larger than 100. Brown (1998) ex-
tended Muthen and Curran's (1997) work by devel-
oping a web-based program that computes power for
a variety of designs using straight-line models for
individual change.

Liu and Liang (1997) studied sample size and
power for the case of linear change based on continu-
ous outcomes, but they also considered repeatedly ob-
tained binary outcome data. Their general approach,
based on the method of generalized estimating equa-
tions, can readily be specialized to a wide variety of
outcome types and to nonlinear link functions (e.g.,

logit or log linear models). Hedeker, Gibbons, and
Waternaux (1999) allowed for sample attrition in con-
sidering sample size determination for repeated mea-
sures studies. Their approach assumed continuous
outcomes and linear link function. They illustrated
their approach in the case of compound symmetry,
first-order autoregressive structure, and random ef-
fects structure. Related contributions to sample size
determination and power for longitudinal designs may
be found in Muller, LaVange, Ramey, and Ramey
(1992), Overall and Doyle (1994), and Kirby, Galai,
and Munoz (1994). Maxwell (1998), starting from a
pre-post design, considered how adding intermediate
observations affects power.

Schlesselman (1973) considered the consequences
of study duration and frequency of time points for the
standard error of an estimated group difference in lin-
ear growth rates. He found that increasing duration
had a greater effect than increasing frequency on re-
ducing the standard error. We extend this approach to
include higher order polynomials and to consider im-
plications for statistical power.

Approach

The current article focuses on the trade-offs among
study duration, frequency of observation, and sample
size in planning studies to have adequate power. Un-
like previous authors, we represent statistical power
for an estimated group difference as an explicit func-
tion of study duration, frequency of observation, and
sample size. This approach facilitates the comparison
of alternative designs with respect to power and fea-
sibility. Estimated variances and noncentrality param-
eters can be computed simply with a hand calculator,
and power calculations are exact rather than approxi-
mate, making them useful even for small-sample re-
search. To achieve this simplicity, we restrict our at-
tention to orthogonal designs. However, the approach
applies generally to higher order polynomials in con-
trast to much previous work on straight-line growth
models. To bring our key issues into focus, we limit
our attention to the case of continuous outcomes, lin-
ear link functions, a random-effects covariance struc-
ture, homogeneous covariance structures within treat-
ments, and complete data. The consequences of

1 Throughout this article, a refers to a reliability coeffi-
cient rather than to a significance level. We use the .05
significance level throughout for simplicity.
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increasing any aspect of data collection (duration, fre-
quency, and sample size) depend on which polyno-
mial effect (intercept, linear, quadratic, or cubic) is of
interest, on the magnitude of variation between par-
ticipants on the polynomial coefficient of interest, and
on the magnitude of the variation within participants.
We illustrate how to use extant data to optimize power
over feasible designs using data from two studies in
developmental psychology.

Model

Following Bryk and Raudenbush (1987, 1992), we
represent the model in its hierarchical form. It is a
two-level model wherein the first level units are oc-
casions within persons and the second units are the
persons.

Level 1 Model for Individual Change

The Level 1 model describes the trajectory of
change for person i as a polynomial function of de-
gree P - 1 defined at equally spaced occasions of
observation. Thus, we have an outcome Ymi for person
i (i — 1 , . . . ,ri) at occasion m (m = 1 , . . . , M):

Ymi =
p=Q

•c + e •oi pm mr (1)

Here cpm is the orthogonal polynomial contrast coef-
ficient of degree p at occasion m (P < M), c0m — 1 for
all m, TTO, is the mean outcome for participant i, c,m is
a linear contrast coefficient, IT,,, is the linear rate of
change for participant /, and irp, (p > 1) are higher
order polynomial effects. The within-participant ran-
dom effects, emi, are assumed independently and iden-
tically distributed as N(0, a2). One must take care in
defining the individual change coefficients, the m.
Thus, for example, in a quadratic model, TTU is the
average rate of increase during the course of the
study, whereas fr2, represents acceleration. In a cubic
model, Tr2i represents the average rate of acceleration,
whereas TT3, is the rate at which acceleration changes.
In general, adding higher order terms will change the
definitions of the lower order change parameters other
than the mean.

Orthogonal polynomial contrast coefficients appear
in the tables of many experimental design texts (cf.
Kirk, 1982). With equally spaced time points, the first
four coefficients may be computed as

(2)

For example, with M = 5, we have

c0 = d, 1, 1, 1, 1)
c,=(-2,-l,0, 1,2)

c2 = (l,-0.5,-l,-0.5, 1)
c3 = (-0.2,0.4, 0, -0.4, 0.2).

(3)

There are several benefits to choosing an orthogo-
nal polynomial model. First, the Level 1 parameters
have clear substantive definitions, as described previ-
ously. Second, it is straightforward to derive simple
expressions for estimators and exact standard errors
that apply in studies of arbitrary length and for poly-
nomials of any degree. These lead to simple compu-
tations of power that apply even in small-sample re-
search.

