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Abstract

The modern financial system features complicated financial intermediation chains, with

each layer performing a certain degree of credit/maturity transformation. We develop

a dynamic model in which an entrepreneur borrows from overlapping-generation house-

holds via layers of funds, forming a credit chain. Each intermediary fund in the chain

faces rollover risks from its lenders, and the optimal debt contracts among layers are

time invariant and layer independent. The model delivers new insights regarding the

benefits of intermediation via layers: the chain structure insulates interim negative fun-

damental shocks and protects the underlying real project from being liquidated in bad

times, resulting in a greater borrowing capacity. We show that the equilibrium chain

length minimizes the run risk for any given contract and find that restricting credit

chain length can improve total welfare once the available funding from households has

been endogenized.

Keywords: Financial intermediation, Debt runs, Shadow banking, Dynamic economy,

Money.

JEL codes: D85, G21, G23, G33, E44, E51

∗Preliminary and reference incomplete. He: Booth School of Business, University of Chicago, and NBER. Email:

zhiguo.he@chicagobooth.edu. Li: Columbia Business School, Columbia University. Email: jl5964@columbia.edu.

Zhiguo He acknowledges financial support from the John E. Jeuck Endowment at the University of Chicago Booth

School of Business.

1

mailto:zhiguo.he@chicagobooth.edu
mailto:jl5964@columbia.edu


1 Introduction

Since the mid-1980, the nature of �nancial intermediation has been changed in a dramatic way by

the emergence of securitization and secured lending techniques, giving rise to a more market-based

�nancial system. Shadow banking can be viewed as the product of this market-based �nancial

system; to take one of the most salient examples, it is widely acknowledged that maturity and

credit transformation in the shadow banking system contributed to the asset price appreciation in

U.S. real estate markets prior to the 2007{09 �nancial crisis.

Although the underlying economic mechanism of shadow banking has been well studied by

many leading scholars (Adrian and Shin, 2009, 2013; Gennaioli et al., 2013; Du�e, 2019) since the

onset of the 2007{09 �nancial crisis, our paper focuses on one missing piece in the literature on

shadow banking. Adrian et al. (2012) explain it vividly:

Like the traditional banking system, the shadow banking system conducts credit inter-

mediation. However, unlike the traditional banking system, where credit intermediation

is performed \under one roof"|that of a bank|in the shadow banking system, it is

performed through a daisy-chain of non-bank �nancial intermediaries in a multi step

process. . . . The shadow banking system performs these steps of shadow credit inter-

mediation in a strict, sequential order with each step performed by a speci�c type of

shadow bank and through a speci�c funding technique. . . . The intermediation chain al-

ways starts with origination and ends with wholesale funding, and each shadow bank

appears only once in the process.

The thrust of the above description is the concept of a \chain." The common theme in

the various shadow banking businesses anatomized by Adrian et al. (2012) is the step-by-step

maturity/liquidity and credit transformation, often initiated by loan origination. This is then

followed by so-called \loan warehousing," which refers to the act of collecting a signi�cant volume

of eligible loans in a special purpose vehicle (SPV), which then issues asset-backed commercial

papers (ABCP) to the public, as well as issues loans to the next layer of asset-backed securities

(ABS) warehousing. As shown in Figure 1, which we take from Adrian et al. (2012), this process

might further involve an ABS collateralized-debt-obligation (CDO), but eventually reaches the

wholesale funding markets that are populated by money market investors as well as long-term �xed

income investors (say pension funds and insurance companies).

We emphasize that the intermediation credit chain is more general than the stark example of

the shadow banking system prior-to the 2007{09 �nancial crisis. In most modern �nancial systems,

money market mutual funds (MMMFs) issue daily \debt" to households, but hold commercial

papers with maturity of one to six months. These commercial papers are issued by banks and

other nonbank �nancial institutions that fund even longer-term and riskier projects. They form

the most basic intermediation credit chain. Regulators have increasingly expressed concerns over

these nonbank �nancial intermediaries, which have grown signi�cantly since the global �nancial

crisis (Aramonte et al., 2021).
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Figure 1: Illustration of the Credit Intermediation Chain

This �gure is from Adrian et al. (2012)

Figure 2 plots the credit intermediation index over time, which is the ratio of total liabilities

of all sectors in the economy over the total end-user liability. Similar to the \money multiplier"

idea, Greenwood and Scharfstein (2013) argue that the credit intermediation index approximates

the average credit chain length in the economy, where the total end-user liability is approximated

by domestic non�nancial sector liabilities and the total liabilities of all sectors are measured by the

sum of �nancial and non�nancial sector liabilities. This ratio grew signi�cantly during the 1990s

when structured �nance and securitization became popular, consistent with the view in Adrian et

al. (2012) mentioned above. It decreased slightly after the global �nancial crisis, but remains at a

high level from a historical perspective. During the last decade, each dollar from investors ows

through about 2.2 layers of �nancial intermediaries on average before reaching the �nal borrower

with potentially wide variation among the types of �nancing.

Despite the extensive literature on shadow banking and its policy implications, it still remains

an open question why market participants rely onlayers of intermediaries instead of just one (layer

of) intermediary to take funding from households and lend it out directly to �rms. It is possible

that a long credit chain could lure unsophisticated households investors into being the ultimate

funding provider; but remember that professional money market funds often invest on behalf of

these households. Another often-mentioned explanation is regularity arbitrage; under this view,

a long �nancing chain is intentionally created to obscure certain �nancial activities conducted

by �nancial institutions. The great body of empirical studies (Acharya et al., 2013; Karolyi and

Taboada, 2015; Demyanyk and Loutskina, 2016) on regulatory arbitrage certainly lends support to

this view, but it does not explain the rapid growth of the securitization market in the �rst place
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Figure 2: Credit Intermediation Index, 1960{2020

This �gure plots the credit intermediation index, following the de�nition in Greenwood and Scharfstein (2013). It is

calculated as the ratio of the total liability of all domestic sectors to the total liability of domestic non�nancial

sectors. Both series are obtained from the Flow of Funds at the annual level.

around the mid-1980's. In fact, there is evidence that securitization is best explained as contracting

innovation instead of pure regulatory arbitrage (Calomiris and Mason, 2004).

We shed new light on the economics of credit chains by considering a dynamic model, in

which a long-lived entrepreneur borrows from overlapping generations (OLG) of households. The

entrepreneur has a time-discount rate� 2 (0; 1), and is endowed with a project that matures with

certain probability each period and produces cash ows upon maturity. Households, on the other

hand, are born with endowmentse and live for two periods, but do not receive any discount over

their consumption across the two periods.

The relative impatience wedge built into our model implies that the (impatient) entrepreneur

would like to pledge out future cash ows and borrows from (patient) households to consume early.

However, households are OLG, and their trading in the secondary market needs to be facilitated

by �nancial intermediaries. We hence introduce a third group, \experts"; they are �nancial inter-

mediaries who can manage funds and facilitate liquidation and trading in the secondary market.

All experts also have the same discount rate as the entrepreneur.

The entrepreneur can borrow via layers of funds that are managed by the experts, or directly

from OLG households. We assume an exogenous contract maturity rate; each layer of funds opti-

mally designs its debt contract (e.g., debt face value) taking as given other layers' contracts and

households' strategies. When contracts mature, the borrower|whether the entrepreneur or an in-

termediary fund|needs to rollover its debt. Rollover fails when the cash-ow realization falls below

an endogenous threshold, in which case the borrower defaults. Creditors liquidate this borrower's

assets in the secondary market, where experts serve as buyers who then resell to the next cohort
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of households. In addition, households pay a dead-weight bankruptcy cost per layer.

Because secondary trading of any long-term securities across cohorts of households involves

impatient intermediary experts who demand compensation, the entrepreneur can borrow more from

OLG households by using short-term (debt) contracts. This is because short-term contracts mini-

mize the maturity mismatch between the OLG households and the long-term project. Essentially,

our model captures the growing appetite for money-like assets in recent decades, as has been well

documented in Greenwood et al. (2015) and Carlson et al. (2016).

Interestingly, in our model, a credit chain can increase the entrepreneur's borrowing capacity

even further; put di�erently, a credit chain can supply more money-like securities. Section 2

illustrates the key mechanism, which is new to the literature, by a simple numerical example. As

explained above, our model features a stylized trade-o�: The impatient entrepreneur would like

to pledge out as many cash ows as possible, including future ones; but the associated secondary

market liquidation losses will be high. By comparing the borrowing capacity induced by the credit

chain, in which the entrepreneur borrows (using long-term debt) from a fund who then borrows

(using short-term debt) from households, to the one induced by directly borrowing with short-term

debt, our example highlights that the two-layered credit chain structure helps insulate interim

negative fundamental shocks and protect the underlying real project (held by the entrepreneur

�rm) from being liquidated. In this way, the credit chain structure reduces the tension between

maximizing the cash ow pledged out and minimizing liquidation losses, just like what special

purpose vehicles (SPVs) achieve in practice.

Section 4 characterizes the equilibrium credit chain in our model. For relatively low funding

available e, the equilibrium contracts are shown to be time invariant and layer independent. The

time invariant feature is mainly due to the fact that the fundamental is i.i.d., while the layer

independence is more subtle. When choosing the optimal contract, each fund trades the proceeds

received today against the probability of future rollover failures. Funds closer to households have

fewer rollover concerns and would like to borrow more, but are constrained by securities (contracts)

they acquire from layers above. Competitive intermediary funds then imply all layers have the same

contract in equilibrium. Both contract features (stationarity and layer independence) are important

for tractability, which allows us to study the equilibrium chain length.

We show that the equilibrium chain length minimizes households' run threshold. The bene�t

of borrowing via layers is best illustrated by considering the extreme case without exogenous dead-

weight bankruptcy cost; in such a case, the equilibrium chain length is in�nity. Households with

liquidity needs value short-term debt, but issuing short-term debt against long-term illiquid assets

is risky and involves severe liquidation loss when rollover fails. Borrowing via credit chains eases

the tension. The intermediate layer only has partial claim to the underlying asset, so when rollover

fails, not all future cash ows are liquidated, hence the liquidation loss is smaller. Intermediating

via credit chains meets the liquidity needs of the households and simultaneously reduces liquidation

losses. This intuition echoes that in Section 2's example, where the credit chain insulates some part

of the project's cash ows from the heavy liquidation discount.

Similar to Samuelson (1958), \money" (debt) in our model serves the important role of storing
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value and transferring wealth. Along this direction, we endogenize the available funding from

householdse in Section 5 and investigate whether the decentralized credit chain is excessively long

compared to the constrained e�cient benchmark. The answer is yes, implying that restricting the

chain length can improve total welfare. This is mainly due to the coordination issue between the

entrepreneur, who determines the contract but takes the chain length as given, and the funds in the

last layer, which determine the chain length but take the contract as given. A shorter credit chain

limits rollover risks and, as a result, increases borrowing capacity in every period, which further

reduces rollover risks.

Though examining a similar economic phenomenon, our paper di�ers fundamentally from the

literature of asset trading chains. Oftentimes, these papers focus on certain speci�c market frictions

that prevent the asset seller (with a relatively low valuation) from directly selling to the �rst-best

buyer (with the highest valuation); there is, thus, an intermediary who holds the asset temporarily.

In this literature, these �nancial frictions could be either information asymmetry in Glode and Opp

(2016), or over-the-counter search frictions in Shen et al. (2021).1 Our focus is on intermediation

credit chains where one agent's liability is another agent's asset, a feature that we often see in the

shadow banking system.

Literature Review

Our paper belongs to a recent literature that studies the role and frictions of credit chains, motivated

by the growing intermediation chain in the U.S. �nancial system, particularly in the shadow banking

sector (Adrian and Shin, 2010; Adrian et al., 2012). Glode and Opp (2021) focus on strategic debt

renegotiation when agents are connected through liabilities in an exogenously given debt chain.

They show that the chain structure gives rise to externalities in renegotiation because even though

bargaining is bilateral, it a�ects and depends on renegotiation outcomes in other parts of the chain.

Di Maggio and Tahbaz-Salehi (2017) study how the distribution of collateral along the credit chain

matters for the intermediation capacity and systemic stability. Di�erent from the existing literature,

we highlight the asset insulation bene�t of intermediating through credit chains.

There is also a long literature on bank runs and instability of short-term debt that we built

upon (Diamond and Dybvig, 1983; Calomiris and Kahn, 1991; Goldstein and Pauzner, 2005). We

adopt a dynamic debt run setting akin to He and Xiong (2012), but focusing on how runs interact

with the complicated layer structure. The runs between layers in our model capture the repo market

and commercial paper runs by institutional investors during the global �nancial crisis, which has

been well documented by the empirical literature (Gorton and Metrick, 2012; Copeland et al., 2014;

Krishnamurthy et al., 2014; Schmidt et al., 2016).

Our work is also related to the network and contagion literature. Allen and Gale (2000)

1With a slightly broader interpretation, our model also sheds light on \rehypothecation," i.e., the reuse of collateral

in secured �nancing transactions, which is also called \collateral chains" and is a widespread practice to enhance

market functioning between banks and nonbanks (Infante and Saravay, 2020). Because most repo transactions in

the U.S. are conducted on an \outright" basis with complete ownership transfer at each leg, rehypothecation in a

collateral chain is closer to asset trading chains in our opinion.
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and Elliott et al. (2014) show how �nancial networks provide diversi�cation and insurance against

liquidity shocks, but on the other hand, leads to fragility and cascades of failures. Acemoglu et al.

(2015) also demonstrates how small shocks can spread through the network and become systemic

risks. Instead of considering general network structures, we focus on a simple form of network,

i.e. chains, and endogenize both the contracts among layers as well as the length of the credit

chain. Similar to us, Allen et al. (2012) also consider rollover risks of short-term debt in clustered

structures. However, we emphasize that the insulation e�ect of layers can actually reduce the

overall rollover risks.

In addition to credit chains, recent literature has also investigated asset trading chains, where

an asset is bought and re-sold by a sequence of dealers before it reaches the �nal buyer. Glode

and Opp (2016) show trading via a sequence of moderately informed intermediaries can reduce

allocation ine�ciency caused by asymmetric information. A su�cient long intermediation chain

can also eliminate trading ine�ciencies caused by agents with monopoly power screening coun-

terparties (Glode et al., 2019). The literature has also examined the length and price dispersion

of intermediation chains in an over-the-counter (OTC) market with search frictions (Atkeson et

al., 2015; Hugonnier et al., 2019; Sambalaibat, 2021; Shen et al., 2021). Trading chains arise in

equilibrium because of search frictions and/or heterogeneous asset valuation among investors. Our

focus is on credit chains where one agent's liability is another agent's asset.

2 An Example: Model Mechanism and Intuition

This section provides a simpli�ed example to illustrate the key intuition of our paper.

2.1 Set-up

Consider a four-date-three-period settingt = 0 ; 1; 2; 3, with timeline given in Figure 3. All agents

are risk neutral.

Households. Households are one-period overlapping generations (OLG). Cohortt is born at the

beginning of period t, endowed with 1 unit of consumption goods, and has access to a storage

technology with zero net return. This cohort can consumect > 0 or invest in �nancial market, but

leaves the economy at the beginning of periodt + 1 and consumect+1 > 0. Households utility is

ct + ct+1 , so that there is no discount between periods.

Entrepreneur, project, and �nancial contracts. There is a long-term project that produces

cash ows yt � 0 at the beginning of each periodt. With probability p 2 (0; 1) the good state is

realised, yieldingyt = g = 1, and with probability 1 � p the bad state is realised, yieldingyt = b = 0.

The distribution of states is independent across periods.

The project is owned by an entrepreneur who leaves the economy at the end of period 0.

Therefore the entrepreneur maximizes the payment of cohort-0 households, by pledging out as

much as cash ows to households in di�erent generations. We consider thee �nancial contracts:
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Figure 3: Timing

This �gure illustrates the timing of the example in Section 2.

equity, long-term (two-period) debt, and short-term (one-period) debt. Project current period

cash-ows are paid out as dividends (equity) or coupon (debt).

Debt re�nance/rollover and secondary market. Toward the end of period t, if the contract

(say short-term debt) has matured, then the �rm will re�nance the debt payment to cohort t � 1

households from cohortt households. We will call this event \rollover the debt," and throughout

the paper we use the word \re�nance" and \rollover" interchangeably. If re�nance/rollover fails,

then the �rm has to liquidate its asset at a discount, which is � fraction of its �rst-best value.

(Recall households have a zero discount rate.) If instead the contract has not matured yet, the

existing households (thet � 1 cohort) can sell the securities to a specialized �nancial intermediary

sector, who then sells the securities to cohortt at the end of period t. The intermediary has a

discount rate of � . Hence, if cohort t is willing to pay 1 unit for the security, cohort t � 1 can only

receive� units.

Two-layer �nancing structure with intermediary fund. We departure from the existing

literature by studying a two-layer �nancing structure. Other than issuing short-term debts directly

to households, the �rm can also adopt a two-layer �nancing structure where the �rm issues short-

term debt to an intermediary fund, who then �nances itself by issuing its own debt to OLG

households. When rollover fails, either at the fund layer or the �rm layer, the corresponding

creditors liquidates their debt holdings issued by one layer above.

2.2 A Numeric Example

To illustrate the model mechanism, we provide a numeric example with� = 0 :5 and p = 0 :6. For

simplicity we consider four �nancing structures: equity, long-term debt, short-term debt, and a

two-layer credit chain. Equity serves as benchmark; it has the longest maturity. Our discussion

focuses on why the two-layer �nancial intermediation can increase the entrepreneur's borrowing
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Figure 4: Illustration of the Example

(a) Direct Financing via Long-Term Debt

(b) Direct Financing via Short-Term Debt

(c) Two-Layer Credit Chain

This �gure illustrates di�erent �nancing structures in the example of Section 2. Panel (a) illustrates the ow of

money in case 1: direct �nancing using a two-period debt followed by a one-period debt. Panel (b) illustrates the

ow of money in case 2: direct �nancing using only one-period debt. Panel (c) illustrates the ow of money in case

3: �nancing via a fund. The funding structure between the entrepreneur and the intermediate fund is the same as

that in panel (a) and the funding structure between the intermediate fund the households is the same as that in

panel (b).
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capacity, though the comparison between long-term contracts and short-term debt is also useful in

delivering the intuition.

In the following calculation, we take the contract (including face value) as given; Appendix

A veri�es that they are optimal given the �nancing structure in each case, thanks to the binary

distribution of cash-ows and that entrepreneur maximizes period 0 proceeds received.

Case 0: Long-Equity The entrepreneur directly issues long-term claims (i.e., equity) against

the entire cash-ows to cohort 0, who will then sell it to cohort 2 and 3 later. Since each sale on

the market incurs a discount � = 0 :5, the entrepreneur is able to raise (at most)

P0 (long equity) = 0 :6 + 0:5 � 0:6 � 1 + 0:52 � 0:6 � 1 = 1:05: (1)

Case 1: Long-Term Two-Period Debt The entrepreneur �rst issues two-period debt to house-

holds that matures in period 2, with face value D2 and interim coupon payment C1 = y1. (The

exibility thanks to the y-dependent period-1 coupon is optimal in our model.2) The entrepreneur

then issues another one-period debt from period 2 to 3, with face valueD3 and issuance proceeds

P2. We are interested in the amount of proceedsP0 that the entrepreneur can raise at period 0.

At t = 2, the entrepreneur can raiseP2 = 0 :6 which is the expected value ofy3 from cohort 2.

Conditional on the good state of t = 2, we have D2 = P2 + 1 = 1 :6. (There is no discount applied

in the good state, which contributes to Case 1's advantage over Case 0.)

To maximize the payout to cohort-1 households, the entrepreneur will set the period 2 debt

face value to beD2 = 1 :6.3 This implies that rollover is only successful in the good state, in which

cohort-1 creditors receive 1:6. In the bad state, on the other hand, the entrepreneur cannot repay

D2 and is forced into liquidation. The cohort-1 creditors receive the project's secondary market

liquidation value with a factor � , which is 0:5 � 0:6 = 0:3. The expected cash-ow at the end of

period 2 is 0:6 � 1:6 + 0:4 � 0:3 = 1:08.

At the end of period 1, cohort 0 can sell the debt contract to cohort 1, with a discount rate

� , receiving 0:5 � 1:08. In addition, cohort 0 also receives coupon paymentC1, which has expected

value 0:6. Sum the two parts together,

P0(long debt) = 0 :5 � 1:08 + 0:6 = 1:14: (2)

This is larger than the 1:05 that he can raise by issuing long-term equity. Unlike the equity case, not

all cash ows here are discounted by� : when rollover is successful in period 2, the debt payment

owing to the cohort 2 involves no discount in period 2.

Case 2: Short-Term One-Period Debt The entrepreneur issues one period debt contract

with face value D t that matures in period t. The proceeds from issuingD t is Pt � 1. The structure

is illustrated in Figure 4b.
2Although non-standard in debt contracts, random coupon payment is optimal as the entrepreneur prefers to

pledge out as much as possible to raise proceeds received in period 0.
3This result is due to the binary structure in our example. Setting a signi�cantly lower face value could help avoid

liquidation in the bad state, but the payout of this riskless debt is too small.
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The calculation of t = 2 is the same as before: we haveP2 = 0 :6 and D2 = 1 :6. At t = 1, P1

hence can be calculated as the expected payment att = 2:

P1 = 0 :6 � 1:6 + 0:4 � 0:3 = 1:08: (3)

Conditional on the good state, the entrepreneur raisesP1 = 1 :08 from cohort 1 and receives cash-

ow 1 in t = 1, and the promised debt payment is D1 = P1 + 1 = 2 :08. Again, rollover is only

successful in the good state, in which case without any discount the creditors receive the full face

value D1 = 2 :08. In the bad state, the entrepreneur is forced into liquidation, with a liquidation

value of � times the expected future cash-ows: 0:5 � 0:6 + 0:52 � 0:6 = 0:45.

We then calculate the t = 0 price of D1 to be:

P0 (short debt) = 0 :6 � 2:08 + 0:4 � 0:45 = 1:428: (4)

By issuing short-term debt, the entrepreneur can (at most) raise 1:428 in period 0. This is larger

than the 1:14 raised in the long-term debt case.