Least squares estimates of each participant's
change parameters along with their conditional vari-
ances2 are simply computed as

M

(4)
CT

2 These least squares estimates and their variances facili-
tate our presentation without loss of generality. However,
we do not generally recommend them for person-specific
inference. Bryk and Raudenbush (1992, chap. 6) illustrated
how and why empirical Bayes estimators will typically pro-
vide better predictions of status than will the least squares
estimators.
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In general, the denominator of the variance expres-
sion is

M

KP(M-p-\)\'
(5)

where Kp is a constant for each polynomial parameter,
p. For the first four polynomial contrasts, we have K0

= !,£, = 1/12, #2 = 1/720, K3 = 1/100,800 with

M

M

M

M

Clm=- (6)

(M + 2)(M + 1)M(M - 1)(M - 2)
: 720

(M+3)(M + 2)(M+1)
M(M-l)(M-2)(M-3)

1 100,800 '

Level 2 Model for Variation Between Persons

Whereas the Level 1 model defines the change pa-
rameters for each participant, the Level 2 model de-
scribes how those parameters vary over a population
of persons. In a two-group study comparing an ex-
perimental group with a control group, we have, for
each change parameter, irp(, p = 0 , . . . , P - 1,

tfpi = PpO + Ppl*/ + U^, (7)

where Xt takes on a value of 0.5 for members of the
experimental group and -0.5 for the members of the
control group. Thus, (3^ is the population mean of
polynomial effect irp,, and (Bpl is the mean difference
between experimental and controls with respect to
that polynomial effect. The random effects upi, p =
1 , . . . , P - 1 are assumed multivariate normal in dis-
tribution with means of zero, variances ^pp, with the
covariance between upi and up-i denoted tpp,. These
random effects are assumed independent across
persons and independent of the Level 1 random ef-
fect, emi.

It is useful to reexpress the Level 2 model in terms
of the person-specific least squares estimate:

from which it follows that the marginal within-
treatment variance of the least squares estimator is

= Var[u, + (Hpi - IT,)]
(9)

The minimum variance, unbiased estimate of the
treatment effect for polynomial p and its variance is

i = 4(Tw,+ Vy/n, (10)

where TrpE is the mean of the least squares estimators
Tfpi among those in the experimental group and TfpC is
the mean of the least squares estimators f[pi among
those in the control group.3

Hypothesis Testing and Statistical Power

We test the null hypothesis

H0: = 0

against the alternative hypothesis

H0: 0.

When the null hypothesis is true, the test statistic

F = (11)

follows a central F distribution with degrees of free-
dom of 1 and n - 2. However, when the alternative
hypothesis is true, the test statistic F follows a non-
central F distribution with the same degrees of free-
dom and noncentrality parameter

(12)

Power is, of course, influenced primarily by the mag-
nitude of the noncentrality parameter and only sec-
ondarily by the critical value of F. Inspection of the
noncentrality parameter reveals five important facts.

First, increasing the number of time points, M, will
increase power. This will occur because large values
of M will increase £„= icpm> which reduces the de-
nominator of the noncentrality parameter. Inspection
of Equation 6 shows that this tendency of power to
depend on M is more pronounced for higher order
polynomials than for lower order polynomials. For
example, in testing treatment effects on the mean, the
noncentrality parameter diminishes as a function of

3 Recall that n here is the total sample size with n/2
participants in each group.
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M; in testing treatment effects on the linear contrast,
it is a function of (M + \)M(M - 1); and so on.

Second, increasing the sample size, n, will also in-
crease power. In the limit, increasing n will generally
have a greater effect on power than will increasing M.
This can be seen by noting that, as M increases
without bound, a2/2^=1Cpm will vanish, leaving
X = n(3p1/(4T/)p). Thus, power will achieve an upper
bound less than 1.0 as M increases if n is held constant
unless Tpp is null. In contrast, as n increases with-
out bound, X will increase without bound regard-
less of the value of T , driving power inevitably to-
ward 1.0.

Third, power depends on the effect size, Ppl. The
larger the mean difference between treatments on
polynomial p, the greater is the power.

Fourth, power depends on Tpp, the magnitude of
variation across persons (within treatments) on the
polynomial contrast of interest. When persons within
treatments are quite heterogeneous with respect to Tipi,
power is less than when those persons are more nearly
homogeneous.

Fifth, and finally, power depends on a2, the within-
person variance. Assuming a correctly specified
model for person-specific change, a2 represents mea-
surement error. The larger the measurement error,
then, the weaker is the power.

These five points help clarify the logic of planning
research. Adding repeated observations within per-
sons helps most when the degree of polynomial is
high and there is considerable within-person variance.
Adding participants is most helpful when between-
person heterogeneity on the effect of interest is large.
Given that the number of time points is the minimum
necessary to estimate the model (i.e., M > P), adding
participants generally increases power without bound.