Case 3: Two-Layer Credit Chain Consider the following two-layer structure with �nancial

intermediaries. The entrepreneur issues a two-period debt to the intermediary from period 0 to

period 2, with a face valueD2 and interim coupon payment C1 = y1; the t = 0 price is P0. The

intermediary then issues one period debt to the households, with face valueD1 in period 1 and

D2 in period 2. This structure, which combines Case 1 and Case 2, is illustrated in Figure 4c. In

this example, the intermediary layer also features a maturity transformation, i.e., the debt contract

between the entrepreneur and the fund is longer than the one between the fund and households.

The calculation of t = 2 is the same as before: we haveP2 = 0 :6 and D2 = 1 :6, and P1 = 1 :08

(see Eq. (3)). Same as before,D1 = P1 + 1 = 2 :08, so rollover is only successful in the good state.

When rollover fails in period 1, the fund's asset, which is a debt claim with face valueD2

over the project, is liquidated at the secondary market. (In case 2, it is as if the entire project

gets liquidated in this scenario; there we rule out the possibility that the entrepreneur sells its

liquidated asset to funds, which we consider in the formal model). The value of that claim is

0:6 � 1:6 + 0:4 � 0:3 = 1:08, hence the proceeds from the liquidation is 0:5 � 1:08 = 0:54.

We now calculateP0, which equals the expected payment to be received in period 1

P0 (two-layer) = 0 :6 � 2:08 + 0:4 � 0:54 = 1:464: (5)

The entrepreneur is able to raise 1.464 via a two-layer structure with an intermediary fund, which

is even larger than the proceeds from short-term direct �nancing in case 2.

2.3 Intuition

Equity contract has the longest maturity, followed by long-term debt in case 1, and the one-period

contract in case 2. Compared with long-term contracts (either long-term equity in case 0 or long-

term debt in case 1), the bene�t of issuing short-term debt in case 2 comes from the fact that
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successfully rolling over debt avoids transaction cost in the secondary market. In Appendix A, we

show the di�erence between the case 2 and 1 is:

P0 (short-debt) � P0 (long-debt) = p2
|{z}
gg�

(1 � � ) + p3
|{z}
ggg

(1 � � ) (6)

The �rst term captures the fact that if both period 1 and period 2 are in good states (independent

of y3, which we denote by gg� with y3 = �), then y2 = 1 is discounted in the long-debt case but

not in the short-debt case. The second term captures the di�erence in valuation ofy3. When all

periods are in good states (ggg), y3 = 1 is not discounted in the short-debt case, thanks to successful

rollover throughout; while in the long-debt case, it is discounted once during the resale in period 1.

The bene�t of short-debt over equity is even larger, since equity has the longest e�ective maturity.

The mechanism is the same.

The di�erence between the short-debt case and two-layer case comes from the fact that liqui-

dating the project{which is the entrepreneur's asset{is more costly than liquidating fund's asset.

We show that

P0 (two-layer) � P0 (short debt) = (1 � p)p2

| {z }
bgg

� (1 � � ): (7)

To see the intuition, we know that rollover fails in the bad state of t = 1 for both cases. In the

short-debt case, the entrepreneur fails to rollover, and the project is liquidated; this implies that

y3 will be discounted twice no matter what happens in the subsequent periodt = 2. In contrast, in

the two-layer case, the intermediary fails to rollover, and it is fund's asset | which is a one-period

debt backed by the �rm | is liquidated. There, if t = 2 is in good state, then entrepreneur can

still successfully rollover debt andy3 is only discounted once.

Before moving on the next section to analyze the full dynamic model, we stress that our

example highlights a key trade-o� that is new to the literature. The impatient entrepreneur would

like to pledging out as much cash ows as possible att = 0, including future ones; but the associated

secondary market liquidation losses will be high. We show that the credit chain structure reduces

the tension between maximizing cash ow pledged out and minimizing liquidation losses, because

the two-layered credit chain structure, just like special purpose vehicles (SPVs) that we observe in

the practice, helps insulate interim negative fundamental shocks and protect the underlying real

�rms from being liquidated.

3 The Model

In this section we �rst present each ingredient on our dynamic model. We then write down the

optimization problem for each fund in di�erent layers in the credit chain, before we de�ne the

equilibrium formally in this economy.
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3.1 The Setting

We consider a discrete-time economy, in which there are three types of risk-neutral agents: OLG

households, a long lived entrepreneur, and a group of long lived experts.

Endowment, agents, and timing. A long-lived entrepreneur with a discount rate � 2 (0; 1)

(hereafter he) has a long term project at t = 0 that matures with a constant probability � y in

each of following periods; the project produces nothing before maturity and the game ends. More

speci�cally, within each period t > 0, the public \news" on the cash-ow yt � 0 arrives at the

beginning of the period, whereyt is i.i.d. across periods. The entrepreneur operates the project

during the period; if the project matures during the period with probability � y , it delivers yt units of

consumption good at the end of period. (We will explain the timing in more detail soon.) Denote

by H (�) the cumulative distribution function (CDF) and by h(�) the corresponding probability

density function (PDF).

There are OLG households in this economy. Cohortt is born in period t and leaves the economy

at the end of period t +1. Each cohort consists of a measure 1 of representative households, who are

endowed with e units of consumption good when born. They can choose to consumect
t in period t

or invest in the securities issued by the �rm or funds, and consumect
t+1 in period t + 1 (and then

leave the market). Household's utility is ct
t + ct

t+1 . In Section 5 we will consider a richer setting

where the endowmente is endogenized.

There is another �nancial intermediary sector which consists of a group of \experts." In

contrast to OLG households, each expert (hereafter she) is long lived, and with a discount rate� 2

(0; 1); for simplicity we take the experts' discount rate to be the same as that of the entrepreneur's.

In our model, expert can serve di�erent roles in the �nancial market; they can operate some funds

who raise �nancing from households and in turn provide credit to the �rm; or they can run distress

funds who purchase liquidated assets in the secondary market. There are many interpretations for

the their discount rate � besides their opportunity costs of time; for instance, following He and

Krishnamurthy (2012) and He and Krishnamurthy (2013), experts needs to commit certain equity

capital to operate the distressed funds, which is costly.

Note that we have set both the entrepreneur and experts to have the same time-discount rate

� , while (each) household cohort is more patient with a discount rate 1. This implies that in our

model the gain of trade comes from �nancing from households. Just as illustrated in our simple

example in Section 2, the key issue is how to sell the project's cash ows from the hands of relatively

impatient entrepreneur to the patient but OLG households.

We now explain the timing of the model. As shown in Figure 5, at the beginning of each

period, everyone learns the value ofyt �rst; then whether debt contracts mature or not. Cohort- t

households are then born, and after that, cohort-t � 1 households (who receive the debt payment

or liquidation value) leave the economy. At the end of each period, whether the project matures or

not is realized. We denote the information set at the end of periodt by F t .
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Figure 5: Timing

This �gure illustrates the timing of events in each period for Section 3.

Debt contracts. Financing contracts in our model are restricted to the class of \debt"-like

contracts. More speci�cally, let T be the contract termination time (either project or debt matures,

which is a stopping time measurable toF t ). Denote by � t a generic debt contract; we assume that

it takes the form of � t = f ~Fy;s; Fd;s+1 gT
s= t , with an exogenously given debt maturity parameter � d.4

More speci�cally, this contract speci�es that the future promised payments from the debtor to the

creditor are

~Fy;s � 1project matures at period s, w.p. � y + Fd;s+1 � 1debt matures at period s + 1, w.p. � d ; (8)

where both f ~Fy;sg and f Fd;s+1 g are Fs-measurable for anys � t. Note, the information set Fs

includes the realisation ofyt as well as whether debt from previous period has matured. The time

indexes for ~Fy;s and Fd;s+1 reect the fact that a new debt contract is signed after the existing

debt matures with y's information in hand, but before knowing whether project matures or not;

see Figure 5.

We impose limited liability throughout the paper, so that ~Fy;s(ys) has to be bounded by

the project payo�: ~Fy;s(ys) � ys. We assume that ~Fy;s takes the form of a debt contract, i.e.
~Fy;s(ys) = min( Fy;s; ys) for some optimally chosen face valueFy;s. (In the optimal contract, Fy;s

equals some endogenous constantF �
y .) If debt matures in period s but ys is su�ciently low, then

4We focus on credit chain length and therefore leave endogenous debt maturity choice to future research. As we

explain in Section 4.4, adding layers to the credit chain has certain advantage over maturity shortening. For models

with endogenous debt maturity structure, see He and Milbradt (2016) and Hu et al. (2021).

13



~Fy;s � ys is constrained to be low and the entrepreneur/fund may not be able to raise enough

funding from the market to rollover its debt. In contrast, the \promised" payment at the debt

maturity f Fd;s+1 g cannot depend on tomorrow's fundamentalys+1 . We will later show that in the

optimal contract Fd;s+1 is constant over time (i.e., Fd;s+1 = F �
d ). For simplicity we focus on debt

contracts that are issued at par, so thatF �
d is also the value of debt when rollover is successful.

We emphasize that it is the \debtness" of f Fd;s+1 g, not the \debtness" of ~Fy;s(ys), that drives

our result. As we will see, ine�cient liquidation caused by rigid debt payment only occurs after a

debt contract matures (and when theyt is su�ciently low), while the game ends without ine�cient

liquidation after the project matures. 5

From now on we denote by the contract� t the sequence of face valuesf Fy;s; Fd;s+1 gT
s= t . Denote

the space of debt contracts by � � RT � t+1
+ � RT � t

+ , so that each periodt all funds (and entrepreneur)

can choose� t 2 � if their previous debt contracts mature. For simplicity, to rule out dilution

concerns, we assume that any debt contract is with a covenant so that issuers (the �rm or funds)

cannot raise new debt before their existing debt matures.

We further allow creditors, after knowing the realization of yt , to renegotiate by \prepaying" the

debt contract. E�ectively, in our model creditors have the option of unilaterally triggering the debt

to \mature," so that they pay the lender Fd and eliminate all future obligations. Without loss of

generality we focus on renegotiation proof contracts; in other words this renegotiation never occurs

along the equilibrium path. Shortly we will show that, this renders our model to be \stationary,"

so that the optimal debt contract chosen at any period along the equilibrium path is independent

of history.6 We therefore will suppress the timet index in the following model description, unless

necessary.

Credit chain and prepayment clauses along the chain. The model starts with the en-

trepreneur who owns the project issues debt at period 0 to household creditors via a credit chain.

See Figure 6 for an illustration.

Consider a credit chain with length L , and a fund in the chain is indexed by its position l ,

where 0� l � L . A fund in layer l borrows from layer l + 1 using a debt contract � l = f Fy;l ; Fd;l g.

We refer to 0-layer fund of a credit chain as the �rm with real project|the ultimate borrower, and

L-layer as the households|the ultimate lenders. And, we call funds that sit at layer i < l (i > l ) to

be the upper (lower) layers of fundl. With slight abuse of notation, we useFy;l (or Fd;l ) to denote

the payment when the project (or debt) matures at the corresponding period.

The debt contracts in the credit chain needs to have some other \prepayment" clauses if other

debt contracts (or the project) in the chain mature. We assume the following. First, when the

5We follow the corporate �nance literature that ine�cient liquidation cost is a fraction of continuation fundamental

value, because \experts" who are managing the distressed funds are less patient.
6Because of the stationary structure of the fundamental (i.e., yt 's are i.i.d.), the optimal debt contracts would have

been stationary if we assume debt contracts to be short-term. Essentially, the prepayment option (of the lenders) is

the minimum element to guarantee the stationarity of optimal contracting in our model. It is also worth emphasizing

that this prepayment option, which is about the debt itself, di�ers from \the prepayment clauses" introduced shortly,

which are regarding prepayments triggered by events along the credit chain.
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Figure 6: Credit Chains

This �gure illustrates the structure of the credit chain. Layer-0 is the entrepreneur, holding the project on the asset

side and issuing debt contract � 0 to layer-1 funds. Funds in layer-1 hold the debt issued by layer-0 on the asset side,

and issue debt contract � 1 to layer-2. The households hold debt contract � L � 1 issued by the last layer of funds,

layer-(L � 1).

real project matures, the creditors of layer l get paid by Fy;l and the game ends. Due to limited

liability, we have

Fy;l � Fy;l � 1 � yt for 8l; (9)

and hence this payment trickles down to the households. (In equilibriumFy;l = Fy;l � 1 for l > 1.)

We can de�ne Fy;� 1 � yt .

Second, whenl +1's debt claim issued by l matures, all the debts issued by lower layersi � l +1

mature, and the payment from l + 1|whether l makes it full or gets liquidated|will trickle down

to the ultimate household creditors who will then leave the economy avoiding the secondary market

transaction costs. Our analysis takes this \prepayment" clause as given; however, we conjecture that

this will be the outcome of optimal contracting, as it facilitates the payment directly to departing

households as soon as possible, avoiding secondary market transaction costs (to be introduced

shortly). Finally, it follows from these prepayment clauses that if multiple contracts in di�erent

layers mature, only the one with the highest layer (the smallest layer number) matters.

Without loss of generality we focus on the class of issue-at-par debt contracts, i.e., their market

values at issuance equal their face value, so thatFd;l is also the value of debt issued by layerl .

Because the layer-l fund is essentially using its asset holding with a market value ofFd;l � 1 to back
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its debt issuance with a market value ofFd;l , and fund managers have no initial wealth, we impose

the following condition throughout the paper:

Fd;l � Fd;l � 1 � e for 8l: (10)

The �rst part of the condition (10) essentially rules out the \Ponzi" scheme by any fund in which a

fund maintains a debt that is underfunded relative to its asset holdings but keeps rolling over this

debt from OLG households. A side bene�t of this assumption is that it simpli�es the prepayment

process, as the cash-ows trickle down to the bottom. The second partFd;l � e in condition (10)

captures the fact that households can only a�ord to pay e.

To simplify expression, we refer to the scenario that \either the project matures, or any debt

contract issued by any fund i 2 f 1; � � � ; l � 1g matures" simply as that \layers above l mature."

Credit chain, debt rollover, and secondary market. We have explained the payment ow

along the credit chain following a debt maturing event in a fund l. Now consider a borrower fund

l who needs to re�nance/rollover its debt contract (so that contractual payments can ensue as

described above).

Suppose that rollover is successful, i.e., the fundl is able to raise enough money in the market

to pay back Fd;l to fund l +1, which occurs wheny exceeds above certain endogenous threshold ^y in

equilibrium. (We will show shortly that ŷ = Fy .) Due to prepayment clauses, all debt between layer

l and the households matures. The fundl can use the proceeds raised from new-born households

to pay back Fd;l , so that all funds between layer l and the households are paid in full with the

common face value, as well as the departing households. Since the optimal chain length does not

change, they can renegotiate and form a new credit chain with the optimal length ofL .7

Otherwise, wheny < ŷ, rollover fails. Creditors take over and liquidate the asset held by fund

l, which could be the real project of the �rm, or the debt issued by some intermediary fundl � 1.

The liquidation occurs on the secondary market where the buyers are experts (who run distressed

funds), who then sell this asset to the next cohort of households at a priceB l (y; L), where subscript

l refers to the layer that fails to rollover.

We assume that with probability � 2 [0; 1], the chain is restored immediately, in which case

the next cohort values the debt at VL (L ). With probability 1 � � , the households need to hold

the debt issued by layer-l directly for one period and the chain is restored in the following period

absent another run. We essentially need some bankruptcy cost, and a probabilistic delay of chain

length restoration is perhaps the simplest way to capture this ine�ciency.8 Layer l � 1 and the new

funds brought in via restoration can (re)design new contracts given to their creditors. We derive

7There are many di�erent ways to implement the same outcome, as essentially in this arrangement departing

households receive the paymentFd;l �nanced by new-born households. For instance, all funds can simply ask their

corresponding lender funds for rollover. In the �nal layer, the new-born households simply replace departing house-

holds. The credit chain stays exactly the same going forward.
8For simplicity, we have assumed that restoration (to the optimal credit chain length) occurs for sure after one pe-

riod. Our mechanism goes through in another stationary setting where restoration occurs with a constant probability

� each period.
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B l (y; L) in Section 3.2, and show that the liquidation value B l (y; L) is higher for a greater l . As

we explain shortly, that the liquidation value increases with the chain position l is the key feature

that drives the bene�t of a longer credit chain in the market solution.

In the case when layer-0 (the entrepreneur) fails to rollover its debt, bankruptcy occurs, but we

assume the expert �nds the original entrepreneur to continue running the project (so the original

chain is restored). The rationale is that the original entrepreneur has the most project-speci�c

human capital and skills.9 We specify the entrepreneur's exact payo� in Section 3.2.2.

We further assume that there is a restructuring/legal cost c � 0 for each layer that is experi-

encing this bankruptcy, which is paid by households. We will study the special case ofc = 0. To

summarize, the direct creditor fund l recovers min (�B l (y; L); Fd;l ) from the liquidation of fund l 's

asset (intermediated by experts). This payment then trickles down to the ultimate creditors and

departing households hence receive

min ( �B l (y; L); Fd;l ) � c � (L � l ):

3.2 Value Functions and Bellman Equation

Denote period t value function of layer l fund by Vl;t (yt ; � l;t ; � l � 1;t ; L ), which is evaluated after

debt maturity is realised and before the project maturity is realised; see Figure 5. Fundl takes

as given the debt contract from its preceding layer� l � 1;t and the credit chain length L , which

will be determined endogenously in equilibrium. From now on we will suppress the time subscript

Vl (y; � ; � l � 1; L ) thanks to stationarity in our model. For the entrepreneur with l = 0, we have

� � 1 � ; ; and Fy;� 1 � y;

while for households with l = L , we have

� L � ; ; and Fy;l � 0:

Throughout the paper, subscripts indicate positions in the chain. Denote the market price of the

debt issued by layer-l under contract � l;t by Pl (� l ; y; � l � 1; L ). It is a function of the contract set

by layer-l (� l ) and the project fundamental (y), taking as given the total chain length (L ) and

the contract from the layer above (� l � 1). We may write Pl (� l ; y; � l � 1; L ) simply as Pl (y) whenever

there is no risk of confusion.

3.2.1 Fund managers

Layer-l 's (0 < l < L ) payo� in period 0 is then

Pl (� l ; y; � l � 1; L ) � Pl � 1(y) + Vl (y; � l ; � l � 1; L ): (11)

Here, layer-l issues its debt� l for a proceed ofPl , and then purchases the debt from layer-(l � 1)

at a price of Pl � 1, where Pl and Pl � 1 are the market prices of the underlying debt. The last term

captures its continuation payo�.
9This assumption ensures that the private loss in a bankruptcy is the same as the social loss.
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In subsequent periods, if the debt issued by layer-l (l < L ) matures, then layer-l needs to

re�nance the debt. If Pl � Fd;l � 0, rollover is successful, and layer-l 's value is

Pl (� l ; y; � l � 1; L ) � Fd;l + Vl (y; � l ; � l � 1; L ): (12)

If rollover fails ( Pl < F d;l ), the layer-l fund asset gets liquidated and the manager recovers nothing.

We can write V (y; � l ; � l � 1; l; L ) for 0 < l < L recursively as (where we have followed the

convention to use prime to indicate variables in the next period),

Vl (y; � l ; � l � 1; L ) = � y ( ~Fy;l � 1 � ~Fy;l )
| {z }
Project matures

(13)

+ (1 � � y )�

(

(1 � � d) l +1 E
�

Vl (y0; � l ; � l � 1; L )
| {z }

Neither debt issued by nor held by layer l matures

] (14)

+
l � 1X

i =0

(1 � � d) i � dE
�

1i
rollover (� Fd;l + Fd;l � 1 � P0

l � 1 + max
� 0

l

(P0
l + Vl (y0; � 0

l ; � 0
l � 1; L )))

| {z }
Debt held by layer l matures

]

(15)

+ (1 � � d) l � dE
�

1l
rollover (� Fd;l + max

� 0
l

(P0
l + Vl (y0; � 0

l ; � l � 1; L )))

| {z }
Debt held by layer l does not mature but debt issued by layer l matures

�
)

(16)

where we denote1i
rollover = 1 if and only if layer- i successfully rolls-over its debt. The �rst

part captures the payo� to layer- l when the project matures with probability � y ; otherwise with

probability 1 � � y , we have the next three terms in the curly brackets.

The �rst term (14) in the curly bracket captures the continuation value of layer- l when neither

its asset side nor liability side matures, which occurs with probability (1 � � d) l+1 . Here the fund

manager as an expert discount her future by� , and y0 is the next period project cash ow realization.

The second term (15) in the curly bracket captures the payo� if layer-l 's asset side matures;

this happens whenever debt issued by any layer-i (i < l ) matures. In this case, if rollover is not

successful, layer-l 's payo� is simply 0. When rollover is successful, the layer-l receivesFd;l � 1 from its

debtors, and paysFd;l to its creditors. In the re�nancing stage, it receives P0
l from its new creditors

and givesP0
l � 1 to its debtors. Going forward, layer l 's valuation is V (y0; � 0

l ; � 0
l � 1; l; L ), where � 0

l is

the new contract issued by layer-l and � 0
l � 1 is a new contract given to layer-l . We highlight that

fund l is optimally choosing a new contract � 0
l to maximize the sum of new debt proceeds and its

continuation payo� P0
l + Vl (y0; � 0

l ; � l � 1; L ).