Although these general principles are useful, the
general guidance they provide is not adequate. First,
there are various ways of increasing the precision with
which we can estimate a given participant's param-
eters of change. One may increase the duration of the
study (holding constant the frequency of observation),
one may increase the frequency of observation (hold-
ing constant the duration of the study), or one may
increase both the study's duration and frequency. Sec-
ond, one must be quite specific about the magnitude
of variation at each level to get serious about plan-
ning. Finally, an effect size or a range of effect sizes
must be specified to plan for adequate power. We first
consider how to represent standardized effect sizes
within our modeling framework conveniently and

then elaborate the model to allow for changes in study
duration and frequency. We then consider power.

Standardized Effect Sizes
The power of a study to detect a group difference

depends on the effect size, that is, the magnitude of
the true group difference. Standardized effect sizes
are scale-invariant measures of effect magnitude that
are often useful in planning new research. The popu-
larity and utility of Cohen's (1988) text on power
result in part from its use of standardized effect sizes,
which put a variety of otherwise disparate problems
on a common footing. In a simple two-group cross-
sectional design with no clustering, the standardized
effect size is simply the mean difference between
groups divided by the within-group standard deviation
(or, in some cases, the standard deviation of the con-
trol group). This concept has been extended to clus-
tered designs (Raudenbush, 1997; Raudenbush & Liu,
2000).

We define a standardized effect size for polynomial
trend p as

that is, the group difference on polynomial trend p
divided by the population standard deviation of the
polynomial trend of interest.4 For example, if a study
of school learning represents the growth in cogni-
tive skill as a linear function of age, vr^ is the popu-
lation variation in annual growth rates and 6[ is the
standardized mean difference between two groups on
this annual growth rate. In our second example, based
on Huttenlocher et al. (1991), interest focuses on ac-
celeration in expressive vocabulary during the second
year of life; T22 is the population variation in accel-

4 Our definition of a standardized effect size departs from
the definition often used in cross-sectional research, that is,
the mean difference on an outcome divided by the standard
deviation of that outcome. The standard deviation used in
the denominator will typically include measurement error.
The analogy in our repeated measures case would define the
standardized effect size as $p\^fpp + Vp. The denominator
would depend on the sampling variance Vp, which, in turn,
depends not only on the amount of measurement error of the
outcome but also on the design of the study. Given our aim
of evaluating alternative designs, such a definition would
not be useful. We, therefore, have opted to define the stan-
dardized effect size as the ratio of the group mean difference
to the standard deviation of the true change component, that
is,
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eration (i.e., the change in vocabulary per month
squared), and 82 is the standardized mean difference
between two groups in acceleration.

With this simple and intuitively appealing defini-
tion in mind, the noncentrality parameter of Equation
12 reduces to a simple and illuminating expression:

\p = n^pOLp/4, (14)

where ap is the reliability of the least squares estima-
tor TT_, that is

«„ = pp (15)

with Vp defined as before (Equation 4). This reliability
statistic is commonly cited in literature on hierarchical
linear models (cf. Bryk & Raudenbush, 1992, Equa-
tion 3.35). It denotes the reliability with which one
can discriminate between participants on their growth
or change parameters using least squares estimates.5

Thus, past experience with repeated measures designs
and data creates some basis for estimating reliabili-
ties, which can then be easily used in power calcula-
tions using Equation 14. However, reliability will de-
pend strongly on study duration and frequency of
observation, a topic to which we now turn.

The Consequences of Study Duration and
Observation Frequency for Statistical Precision

and Power

Our model for individual change defines equally
spaced occasions of measurement m = I,..., M.
Implicitly, we have defined a time metric tm = m- I ,
where tm is the elapsed time since the onset of the
study at observation occasion m, D = M - 1 is du-
ration of the study, and the frequency of observation
is / = 1.0 observations per unit time. If we require
data to be collected at equal intervals but allow / to
vary, where / is a positive rational number, observa-
tion m will occur at Time tm = (m - I)// and the
study will terminate at time D = (M - I)//. Clearly,
a study with duration D and frequency / will require
M = fD + 1 time points.

Our interest focuses on the consequences for sta-
tistical power of varying D and/as well as the sample
size, n. To examine these consequences, we assume
that the model parameters remain invariant under al-
ternative designs. We evaluate the tenability of this
assumption in each example. For any n, changing D or
/ affects precision and power through their effect on
the reliability ap = TPP/(TPP + Vp) and then only
through the denominator of Vp.

Effect of Modifying Duration

Changing duration (holding frequency constant at
/ = 1) changes Vp simply by changing the number of
time points. Thus, if we change duration from D to D'
without changing/ the new number of time points is
M' = fD' + 1. We simply select the set of orthogonal
coefficients appropriate for M' time points (Equation
2) and compute Vp by applying Equations 4 and 6.