Finally, the last term in (16), which occurs with probability (1 � � d) l � d, considers the expected

payo� to layer- l if debt issued by layer-l matures but layer-l 's asset has not matured yet. In this

case, if rollover is successful, layer-l raisesP0
l , pays o� Fd;l to existing creditors and chooses a new

contract � 0
l . Otherwise layer-l 's payo� is 0.
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3.2.2 Entrepreneur

Recall that entrepreneur is labeled as layer 0. Just like fund managers, the entrepreneur's value is

given by:

V0(y; � 0; L ) = � y(y � ~Fy;l )| {z }
Project matures

+(1 � � y)�

(

(1 � � d)E
�

V0(y0; � 0; L )
| {z }

Debt issued by layer-0 does not mature

] (17)

+ � dE
�

10
rollover (� Fd;0 + max

� 0
0

(P0
0 + V0(y0; � 0

0; L )))

| {z }
Debt issued by layer-0 matures and rollover succeeds

+ (18)

(1 � 10
rollover )[( � + (1 � � )(1 � � y)� )( � P0

� 1 + max
� 0

0

(P0
0 + V0(y0; � 0

0; L )))]

| {z }
Debt issued by layer-0 matures and rollover fails

�
)

: (19)

Similar to the value function of fund managers, the second term of Eq. (17) captures the

continuation value when debt does not mature, and (18) captures the value when debt matures

and rollover is successful. The main di�erence between the entrepreneur's payo� and intermediary

funds' payo�s is reected in the last term in Eq. (19), when debt matures but rollover fails.

Because of the entrepreneur's unique human capital in the project, he is re-hired back after

the bankruptcy if the chain is restored.10 Essentially, the expert in the distress fund sells the

project back to the entrepreneur at price P0
� 1 (one can view the distress fund as layer� 1). The

entrepreneur takes priceP0
� 1 as given, chooses a new contract� 0

0 (and hence initializes a new chain)

to maximize the sum of proceeds from issuing debt (P0
0) and his continuation value (V0). This is

crucial for keeping the contract stationary over time. Since the entrepreneur has no savings when

he is rehired,11 the price charged by the distress fundP0
� 1 cannot be larger than the debt proceeds

that the entrepreneur can raiseP0
0. We assume the distress fund has all the bargaining power so

that P0
� 1 = P0

0.12

3.2.3 Households

Now consider the value function of households. Regardless of whether debt matures or whether

rollover is successful, the new-born households are payingPL � 1 for the debt. So their payo� is

e � PL � 1(y) + VL (y; � L � 1; L ): (20)

10 The chain is restored with probability � this period, and (1 � � )(1 � � y ) in the next period. Discount rate � is

applied to the continuation value if restoration happens in the next period.
11 Due to the discount rate � , the entrepreneur would not save the debt proceeds from before.
12 This assumption implies that the liquidation value equals the fair value of the debt, a property that is consistent

with how liquidation value is determined when other layers are broken.
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In equilibrium, households are paying the competitive price,PL � 1(y) = VL (y; � L � 1; L ), which is

de�ned recursively as below:

VL (y; � L � 1; L ) = � y ~Fy;L � 1| {z }
Project matures

(21)

+ (1 � � y)

(

(1 � � d)L E[�V L (y0; � L � 1; L; L )
| {z }
Debt does not mature

] (22)

+
L � 1X

l=0

(1 � � d) l � dE[1l
rollover Fd;l � 1 + (1 � 1l

rollover )( �B l (y; L) � c(L � l ))
| {z }

Debt matures

]

)

:

(23)

Similar to before, ~Fy;L � 1 is the payo� to households if the project matures. Given ~Fy;L � 1 =

min(Fy;L � 1; y), a su�ciently low y < ŷ|hence a su�ciently low min( Fy;L � 1; y)|implies that VL is

too low to convince the new cohort of households to rollover the debt. ThereforeFy;L � 1 is closely

tied with the run threshold ŷ. If neither the project nor the debt matures, then the departing

households resell their debt on the secondary market, at a discount� . If the project does not

mature but debt issued by layer-l matures, then the households get paid byFd;l � 1 if rollover is

successful (the �rst part of (23) inside the expectation). Otherwise, layer-l 's asset (debt issued by

layer{( l � 1)) is liquidated, and the households only receive the liquidation proceeds�B l (y; L) net

of the legal cost c(L � l ) (the second part of Eq. (23) inside the expectation), whereB l (y; L) is

the price of liquidated asset at which the experts sell to the market at the beginning of the next

period.

We now determineB l (y; L) from the perspective of the buyer (i.e., new households), with the

following valuation equation:

B l (y; L) = � V L (L )
| {z }

If chain is restored

+(1 � � )
n

� y ~Fy;l � 1| {z }
Project matures

+(1 � � y)
h
(1 � � d) l E[�V L (y0; L )]

| {z }
Debt does not mature

(24)

+
l � 1X

i =0

� d(1 � � d) i E [1i
rollover Fd;i � 1 + (1 � 1i

rollover )( �B i (y; L) � c(l � i ))]
i

| {z }
Debt matures

o
: (25)

With probability � , the chain is restored to length L immediately, in which case the households'

valuation for the debt is VL . With probability 1 � � , households hold the liquidated asset (debt

issued by layeri � 1) directly for one period, and the chain is restored toL in the following period.

If the project matures during this period, then households get paid ~Fy;l � 1 (de�ne ~Fy;� 1 � y); if

neither the project nor the debt matures, then it is sold to the next cohort of households at discount

� . Since the next cohort of households will hold debt issued by the restored chain, their valuation

of debt is VL . This is the same term as in Eq. (22). Lastly, if the project does not mature but

debt matures, then the households either get paid byFd;i � 1 if rollover is successful or receive the

liquidation proceeds �B i (y; L) � c(l � i ) if rollover fails. The liquidation loss is di�erent depending

on where the chain breaks. We will show soon thatB l (y; L) is increasing in l .
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3.3 Equilibrium De�nition

De�ne �̂ as the set of feasible contracts that are renegotiation proof and subject to the resource

constraint (imposed by limited endowment from OLG households):

�̂ � f � 2 � : VL (f Fy;s; Fd;s+1 gT
s= t ; L ) � Fd;t � e for 8tg: (26)

De�nition 1 The equilibrium credit chain is a set of contracts f � l;t g0� l � L � 1 and credit chain

length L � such that

1. In period 0,

� l = arg max
� 2 �̂

Pl (y; � ; � l � 1; L � ) + Vl (y; � ; � l � 1; L � ); (27)

s:t: Fy;l � Fy;l � 1 � y in (9) Fd;l � Fd;l � 1 � e in (10) (28)

In later periods when layer-l 's liability matures,

� l = arg max
� 2 �̂

1l
rollover (Pl (y; � ; � l � 1; L � ) + Vl (y; � ; � l � 1; L � )) ; (29)

s:t: Fy;l � Fy;l � 1 � y in (9) Fd;l � Fd;l � 1 � e in (10): (30)

2. The equilibrium L � is such that the �nal layer of fund manager (L � � 1) prefers to borrow

directly from households than to borrow via other fund managers:

PL � � 1(L � ) + VL � � 1(L � ) � PL � � 1(L � + l) + VL � � 1(L � + l) for l � 1: (31)

Furthermore, for all other funds 0 < l < L � � 1,

Pl (L � ) + Vl (L � ) � Pl (l + 1) + Vl (l + 1) : (32)

In other words, the funds in intermediary layers prefer to borrow via other funds than to

borrow from the households.

3. Due to perfect competition,

Pl � Pl � 1 + Vl = 0 : (33)

4 Equilibrium Credit Chain

We analyze the equilibrium credit chain in this section. We �rst show the stationarity of optimal

contract under certain parameterization assumption, and further establish that the optimal contract

is independent of the position in the chain. We then characterize and analyze the equilibrium credit

chain length L � in equilibrium.
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4.1 Optimal Contract

Layer-l chooses a new contract for its creditors when either the debt issued by himself or the debt

held by himself matures, i.e., the event1l
rollover in Eq. (15) and (16) occurs. There, we can see

layer-l 's (0 < l < L ) problem is equivalent to:

max
� l

Pl + Vl (y; � l ; � l � 1; L ) (34)

s:t: Pl = Pl+1 + Vl+1 (y; � l+1 ; � l ; L ) (35)

Fd;l � Fd;l � 1 Fy;l � Fy;l � 1: (36)

Optimal contracting: stationarity and layer independence. Throughout the paper we

impose the following assumption on our parameterization.

Assumption 1 The primitives of our model satis�es:

e � �e (37)

where �e is de�ned by

�e = max
y2 (e; e

� y
)

� y(1 � � )
1 � H (y)

h(y)
� c

2

4
log(1� � d )

cH (y)
cH (y)(1 � � d )+(1 � H (y))(1 � � )� d �e

1 � cH (y)
cH (y)(1 � � d )+(1 � H (y))(1 � � )� d �e

+ 1 �
1
� d

3

5 (38)

Under Assumption 1, the optimal contract in our economy is independent of history. This

stationarity feature is convenient for our analysis. In essence, Assumption 1 guarantees that in-

equality (10) always binds (so that in the optimal contract Fd;l;t = e), and it is more likely to be

true when e is relatively small. We put back the time subscript only in this subsection; and later

we will omit � when we refer to the optimal contract.

For later analysis, we denote byml the probability that layer l 's asset does not mature

ml � (1 � � d) l ; (39)

which satis�es 1 � ml+1 = 1 � ml + ml � d. We present the main result on the equilibrium contract

in Proposition 1.

Assumption 2 The following inequality holds for all y,

� y

(1 � � y)e
1 � (1 � � y)�H (y)

h(y)
� 1 � 0 (40)

Proposition 1 Under Assumption 1, the optimal debt contract is stationary and independent of

fund position l , so that ~Fy;l;t = min( yt ; F �
y ), and Fd;l;t = e. Under Assumption 2, the equilibrium

rollover threshold F �
y is the unique solution to the following equation

e = � yFy +
h
0 0 ::: 0 1

i

| {z }
1� (L +1)

(	( Fy) � 1� (Fy))

| {z }
= vL (L )

(41)
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where 	 is a (L + 1) � (L + 1) matrix and � is a (L + 1) � 1 vector, with both being functions of

Fy . The exact expressions for	 and � are in Appendix B.1.

The formal proof is in Appendix B. Household's valuation for the debt VL (L ), together with

all the liquidation values B l (L ) (0 � l � L � 1), forms a system of linear equations with dimension

L + 1. We solve this system of linear equations and take the last entry which is the value ofvL (L ),

to be last part in Eq. (41). Matrix 	 and vector � only depend onFy and exogenous parameters.

We start explaining the intuition of stationarity. First, we point out that Fy;l;t + s = ŷl;t + s,

which is the rollover threshold of fund l in the credit chain. When designing the contract in

period t, yt is observed but whether project matures or not is still uncertain. The fund l chooses
~Fy;l;t = min( Fy;l;t ; y) in order to convince the new-cohort households to re�nance the maturing debt,

and he has no incentive to promise more than what is needed|of course, unless it cannot a�ord.

This reasoning implies that Fy;l;t = ŷl;t is exactly the minimal threshold level for successful rollover;

and wheneveryt < F y;l;t the fund l 's fundamental is falling short of this threshold, leading to a

rollover failure. This logic applies to future periods as well. Importantly, because the entrepreneur

and funds can always renegotiateFy;l;t + s (s � 1) down to the minimum value at which they can

re�nance the debt in period t + s, in a renegotiation-proof contract Fy;l;t + s = ŷl;t + s equals the run

threshold for all periods.

We �rst explain why Fd;l;t + s(s � 0) is independent of botht and s. Thanks to the i.i.d. nature

of fundamental shocksy, without rollover concerns Fd;l;t + s should be constant over time (both t

and s). However, wheny is small, borrowers who face rollover di�culties may try to increase future

promised paymentsFd;l;t + s in order to re�nance today. This possibility is ruled out by Assumption

1, which guarantees thatFd;l;t + s � e binds for all t + s. That Fd;l;t + s = Fd;l is constant over time

immediately implies that the endogenous rollover thresholdFy;l;t + s is also constant over time, i.e.

Fy;l;t + s = Fy;l .

We next explain why Fd;l is independent of layer position l . The main concern for setting a

high Fd;l is that it increases the probability of rollover failures. Because the market is competitive,

via debt prices top layers (layers with small l ) internalize the rollover risks faced by all layers below.

This implies that layers further away from households tend to set smallerFd;l . As a result, the �rst

part of inequality (10) binds and all layers have the sameFd.

Lastly, given that the optimal Fd;l = Fd is the same across layers,Fy;l has to be the same

as well. To see this, thanks to market competitionVl (f Fy;l ; Fd;l g; f Fy;l � 1; Fd;l � 1g; L ) = 0. When

Fd;l � 1 = Fd;l = Fd, the above equation is satis�ed if and only if Fy;l = Fy;l � 1. Intuitively, if Fy;l � 1

is smaller than Fy;l , then layer-l earns positive spread when the project matures, implying strictly

positive pro�t in expectation. This cannot be true under perfect competition.

Characterizing the optimal contracts. Given the contract is stationary and layer indepen-

dent, the run thresholds for all layers are the same and constant over time. We can simplify the

households' value function by taking advantage of the fact thatFd;l = Fd and E[1l
rollover ] = H (Fy)

(recall H (�) is the cumulative distribution function of y):
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VL (f Fy ; Fdg; L ; y) = � y min(Fy ; y) (42)

+ (1 � � y )[mL �V L + (1 � mL )(1 � H (Fy ))Fd + H (Fy )
L � 1X

l =0

ml � d(� E[B l (y0; L )jy0 � Fy ] � c(L � l ))]

| {z }
vL ( f F y ;F d g;L )

: (43)

We further de�ne vL (L ) to be the part of VL (L ) that is independent of the current realization of y:

vL (f Fy ; Fdg; L ) � VL (L ) � � y min(Fy ; y) (44)

BecausevL (f Fy ; Fdg; L ) only depends on total chain lengthL and contract parameters (Fy ; Fd), it

is constant over time.

Conditional on rollover being successful (y � Fy), the households' valuation of the debtVL (L )

should equalFd. Therefore the following equation pins downFy as a function of Fd and L,

� yFy + vL (f Fy ; Fdg; L ) = Fd: (45)

Under Assumption 1, Fd � e is binding; we have explained that this is crucial for the optimal

contracting being stationary. After plugging in Fd = e, solving for the debt value (VL (L )) and liq-

uidation values (B l (L )), we get Eq. (41) which determines the equilibrium Fy . Lastly, Assumption

2 guarantees that the equilibrium F �
y is unique.

4.2 Credit Chain Length

For any given Fd and L, de�ne Fy(Fd; L ) as the solution to Eq. (45). The next proposition

characterizes the equilibrium credit chain length L � .

Proposition 2 The equilibrium chain length L � is characterized by

L � = arg min
L

Fy(e; L); (46)

which is characterized by the following equation uniquely:

0 = � d(1 � � d)L �
(1 � H (Fy))(1 � � )e � cH(Fy)(1 � (1 � � d)L � +1 ): (47)

Proof: See Appendix C.

As explained in the previous section,Fy corresponds to the run threshold. GivenFd = e,

payo� of funds in all layers is decreasing inFy . Funds in layer L � 1 will only borrow via another

layer of funds if extending the credit chain reducesFy . Otherwise, they will borrow directly from

the households. Hence, the equilibriumL e�ectively minimizes Fy . Since all layers have the same

Fy , deviating by borrowing from the households directly would lead to a chain length with higher

Fy , and lower payo�. Hence no layer has incentive to deviate.

Eq. (47) is the �rst order condition that determines the equilibrium chain length L � . The

�rst term gives the marginal bene�t of longer chains, which comes from the wedge of time discount
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factors between households (1) and the entrepreneur/fund managers (1� � ). A longer chain

facilitates maturity transformation, insulates asset from liquidation losses and hence generates

higher value from the lending relationship. We will isolate and explain in detail the di�erent

bene�ts in Section 4.4. On the cost side, when rollover fails, the bankruptcy cost is increasing in

the number of layers disrupted. Hence the second term in Eq. (47), capturing marginal cost of

more layers, is proportional to bankruptcy cost c and probability of rollover failure H (Fy).

4.3 Liquidation Value

As illustrated by the simple example in Section 2, part of the goal for �nancial intermediaries

to form credit chains is to increase the liquidation value B l (y; L) toward departing households.

Consistent with the intuition illustrated in the simple example, the next proposition formally gives

two key properties of B l (y; L) that drive the bene�t of a long-chain (in a decentralized market).

These two properties will be critical in understanding the result in Section 4.4.

Proposition 3 The following features of liquidation valueB l (y; L) hold

1. Liquidation value B l (y; L) is increasing in l for L � L � and any l � L .

2. Liquidation value BL � j (y; L) is increasing in L for L � L � and any j � L .

Proof: See Appendix D.

Proposition 3 shows that the liquidation value B l (y; L) depends onl, the position where the

chain breaks. Asl increases, the chain's breaking point becomes further away from the entrepreneur

and in the same time closer to the households (i.e.,L � l ). The second part in Proposition 3, by

�xing the distance to households (j in the second part), highlights that the key is being further

away from the entrepreneur. This is important for why layer-structures emerge in equilibrium. If

the key reason for higher liquidation value is for the bankruptcy layer to be closer to households,

then the equilibrium chain length should be as short as possible. In contrast, establishing more

layers is the only way to take advantage of the bene�t if a higher liquidation value is driven by a

greater distance from from the entrepreneur.

To see the mechanism behind this result, consider the asset being liquidated when the breaking

point is further away from the entrepreneur. This asset in liquidation is the debt directly issued

by one layer above, but essentially can be considered as a collection of debt contracts issued by

all layers above. Evaluating this asset in liquidation, investors understand that there are possible

future (before the project matures) favorable fundamentaly realizations under which debt payments

ow toward departing households in a frictionless way (i.e., without the discount factor � ). Because

this possibility is greater if the layer is further away from the entrepreneur, the liquidation value is

increasing in its distance to the entrepreneur.

We highlight that the above intuition is exactly the same as in our example in Section 2,

which shows that two-layer structure dominates that of short-debt. Essentially, compared to the

short-term debt structure, the two-layer structure insulates interim negative shocks and protects
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underlying long term project. Proposition 3 con�rms that the force in our simple example also

exists in the model: The more the layers between the point of bankruptcy and the underlying

project, the greater the protection.

4.4 Special Case: c = 0

The special case of no restructuring cost, i.e.c = 0, helps illustrate the bene�t of setting up long

chains. In essence, as explained shortly, a longer chain e�ectively insulates the project and reduces

liquidation loss during rollover failures. Because there is zero physical cost when rollover fails given

c = 0, the optimal chain length becomes in�nity.

Corollary 1 When c = 0 , the equilibrium length of credit chain is in�nity.

Proof: See Appendix E.

To see the bene�t of long chains, consider the di�erence in households value when the chain

length is L versusL + 1. Using equation (43), one can show that

vL +1 (L + 1) � vL (L ) =
(1 � � y)(1 � H (Fy)) � dmL (Fd � �

= Fdz }| {
E[VL (L )jy � Fy ])

1 � (1 � � y)� (mL +1 + H (Fy)K L +1 )
> 0: (48)

where the constantK l � 1� ml for any l � 0 (see Appendix E for detailed derivation and expression

for K l .). This implies that the last layer of funds always prefer to keep extending the credit chain.

To better understand the bene�t of adding more layers, consider a hypothetical structure,

where there are onlyL layers, but the maturity rate between households (layerL ) and the last

fund (layer L � 1) is 1 � (1 � � d)2 instead of � d; this way, households hold debt contracts with an

aggregate maturity rate of 1 � (1 � � d)L +1 .13 In principle, the hypothetical structure alters the

debt maturity in the last layer without changing the number of layers, which helps isolate the debt

maturity e�ect only.

Denote by ~VL the households' value function from this hypothetical structure, and correspond-

ingly ~B l (L ) the liquidation value when layer l fails to rollover its debt. We have

~VL (f Fy ; Fdg; L ) = � y min(Fy ; y) + (1 � � y)E[mL +1 � ~VL + (1 � mL +1 )1yt +1 � Fy Fd (49)

+ 1yt +1 <F y

L � 2X

i =0

mi � d� ~B i (L ) + 1yt +1 <F y mL � 1(1 � (1 � � d)2)� ~BL � 1(L )]; (50)

and let us compare the di�erence between~VL and VL :

~VL � VL =
(1 � � y )� dmL (1 � H (Fy ))( Fd � � E[VL (L )jy � Fy ])

1 � (1 � � y )� (mL +1 + H (Fy )K L +1 )
| {z }

= vL +1 (L +1) � vL (L ) in Eq.(48)

�
(1 � � y )� dmL H (Fy )( ~BL (L ) � ~BL � 1(L ))

1 � (1 � � y )� (mL +1 + H (Fy )K L +1 )
| {z }

net bene�t of one more layer

:

(51)

13 Because of prepayment clauses, household's debt matures as long as one of the layer's debt matures. WithL + 1

layers, the probability of household's debt maturing is 1 � m(L + 1) = 1 � (1 � � d )L +1 . In the hypothetical structure,

the probability of household's debt maturing is 1 � (1 � � d )L � 1(1 � � d )2 = 1 � (1 � � d )L +1 .
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By design, the di�erence between~VL and VL comes from the fact that debt held by households

e�ectively has shorter maturity in the hypothetical structure. Short-term debt is preferable because

households are short-lived and reselling debt involves a discount. Consider the situation where

the debt issued by layer L � 1 matures in the hypothetical structure but does not in our L -

layer structure, and rollover is successful. In the hypothetical structure, households who hold the

matured debt leave the economy with a full debt paymentFd. In contrast, in our L -layer case, it

is as if there is no debt matures on the entire chain, and households who need to resell debt at a

discount receive�V L (L ) only. When rollover is successful (y � Fy), we know VL (L ) = Fd. Hence

� E[VL (L )jy � Fy ] = �F d < F d, �rst term on the right hand side of Eq. (51) is positive. Mapping

back to our example in Section 2, this reects the di�erence between short-term debt and long-term

contract.

More importantly, there is a downside to shortening the e�ective debt maturity. Because debt

maturity shortening raises the probability of rollover failure, second term in Eq. (51) is negative

and captures the additional liquidation loss ~BL � ~BL � 1 when rollover fails for the hypothetical

structure. This additional term is a loss ( ~BL � ~BL � 1 > 0) due to Proposition 3. We show that,

however, adding a layer (without changing the maturity faced by households) removes this cost, as

evident from Eq. (51) which compares~VL � VL in with vL +1 � vL in Eq. (48). This decomposition

highlights that the unique bene�t of having multiple layers is to increase the liquidation value

(reduce liquidation loss) by insulating the �nal project from interim negative shocks, as illustrated

by the comparison between two-layer structure and short-term debt in our example.