Effect of Modifying Frequency

For/ =£ 1, observations occur at times tm = (m -
I)//. This change suggests a new set of the orthogonal
coefficients c'pm. Given M = fD + I time points, we
have

M

M

= (m~\)/f-
M

M

= m/f-
M

= cim/f. (16)

Similarly, c'2m = c2mlf2 and c'3m = c3m//3. This re-
coding leads to a new definition of the sampling vari-
ance, Vp:

v2f2p(M-p-l)\
(17)

where M = fD + 1. This general formula translates to
the specific formulas forp = 0, 1, 2, and 3 given by
Equation 6 except for the factor f2p.

Changing Duration While Holding Constant
the Number of Time Points

If we increase duration by a factor of w = D'ID
without changing M, we must necessarily reduce/by
a factor of 1/w. Thus,/'// = l/o>. Setting M' = M and
/' = //a> in Equation 17, we have

V'P 1

w
(18)

5 The reliability statistic also plays a central role in em-
pirical Bayes estimates of individual growth (Bryk &
Raudenbush, 1992, chap. 3).
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Changing Frequency While Holding Constant
the Number of Time Points

By the reasoning of the previous paragraph, to
change the frequency without changing the number of
time points is equivalent to changing the duration
without changing the number of time points.

In sum, a choice of/ and D, along with the within-
person variation, a2 determines Vp, which, along with
the between-person variation, determines the reliabil-
ity QLp. This reliability, together with the sample size n
and standardized effect size 8p, then determines the
noncentrality parameter and thence statistical power.
Power computations are simple and exact, as illus-
trated in the next section.

Illustrative Examples

We now illustrate how the prior framework may be
applied in practical settings to assess consequences of
study duration, frequency of observation, and sample
size on power. We begin with a study for which a
straight-line model for individual change is a reason-
able assumption and then turn to a case in which a
quadratic function is needed to model individual
change. All powers are computed at the .05 signifi-
cance level.

Antisocial Thinking During Adolescence:
A Straight-Line Model for Individual Change

Our first example is based on data from the Na-
tional Youth Survey (NYS; Elliot, Huizinga & Me-
nard, 1989), a nationally representative survey of
young people with annual interviews conducted from
1976 to 1980. We focus on Cohort 1 (n = 239), who
were 11 years old at the study's outset and 15 years
old by 1980. If we measure time in years, this design
entails / = 1 (one observation per year), D = 4 (the
study lasts 4 years [1976-1980]), and the number of
time points is M = fD + 1 = 5.

The repeatedly observed outcome is "tolerance of
antisocial behavior," a nine-item scale indicating the
extent to which a participant viewed as "wrong" acts
such as lying, cheating on school tests, stealing, de-
liberately destroying property, attacking a person with
intent to do harm, and using illegal drugs. A natural
logarithmic transformation reduced skewness. The
data have been reported extensively elsewhere (Mi-
yazaki & Raudenbush, 2000; Raudenbush & Chan,
1992, 1993; Willett & Sayer, 1994) and so are not
described in detail here.

Our aim is to use these data to plan a future inter-

vention study designed to reduce tolerance to antiso-
cial thinking during early adolescence. On the basis of
the finding that change during this age range tends to
be linear (Raudenbush & Chan, 1993), we adopt a
straight-line change model at Level 1:

Ymt = ^o/com + ir,,clm + emi, emi N(0, a2), (19)

where c0m = (1, 1, 1, 1, 1) and clm = (-2, -1, 0, 1,
2) at m = 1, 2, 3, 4, 5 in accord with the orthogonal
polynomials in Equations 2 and 3. This model defines
TTO, as the expected outcome for participant i at age 13,
and TTU as the expected annual rate of increase during
the age interval for participant /'.

At Level 2 (between participants), the Level 1 co-
efficients depend on treatment (Xt = 0.5 if experi-
mental, X, = -0.5 if control):

Vpl = PP0 + Pp A + Upl

for p = 0,1. We assume the pair of random effects
(MO,-, MJ,-) to be distributed independently as bivariate
normal with zero means, variances TQQ, TU and co-
variance TOI.

Our interest focuses on (3,„ the treatment effect on
the rate of increase in the outcome. Of course, there
was no prevention treatment in the NYS. Rather, we
are using NYS data to obtain estimates for purposes of
planning. To simulate the analysis, we code gender as
Xt (0.5 for female, -0.5 for male). Gender has at most
a modest association with the intercept and slope. We
obtain estimates

<r2 = 0.0262
TOO = 0.0333,
f n = 0.0030.

(20)

To assess power, we assume a standardized effect
size of 8! = -0.40. This represents an unstandardized
effect size of P,, = §I^T~^ = -0.40-0.0548
= -0.0219. The practical significance of such an ef-
fect size can be assessed by reasoning that assignment
to the experimental rather than the control group
would produce a mean difference between groups of
4 • 0.0219 = 0.0876 after a treatment duration of 4
years, nearly 30% of the standard deviation of the
outcome.6 We assume a sample size of n = 238 with
n/2 — 119 per treatment group.

We can now apply the results of the previous sec-

6 The standard deviation at age 15 was 0.30 (Raudenbush
& Chan, 1993, Table 1).
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Table 1
Effect of Study Duration (D) and Frequency of
Observation on Power (f), Holding Sample Size
Constant at 238

D

2
3
4
5
6
7
8

0.5

.26

.26

.57

.57

.73

.73

.80

1

.26

.46

.61

.71

.77

.80

.82

2

.31

.54

.69

.76

.80

.83

.84

/

3

.35

.59

.73

.79

.82

.84

.85

4

.39

.64

.76

.81

.83

.84

.85

5

.43

.67

.77

.82

.84

.85

.86

6

.46

.69

.79

.83

.84

.85

.86

Note. Outcome is average change rate in antisocial thinking. Ef-
fect size (8,) is -0.40 with a significance level of .05.

tions to compute the variance of the expected treat-
ment contrast using simple calculations. First, p = 1,
/ = 1, and o-2 = 0.0262 and AT, = 12 (see Equation
6). Equation 17 then translates into

12-/V
1 ( M - H ) - M - ( M - l )

12 • (1) • (0.0262)
6 - 5 - 4

- = 0.00262.

(21)

(22)

Knowing the sampling variance V{ leads to a simple
computation of the reliability

"1=^11/^1, + ̂ )
= 0.00307(0.0030 + 0.00262)
= .53,

which leads to the noncentrality parameter

= (238) • (.40)2(.53)/4 = 5.046.

Table 2
Effect of Study Duration (D) and Sample Size on Power,
Holding Constant Frequency of Observation at 1.0

D

2
3
4
5
6
7
8

100

.14

.22

.30

.37

.41

.44

.46

200

.23

.40

.54

.63

.69

.73

.75

300

.32

.55

.71

.81

.85

.88

.90

400

.41

.67

.83

.90

.94

.95

.96

n

500

.49

.77

.90

.95

.97

.98

.99

600

.56

.84

.95

.98

.99

.99
1.0

700

.63

.89

.97

.99
1.0
1.0
1.0

800

.68

.93

.98
1.0
1.0
1.0
1.0

Table 3
Effect of Frequency of Observation (f) and Sample Size
on Power, Holding Duration Constant at 4

f
0.5
1
2
3
4
5
6

100

.28

.30

.35

.38

.40

.42

.43

200

.49

.54

.61

.65

.68

.70

.71

300

.67

.71

.78

.82

.85

.86

.87

400

.79

.83

.89

.92

.93

.94

.95

n

500

.87

.90

.94

.96

.97

.98

.98

600

.92

.95

.97

.98

.99

.99

.99

700

.95

.97

.99

.99
1.0
1.0
1.0

800

.97

.98

.99
1.0
1.0
1.0
1.0

Note. Outcome is average change rate. Effect size (S,) is -0.40,
with a significance level of .05.

Inspection of a table for the noncentral F distribution
with X, = 5.046 with df = 238 - 2 = 236 yields a
power of 1 - Prob [F(l, 236, 5.046) < F0] = .61,
where F0 = 3.88 is the critical value of F(\, 236) at
the .05 significance level.7 This value appears in
Table 1, where D = 4 and F = 1.

Tables 1-3 show how variations in this design
would affect power to detect the hypothetical treat-
ment effect of interest. Table 1 provides powers for
alternative designs that vary in terms of the duration,
D, and the frequency, / holding the sample size con-
stant at n = 238. As we have computed, the NYS
design is estimated to yield a power of .61 (see Table
1, row 3, column 2). As/increases (moving across the
third row of the table), power increases. Similarly, as
duration increases (moving down the second column),
power also increases. Note that if duration was
doubled to D = 8 without increasing the number of
time points (i.e., by reducing frequency to/ = 0.5),
power would become .80. In contrast, doubling /
while holding constant the number of time points
(thereby halving D) would reduce power to .31.

Table 2 holds/ = 1 and allows power to vary as a
function of D and n. Note that increasing the sample
size to n - 400 while holding duration constant at
D = 4 would boost power to .83. Table 3 holds
duration constant at D = 4 and allows power to vary
as a function of/and n. Increasing n is more efficient
than increasing / for boosting power.

Note. Outcome is average change rate in antisocial thinking. Ef-
fect size (8,) is -0.40, with a significance level of .05.

7 Alternatively, this power can be computed using a sta-
tistical package. Using the SAS syntax in the Appendix, we
computed power = .61.
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An important caveat arises in using a past study to
predict power in a future study. Our estimates of the
effect of duration on power assume that the straight-
line model for individual change would continue to
hold. Thus, for example, we might increase duration
from D = 4 to D = 8 by expanding the age range of
interest from 1 1 to 15 years to 9 to 17 years. However,
the data at hand provide no evidence that change is
linear over the 9 to 17-year age range. Thus, the
model estimates at hand may not represent the param-
eters at work in the new design.