4.5 Comparative Statics

The previous subsection illustrates that intermediaries in the market would like to extend the credit

chains. When c > 0, additional cost in the case of rollover failure increases withL , leading the

optimal chain length to be �nite.

Proposition 4 Under Assumption 1, the equilibrium credit chain length is decreasing in bankruptcy

cost c and increasing in project maturity rate � y .

@L�

@c
� 0;

@L�

@�
> 0 and

@L�

@�y
� 0: (52)

Proof: See Appendix F.

Figure 7 plots several numerical illustrations of comparative statics with respect toc and � y ,

together with other two parameters (� d and e). Intuitively, when the liquidation cost c is higher,

it is more costly to add layers, hence in equilibrium chain length is shorter. Related, when� is

larger, the liquidation loss is smaller, which motivates more maturity transformation and a longer

chain. On the other hand, the more likely the project matures (a higher � y), the less severe the

rollover risk, and hence the longer the equilibrium credit chain.

Recall under Assumption 1 the outstanding debt market value, which is also the face par-

value, is binding at the endogenously given households endowmente. A lager e has the following
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Figure 7: Comparative Statics of Credit Chain Length

Numerical illustration of comparative statics related to chain length L . Parameter values (unless speci�ed in the

x-axis): � = 0 :5, � d = 0 :1, c = 0 :2, � = 0 :2, � y = 0 :6, g(y) =  exp(� y ),  = 0 :1, e = 2.

two opposing forces. On one hand, the bene�t of maturity transformation, which is proportional

to the market value of debt, is larger. On the other hand, a larger debt face value implies a greater

probability of a run conditional on debt maturing, which favors a shorter credit chain. The trade-

o� of these two forces depends on how binding the constraintFd � e is. When e is close to the

unconstrained optimal Fd, the second force dominates, i.e., a largere leads to a shorter credit chain

length in order to limit the rollover risk. This is demonstrated in Figure 7.

Regarding the contract maturity rate, the larger the � d, the smaller the marginal bene�t of

increasing maturity rate of debt held by households (proportional to (1 � � y)� dmL ). This force

pushes towards shorter credit chain via the maturity channel. Moreover, the marginal bene�t via

the asset insulation channel is also proportional to (1� � y)� dmL (the second term in Eq. (51)),

which decreases in� d. Both forces imply a shorter equilibrium chain length when � d is larger.

Finally, one may ask how the discount rate of experts in our economy, i.e.,� , impacts the

equilibrium credit chain length. The direct e�ect of a greater � reduces chain length. This is because

a greater � implies a smaller wedge in relative impatience between the entrepreneur/managers and

households, therefore a smaller bene�t of maturity transformation. On the other hand, a greater
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� also implies a smaller liquidation loss, so the cost of maintaining long chains is smaller as well.

In general the net e�ect of � is ambiguous.

5 Welfare Analysis

In this section, we focus on whether the decentralized equilibrium is constrained-e�cient from the

social planner's perspective. Speci�cally, we ask the following question: Can the social planner

improve welfare by restricting the credit chain length, say via a regulation which caps the credit

chain length? Throughout the analysis, we assume that the only tool that the social planner has

is to adjust the credit chain length, which a�ects the resulting market equilibrium (i.e., the debt

contracts and allocations).

The answer to the above question is yes|welfare is larger if the social planner limits the chain

length. The key source of ine�ciency comes from the fact that it is the bottom part of the chain

(layer L � 1) who determines the total chain length. But the bottom layer does not take into

account its impact on top layer's contract design and pro�t.

5.1 Model Modi�cation

We modify the setup slightly for a richer equilibrium outcome while maintaining the stationarity

feature over time. The key di�erence from the model in Section 3 is that we now allow households,

before entering the �nancial market, to choose endogenously how much to set aside for purchasing

debt o�ered by funds.

Cohort t of households are born with endowmente with utility ct + ct+1 , where ct is the

consumption in period t and ct+1 is the consumption in t + 1. Households can either consume

immediately (ct ) or save via the credit chain (i.e., purchasing debts issued funds) at an endogenous

rate r t . So far, this is equivalent to our previous setup. We modify the setting slightly as follows.

ˆ When cohort t households are born and beforeyt is realised, each household choosescD
t to

consume. Here, \D " stands for day;

ˆ After yt realises, households can choose to consumecN
t � 0 in addition (\ N " stands for night)

or save via the credit chain. However, households only receive a utility of 1� � per unit of

cN
t . This implies that i) households period t consumption is ct = cD

t + (1 � � )cN
t ; and ii) they

invest e � cD
t � cN

t � 0 in the credit chain either through buying debt or purchasing asset;

ˆ In period t +1, households collect money from the credit chain (or proceeds from liquidation),

consume and exit the economy.

ˆ We assume households cannot observe historical contracts; Section 5.2 discusses the role of

this assumption.

Essentially, � > 0 leads to an irreversible day consumption decisioncD
t , leaving e� cD

t at households'

hands for their investment in credit chains.
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In this modi�ed setting, households take the credit chain and its equilibrium return r t as given,

and solve the following problem,

max
cD

t � 0;cN
t � 0

ml E[cD
t + (1 � � )cN

t (y; NM) 1cN
t (y;NM) � 0 + r t (e � cD

t � cN
t (y; NM))] (53)

(1 � ml )E[cD
t + (1 � � )cN

t (y; M) 1cN
t (y;M) � 0 + r t (e � cD

t � cN
t (y; M))] (54)

s:t: cD
t + cN

t � e: (55)

wherecN
t (y; M) ( cN

t (y; NM)) is night consumption when the debt held by previous cohort of house-

holds matures (does not mature). In the case when debt has not matured or rollover fails,cN
t (y; NM)

so households will consume in the night. When debt matures and rollover is successful, we have

cN
t (y; M) = 0. As before, contracts f Fy ; Fdg are layer independent.

Throughout our analysis we focus on the case where� ! 0; we will show that this limiting

case maps to our baseline model exactly, except with an endogenous day consumptioncD
t . Because

households who obtain a linear utility (1 � � )cN
t are essentially endowed with a constant savings

technology with a constant rate 1� � , when � ! 0 we have the endogenous return from investing in

the credit chain r t ! 1. Furthermore, � ! 0 implies that cD
t ! e � Fd, i.e., given the equilibrium

debt (face) value Fd households set aside just enough funds for potential debt purchase (after a

su�ciently favorable y realization, if some debt matures along the credit chain.)

We make the above seemingly stark assumptions to ensure that the modi�ed model exactly

matches the baseline model solved in Section 4. The key economic mechanism will be the same

if we adopt a \smoother" modi�cation, which features endogenous but irreversible �nancial-skill

investment decision for young households. To establish a clean ine�ciency result, we only need

some endogenous margin in the amount of resource that is available to invest in the project (via

credit chains).14

5.2 Optimality Condition of Fd

We have emphasized that our modi�ed model features an endogenous households'cD
t decision and

hence an endogenous equilibrium debt valueFd, which will binds in equilibrium at e � cD
t .

Households who do not observe historical contracts will save based on their (rational) expec-

tation of contracts o�ered by the equilibrium credit chain. Therefore we determine Fd by the

entrepreneur's �rst order condition from maximizing P0 + V0, as shown in Eq. (56):

14 More speci�cally, cohort t households can spendI 2 [0; e] before yt is realized. After the yt realization, households

with remaining endowment e � I > 0 can purchase debt issued by funds as in our main model, or save in a linear

saving technology whose return is R(I ); and they consume the proceeds when they leave the economy. Importantly,

R0(I ) > 0 and R00(I ) < 0; in words, young households can \invest" I in their �nancial skills to improve the return

of their savings technology R(I ). This extended model nests our main model in Section 3 by setting I = 0 and

R(0) = 1. What we really need is the endogenous margin embedded in I (or cD in the main text) that helps establish

the ine�ciency.
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(1 � � ) (1 � mL )(1 � H (Fy )) � h(Fy )
dFy;t

dFd;t

�
�
�
Fd;t = Fd

| {z }
= 1

� y

L � 1X

l =0

� dml (Fd � �B l (Fy ; L ) + c(L � l )) � 0: (56)

To understand (56), we note that generally speaking the bene�t of a largerFd comes from the wedge

between the interest rate 1 and the entrepreneur/funds time discount rate� , whereas the cost is

rooted in rollover failure. Condition (56) is derived from considering a one shot (more precisely,

downward) deviation of Fd;t at period t from the entrepreneur's perspective. Since the households

cannot observe contracts or realisation ofy when making daytime consumption decisions,cD
t+ s is

constant over time andFd;t+ s � e� cD
t+ s for all s � 1 thanks to households' irreversible consumption

choice. The entrepreneur who face this constraint e�ectively takes all futureFd;t+ s (s � 1) as given

when evaluating any deviation of Fd;t in period t, and it follows that all future Fy;t + s (s � 1) is

�xed as well due to the contract's prepayment option.15 This explains that only the adjustment of

Fy;t is considered when evaluating the deviation ofFd;t .

To sum up, given the binding constraint of Fd;t � e � cD
t , any Fd for which the left hand side

of Eq. (56) is weakly positive constitutes an equilibrium (so entrepreneur never wants to lower

Fd). Within this class of equilibria, because our goal is to compare the welfare of decentralized

equilibria to the one under the planner's constrained-e�cient solution, we focus on the equilibrium

that yields the highest welfare, which is the one that satis�es Eq. (56) exactly:

(1 � � ) (1 � mL )(1 � H (Fy)) � h(Fy)
1
� y

L � 1X

l=0

� dml (Fd � �B l (Fy ; L ) + c(L � l )) = 0 : (57)

Before moving on to the next section, we stress that Condition (57) just amounts to one type

of equilibrium selection (i.e., the one with the highest welfare). We can motivate this equilibrium

selection by the following equivalent setting, in which the key driver is the non-transparency of credit

chain. Note that when initiating the contract at time 0, the cohort 0 households naturally observe

the proposed contract before making the daytime consumption decision. In contrast, because credit

chains are typically obscure due to the complicated layer structure, later cohorts cannot observe the

contract history in the credit chain. As a result, in period 0, the entrepreneur picks Fd to satisfy

Eq. (56) exactly, taking all future Fd's as given. This alternative setup yields the same equilibrium

outcome as characterized by Condition (57).

5.3 Special Case c = 0 Revisited

We come back to the special case whenc = 0. As explained in Section 4.4 Corollary 1, the

equilibrium chain length is in�nity regardless of � , and Fy is determined by VL = 1 (f Fy ; Fdg; L =

1 ) = Fd. As before in Section 4.2,Fy(Fd; L ) denotes the solution to Fd = VL (f Fy ; Fdg; L ) for any

given Fd and L.