The Appendix provides SAS code for computing
Tables 1 to 3 or similar tables in the case of studies in
which Ppl is of interest (i.e., studies that focus on
linear growth or change rates). A program that pro-
duces power graphs is available from Stephen W.
Raudenbush.

Vocabulary Growth During the 2nd Year of
Life: A Quadratic Growth Model

Our second example is based on data from Hutten-
locher et al.'s (1991) study of vocabulary growth from
12 to 26 months of age. That study found a marginally
significant gender gap in acceleration rates of child
vocabulary during the second year of life. We suppose
that our interest lies in replicating this effect on a new
sample.

The original study used a design having n = 22
with a maximum of M = 8 observations per child.
Observations occurred every 2 months. If we measure
time in months, the study used a frequency of/ = 0.5
with D = 14 and M = fD + 1 = 8 time points per
participant. We vary n and /to assess power of alter-
native designs. We hold D fixed at 14 because sub-
stantive interest focuses on a fixed age interval, the
second year of life.

We estimated a model that was quadratic in age 12.
We re-parameterize the model in terms of orthogonal
polynomials. We first show how to assess power un-
der the original design.

To calculate power for the original design, we need
to use orthogonal polynomials for the case in which
/ = 0.5, D = 14, and M = Df+ 1 = 8. To see how
this can be done, let us first find the orthogonal poly-
nomial in the case of/ = 1, D = 7, M = 8. We then
show how these polynomials change when / = 0.5.
When / = 1, our Level 1 model for individual
growth is

with c0m = (1, 1, 1, 1, 1, 1, 1, 1) clm = (-3.5, -2.5,
-1.5, -0.5,0.5, 1.5,2.5,3.5), and c2m = (3.5, .5, -1.5,
-2.5, -2.5, -1.5, .5, 3.5) at m = 1, 2, 3, 4, 5, 6, 7, 8
in accord with the orthogonal polynomials in Equa-
tion 2. However, with/ = 0.5, we must modify these
coefficients as described by Equation 16. Thus, we
have

Ymi = ^OiCOm + ^\f'\m + ^2f2m + emi, €mi ~ N(0, <J2),
(24)

with
com = c0m, c\m = c,Jf = (-7, -5, -3, -1, 1, 3, 5, 7),
and

c2m = c2m//2 = (14, 2, -6, -10, -10, -6, 2, 14) at
m= 1,2,3,4,5,6,7,8.

This model defines ITO(- as the expected vocabulary
for participant i at age 19 months, TTU is the "average
velocity" (i.e., the average monthly increase in vo-
cabulary between ages 12 months and 26 months for
participant 0. whereas Tr2; is the "acceleration" (i.e.,
the rate of increase in velocity in words per month for
participant i)-

At Level 2 (between participants), we model the
child-specific growth parameters as a function of gen-
der:

"V = PPO + PpA + upi

for p = 0, 1, 2. We assume the triplet of random
effects (MO,, «,,, «2;) to be distributed independently as
trivariate normal with zero means, variances Tm, TU,
T22, and covariances TOI, T02, T12.

The estimates relevant to the evaluation of power in
this case are

P21 = 1.4545

a2 = 677.506

T22= 1.48575.

(25)

Y = + TI2f2m + « e ~

(23)

To assess power, we assume an effect size of
P21 = 1.4545, the effect of gender estimated in these
data. This is equivalent to a standardized effect size of
1.19, a large effect size.

Huttenlocher et al. (1991) invested heavily in fre-
quency (/ = 0.5, once every 2 months) and less heav-
ily in sample size (n = 22). Assessments of child
vocabulary are intensive. We wonder in particular
whether recruiting more participants would improve
power, even if frequency were suitably reduced. Our
sense is that duration is constrained by the substantive
focus of vocabulary growth during the second year of
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life. We provide the results before showing how they
are computed.

Table 4 gives the results, providing powers for var-
ied frequency and sample size, holding duration con-
stant at D = 14. We see that doubling the sample size
(from 22 to 44) while reducing the frequency by about
half would increase power from .54 to .79.

To illustrate how these powers are computed, con-
sider the computation of power for the design as
implemented, with/ = 0.5 and D = 14 so that M =
fD + 1 = 8. We are interested in the contrast for the
quadratic coefficient, thus p = 2. Therefore, Equation
17 translates into

V2 =
720

(720) • (.5)4 • (677.506)
: 1 0 - 9 - 8 - 7 - 6

(26)

= 1.00819.

Substituting V2 = 1.00819 and T22 = 1.48575 into
the formula for the reliability yields a2 = T22/(T22 +
V2) = 1.485757(1.48575 + 1.00819) = .60, thus
yielding noncentrality parameter X2

 = «82a2/4 =
(22) • (1.19)2 • (.60)/4 = 4.67. Inspection of a table
for the noncentral F distribution with \2 = 4.67 with
df = 22 - 2 = 20 yields a power of 1 - Prob [F(l,
20,4.67) < F0] = .54, where F0 = 4.35 is the critical
value of F(l, 20) at the .05 level.8 This value appears
in Table 4, where n = 22 and/ = 0.5.

Final Remarks

We have considered power to detect treatment ef-
fects on polynomial change. In particular, we have
shown how one may evaluate the consequences of
study duration, frequency of observation, and sample

Table 4
Effect of Frequency of Observation (f) and Sample Size
on Power, Holding Constant Duration at 14

f 11 22 33 44 55 66 77 88

0.214a .24 .48 .66 .79 .87 .93 .96 .98
0.5 .28 .54 .73 .85 .92 .96 .98 .99
1 .31 .60 .79 .90 .95 .98 .99 1.0
2 .35 .66 .84 .93 .97 .99 1.0 1.0
3 .37 .69 .86 .94 .98 .99 1.0 1.0

Note. Outcome is acceleration rate in vocabulary. Effect size (82)
is 1.19, with a significance level of .05.
a Frequency is reduced from .250 to .214 to guarantee an integer
number of/D + 1 = (.214)(14) + 1 = 4 time points.

size on power. In general, how these three factors
affect power depends on (a) which polynomial is of
interest, (b) the magnitude of variation between par-
ticipants on the polynomial effect of interest, and (c)
the magnitude of variation within participants. In-
creasing frequency or duration increases power to an
upper limit that depends on the variation between par-
ticipants in the polynomial coefficient of interest,
whereas increasing sample size raises power inexora-
bly toward 1.0.

We noticed that changing frequency or duration
changes statistical power only by changing the reli-
ability a.p of the least squares estimator Trp of the
individual change coefficient Trp. The effect of fre-
quency and duration are easily computed using a hand
calculator or simple computer program (see Appen-
dix). Once the reliability is known, the noncentrality
parameter is computed as \p = n^a.p/4 where n is
the sample size and 8p is the standardized effect
size Pplm~. This logic leads to a six-step procedure
for evaluating alternative designs:

1. Enumerate the frequencies and durations under
consideration.

2. Select the standardized effect size, 8p, of interest.
3. Given past estimates of variances ^pp and cr2, com-

pute the reliability of Trp.
4. For each possible n, compute the noncentrality pa-

rameter, \p, and power for each combination of
frequency and duration.

5. Compare the statistical power yielded by alterna-
tive designs defined by combinations of frequency,
duration, and sample size.

6. Consider the cost and feasibility of designs that
yield adequate power and select a design.

In our second example, duration was fixed by sub-
stantive considerations. In this setting, we modify the
procedure described previously to allow frequency
and sample size to vary. In any given setting, one or
two of the three factors (sample size, duration, fre-
quency) may be fixed and the procedure modified
accordingly.

A natural extension of the work presented here is to
specify cost functions for duration, frequency, and
sample size. The cost of increased duration depends in
part on the cost of tracking participants. Increasing

8 Alternatively, this power can be computed using a sta-
tistical package. Using the SAS syntax provided in the Ap-
pendix, we computed power = .54.
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frequency will be expensive when assessments are
expensive. Increasing sample size increases cost of
recruitment. Increasing duration increases the risk of
attrition, whereas increasing frequency increases par-
ticipant burden and may induce unfortunate training
effects. The costs of these increased risks may be
difficult to quantify. Once a cost function is specified,
one may choose an optimal frequency and duration
and then sample enough participants to achieve ad-
equate power.

Other extensions include evaluating power (a) un-
der alternative assumptions about attrition (Hedeker et
al., 1999); (b) under more complex assumptions about
the variation within persons; (c) under alternative as-
sumptions about the effect of treatments on within
treatment variation (cf. Muthen & Curran, 1997); (d)
for continuously measured explanatory variables; (e)
for nonnormal error models and nonlinear link func-
tions (Liu & Liang, 1997); and (f) for more complex
designs, for example, designs involving repeated mea-
sures on persons nested within clusters that have been
randomly assigned to treatments (Feldman & Mc-
Kinlay, 1994). These extensions will generally require
approximations rather than exact computation of
power.
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Appendix

SAS Program That Produces Tables 1 to 4

Effects of Study Duration, Frequency of Observation, and Sample Size on Power in Studies of
Treatment Effects on Polynomial Change

Example 1: National Youth Survey (Produces Tables 1 to 3)

original design was based on
n=238 number of subjects,
D=4 years duration of the study,
f=l frequency of observation,
M=5 total number of observation.

data dsnl (keep=D f power)
dsn2 (keep=D n power)
dsn3 (keep=f n power)

format power 3 .2;
siglevel=0.05;
taul l=0.003 ; * interpersonal variance;
sigma2=0.0262 ; * within person variance;
betal l=-0.4*sqrt( taul l) ; * coefficient=standardized es x sqr t ( taul l ) ;

%let func= 1 - p r o b f ( f O , ndf, ddf, lambda) ;
%let s u m _ p = ( M + l ) * M * ( M - l ) 7 1 2 ;
%let V_l=(f**2)*sigma2/sum_p;
%let delta=betall/sqrt (taull) ,-
%let alpha= taull/(taull + V_l);
%let lambda= 0.25*n*(delta**2)*alpha;

* Equation 21;
*standardized effect size;
*reliability estimate;

do D=2 to 8;
do f=0.5,1,2,3,4,5,6;

n=238;
ndf=l; * df for the numerator;
ddf=n-2; * df for the denominator;
f0=finv(l-siglevel, ndf, ddf); * fO is the critical value

M=floor(D*f+l);

sum_p=&sum_p;
V_1=&V_1;
delta=&delta;
alpha=&alpha;
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1ambda=&1ambda;

power=&func;
output dsnl;

end;
end;

do D=2 to 8;
do n=100 to 800 by 100;

ndf=l; * df for the numerator;
ddf=n-2; * df for the denominator;
f0=finv(l-siglevel, ndf, ddf); * fO is the critical value;

M=floor(D*l+l); * f=l ;
f=l; * f ratio between new and old frequency f=l;

sum_p=&sum_p;
V_1=&V_1;
delta=&delta;
alpha=&alpha;

1ambda=&1ambda;

power=&func;
output dsn2;

end;
end;

do f=0.5,1,2,3,4,5,6;
do n=100 to 800 by 100;

ndf=l; * df for the numerator;
ddf=n-2; * df for the denominator;
f0=finv(1-siglevel, ndf, ddf); * fO is the critical value;

D=4;
M=floor(D*f+l);

sum_p=&sum_p;
V_1=&V_1;
delta=&delta;
alpha=&alpha;

1ambda=&lambda;

power=&func;
output dsn3;
end;

end;
run;

proc transpose data=dsnl out=matrixl(drop=_NAME_);
by D; id f;
run;

proc transpose data=dsn2 out=matrix2(drop=_NAME_);
by D; id n;
run;

proc transpose data=dsn3 out=matrix3(drop=_NAME_);
by f; id n;
run;
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data tablel;
set matrixl;
label _OD5 = 'f = 0.5 /yr' _l = 'f = l /yr' _2 = 'f = 2 /yr' _3 = 'f=3 /yr'

_4='f=4 /yr' _5 = 'f=5 /yr' _6='f=6 /yr'

run;

data table2;
set matrix2;
label _100='n=100' _200='n=200' _300='n=300' _400='n=400'

_500='n=500' _600='n=600' _700='n=700' _800='n=800'

data table3;
set matrixS;
label _100='n=100' _200='n=200' _300='n=300' _400='n=400'

_500='n=500' _600='n=600' _700='n=700' _800='n=800'

label f='f per year''
run;

title "Table I: Effect of D and f on power, holding n=238";
proc print data=tablel label noobs; run;

title "Table 2: Effect of D and n on power, holding f=l";
proc print data=table2 label noobs; run;

title "Table 3: Effect of f and n on power, holding D=4";
proc print data=table3 label noobs; run;

Example 2: Vocabulary Growth During the Second Year of Life: A Quadratic Growth Model (Produces Table 4)

original design was based on
n=22 number of subjects,
D=14 months duration of the study,
f=.5 per month frequency of observation,
M=8 total number of observations.

the program generates
table 4 : fxn

data dsn4 (keep=f n power)
format power 3.2;
siglevel=0.05;
tau22=l.48575 ; * interpersonal variance;
sigma2=677.506 ; * within person variance;
beta21 = l. 4545 ; * coefficient of treatment effect for quadratic;

%let func= 1 - probf(fO, ndf, ddf, lambda) ;
%let sum_p=(M+2)*(M+l)*M*(M-l)*(M-2)/720;
%let V_2=(f**4)*sigma2/sum_p; * Equation 26;

%let delta=beta21/sqrt(tau22); *standardized effect size;
%let alpha= tau22/(tau22 + V_2); Reliability estimate;
%let lambda= 0 . 25*n* (delta**2) *alpha;

do f=(4-l)/14, 0.5, 1, 2, 3; * f frequency of observation per month;
do n=ll to 88 by 11;

ndf=l; * df for the numerator;
ddf=n-2; * df for the denominator;
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f0=finv(1-siglevel, ndf , d d f ) ; * fO is the critical value

D=14;
M = f l o o r ( D * f + l ) ;
f = ( M - l ) / D ;

sum_p=&sum_p;
V_2=&V_2;
delta=&delta;
alpha=&alpha;
1ambda=&1ambda;

power=&func;
output dsn4;
end;
end;

run;

proc transpose data=dsn4 out=matrix4(drop=_NAME_);
by f; id n;
run;

data table4;
set matrix4;
label _ll = 'n=ll ' _22 = 'n=22' _33 = 'n=33' _44 = 'n=44'

_55='n=55' _66='n=66' _77='n=77' _88='n=88'

label f = ' f per month';
run;
Title "Table 4: Ef fec t of f and n on power, holding D=14 months";
proc print data=table4 label noobs; run;
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