15 Otherwise, the entrepreneur can re�nance later at lower Fy 's and prepay the current contract.
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We now consider whether the social planner can improve the welfare by constrain the chain

length L to be a �nite number, taking into account that the equilibrium contract parameters are

a�ected by the chain length. The total social welfare W is given by:

W (f Fy ; Fdg; L ) = e+ � yy + (1 � � y)[(1 � m)(1 � H (Fy))((1 � � )Fd + � E[W jy > F y ])

+ �� dH (Fy)
L � 1X

l=0

ml (E[W jy � Fy ] + bl � vL (L ) + ml EW ) : (58)

In Eq. (58), (1 � m)(1 � H )(1 � � )Fd, which captures the bene�t of a larger Fd due to the di�erence

in impatience between households and the entrepreneur, is increasing inFd. But a higher Fd is also

costly as it raises run thresholds; and a longer credit chain results in more maturity transformation

and increases the chance that a run occurs (�xing the run threshold). It is also useful to point

out that Fy only impacts the welfare through the probability of rollover failure H (Fy). When the

project matures and Fy is actually paid out, it is merely a transfer from the entrepreneur to the

households and hence only has redistribution e�ect in that case.

Consider the impact of varying credit chain length on the total welfare, evaluated at the

decentralised equilibrium L = 1 in the baseline case ofc = 0:

dW
dFd| {z}
> 0

�
�
L = 1

dFd

dL| {z}
< 0

�
�
L = 1 +

dW
dFy

�
�
L = 1

dFy

dL| {z}
=0

�
�
L = 1 +

dW
dL| {z}
=0

�
�
L = 1 < 0; (59)

where all the terms are evaluated at the point of the decentralized equilibrium. As shown in

Proposition 2, in the decentralized market, the equilibrium L is chosen to minimizeFy(Fd; L ).

Hence dFy
dL = 0 and the entire second term disappears. Furthermore, the direct e�ect of chain

length on welfare, dW
dL , is also 0 at the decentralized equilibrium thanks to the last layer's �rst

order condition. In other words, for any given value of Fd, the equilibrium Fy and L are socially

e�cient.

This leaves us only the �rst term in the welfare evaluation. The equilibrium Fd is decreasing

in chain length L . When the chain is shorter, the degree of maturity mismatch is reduced and

the chance of run given any run threshold is smaller. As a result, the entrepreneur increases the

borrowing amount Fd. Moreover, welfare is increasing inFd, i.e., the �rst term in Eq. (59) is

strictly negative; we will explain this property shortly. As a result, we have the next proposition.

Proposition 5 Suppose thatc = 0 . For any � 2 [0; 1], relative to the decentralized equilibrium,

the social planner can improve total welfare by reducing the credit chain lengthL .

Proof: See Appendix G.

In the decentralized market solution, the last layer in the credit chain decides the equilibrium

chain length, taking the borrowing face valueFd as given. The top layer | the entrepreneur |

optimally chooses the borrowing amountFd, taking the credit chain length as given because he is

unable to control the borrowing decision of other funds in the chain. Hence the impact of chain
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length L on Fd is not internalised by any agent. This coordination issue between the top layer and

bottom layer of the chain gives rise to ine�ciency.

For the impact of L on Fd to matter, it must be the case that the value of Fd itself is sub-

optimal. The suboptimality of Fd is rooted in the fact that entrepreneur and funds designFd

period by period and cannot commit to future contract values. Just like the key friction in the

setting of dynamic debt runs (He and Xiong, 2012) | today's agent take future run decisions as

given| today's entrepreneur and funds also take future borrowing amount as given. As a result,

the marginal cost (by increasing run probability) from raising borrowing amount only at time t is

more severe than if all future borrowing amount is increased.

To see this point clearly, consider the cost of raisingFd;t from a fund's or the entrepreneur's

perspective. When its debt matures, more �nancing will need to be raised from the market in order

to pay back the previous cohort. SinceFd is taken as given for all future periods, onlyFy can be

adjusted, which directly leads to higher run probability than otherwise. On the other hand, the

social planner understands allFd's can be adjusted in equilibrium. Therefore, the decentralized

equilibrium Fd is too small relative to social planner's optimal solution.

To summarize, reducing credit chain length L improves total welfare. When the chain is

shorter, the entrepreneur increases the borrowing amountFd in equilibrium and the social value

generated from the lending relationship is higher.

Connection to the role of money in Samuelson (1958) Our result is related to the seminal

work of Samuelson (1958), who illustrates the important role of money as storage of value in OLG

models. In our model, the debt issued by the credit chain is essentially money that facilitates the

transfer of wealth among generations.16 Since the money is privately produced, the \trust" in the

money is endogenous and the entrepreneur/funds cannot issue unlimited amount. Our result shows

that the amount of money produced in the decentralized equilibrium is too low relative to the social

solution. This ine�ciency arises from the coordination issue among di�erent cohorts and the social

planner can partially alleviate this coordination problem by restricting chain length, which reduces

the rollover risk and degree of strategic complementarity among di�erent periods. This e�ect of

credit chain length is not internalised by any private agent in the market as explained above.

5.4 General Case of c > 0

Proposition 6 shows the ine�ciency exists for general cases as well: Whenc > 0, the decentralised

equilibrium has �nite chain length when � = 1. The intuition is the same as in the previous section.

Proposition 6 For any 1 � � � � y and � = 1 , relative to the decentralized equilibrium, the social

planner can improve total welfare by reducing the credit chain lengthL .

Proof: See Appendix G.

Although we have not been able to prove this result in the most general case ofc > 0 and

� 2 (0; 1), all numerical solutions so far support this claim. Figure 8 provides such a numerical
16 The entrepreneur can be thought of as cohort � 1.
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Figure 8: Social v.s. Private Welfare and Probability of Run

Numerical illustration of what happens when social planner restricts chain length L . Social welfare increases and

probability of a run decreases. Parameter values: � = 1, � d = 0 :1, c = 0 :15, � = 0 :4, � y = 0 :6, g(y) =  exp(� y ),

 = 0 :4.

illustration. The orange dot shows on the right side of each sub-�gure denotes decentralized equi-

librium. As L becomes lower, total welfare turns larger. The probability of a run occurring in any

period is also lower when the credit chain is shorter.

6 Conclusion

By highlighting a feature that we often see in the modern market-based �nancial system, we study

a new dimension of the credit intermediation where one agent's liability is another agent's asset

in the credit chain. We illustrate the trade-o� of credit chains in our framework, characterize the

equilibrium credit chain, and then study the policy implication of regulating the credit chain from

a welfare perspective.

Di�erent from existing research that only looks at systemic risk for each part of the �nancial

system one at a time, our paper tries to provide a holistic view of the �nancial system when

analyzing risks and welfare. This is important because regulations that impact one sector of the

�nancial system will induce changes in the whole sector, a�ecting other institutions that interact

with that sector. Without a model that includes the linkages among di�erent institutions, we

cannot properly assess the impact of any individual institution or policy.
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Appendix A Equilibrium in the Example

We use L t (H t ) to denote the period t cash ows in the bad (good) state. L t = 0 and H t are

constant over time.

As a benchmark, the �rm can issue equity claim to cohort 1, who will then sell the equity to

cohort 2 and 3 later. The price of the equity contract is

P0(equity) = pH1 + �pH 2 + � 2pH3 (60)

The entrepreneur's payo� is P0(equity).

A.1 Direct Financing Using Two-Period Contract

Here we consider the general case where the intermediate coupon payment isC(y1) (0 � C1 � y1)

and debt face value isD2. We show that in equilibrium C1(y1) = y1 and D2 is such that rollover

is only successful in the good state.

We solve the problem backward. In period 2, the �rm can at most raiseP2 = pH3 from cohort

3. If D2 � pH3, then the �rm is never in liquidation; if pH3 + H2 � D2 > pH 3, the �rm is only

liquidated in the bad state; �nally, if D2 � pH3 + H2, the �rm will always be liquidated.

D2

8
>>><

>>>:

� pH3 never liquidate

2 (pH3; pH3 + H2] only liquidate when y2 = L 2

> pH 3 + H2 always liquidate.

(61)

The amount of money that can be raised in period 0 is,

P0(C1(y1); D2) = 1D 2 � pH 3 (pC1(H1) + (1 � p)C1(L 1) + �D 2) (62)

+ 1pH 3<D 2 � pH 3+ H 2 (pC1(H1) + (1 � p)C1(L 1) + p�D 2 + (1 � p)� 2pH3) (63)

+ 1D 2>pH 3+ H 2 (pC1(H1) + (1 � p)C1(L 1) + � 2(pH2 + pH3)) (64)

The entrepreneur choosesC1 and D2 to maximize P0,

C1 = y1 (65)

D2 = pH3 + H2 (66)

P0 (long debt) = pH1 + �pH 2 + �p [p + (1 � p)� ]H3 (67)

Liquidation only happens in period 2 and when bad state is realised. Compared with the equity

case,

P0 (long debt) � P0(equity) = � (1 � � )p2H3 (68)

In the equity case, discount is always applied twice on period 3 cash ows. In the long-run debt

case, � is always applied once due to the trading in period 1. However, if debt is rolled over

successful in period 2, thenpH3 need not be discounted. That situation happens with probability

p and the saving is 1� � .
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A.2 Direct Financing Using One-Period Contract

The problem in period 2 is the same as in the two-period contract case

D2

8
>>><

>>>:

� pH3 never liquidate

2 (pH3; pH3 + H2] only liquidate when y2 = L 2

> pH 3 + H2 always liquidate.

(69)

So the proceeds of issuing debt in period 1 is

P1(D2) = 1D 2 � pH 3 D2 + 1pH 3<D 2 � pH 3+ H 2 [pD2 + (1 � p)�pH 3] + 1D 2>pH 3+ H 2 �pH 3 (70)

Given the amount of money that can be raised in period 1 (P1),

D1

8
>>><

>>>:

� P1 never liquidate

2 (P1; P1 + H1] only liquidate when y1 = L 1

> P 1 + H1 always liquidate

(71)

The amount of money that can be raised in period 0 is

P0(D1; D2) = 1D 1 � P1 (D 2 )D1 + 1P1 (D 2 )<D 1 � P1 (D 2 )+ H 1 [pD1 + (1 � p)� (pH2 + �pH 3)] (72)

+ 1D 1>P 1 (D 2 )+ H 1 (pH1 + �pH 2 + � 2pH3) (73)

The entrepreneur's problem is to

max
D 1 ;D 2

P0(D1; D2) (74)

Solution is the following

D2 = pH3 + H2 (75)

P1 = p(pH3 + H2) + (1 � p)�pH 3 (76)

D1 = P1 + H1 = H1 + p(pH3 + H2) + (1 � p)�pH 3 (77)

P0(short debt) = p[H1 + p(pH3 + H2) + (1 � p)�pH 3] + (1 � p)� (pH2 + �pH 3) (78)

So liquidation in period 2 only happens wheny2 = L 2 and liquidation in period 1 only happens

when y1 = L 1.

Comparing the funds raised via short-term debt with the funds raised via equity issuance,

P0(short debt) � P0(long debt) = p[H1 + p(pH3 + H2) + (1 � p)�pH 3] + (1 � p)� (pH2 + �pH 3)

(79)

� [pH1 + �pH 2 + �p (p + (1 � p)� )H3] (80)

=(1 � � )p2H2 + (1 � � )p3H3 (81)

The bene�t comes from avoiding transaction cost in the secondary market when short-term debt

can be successfully rolled-over.

39



A.3 Financing via Intermediary Funds

Similar to before, we solve the problem backward. The problem at period 2 is exactly the same as

the previous subsection,

D2

8
>>><

>>>:

� pH3 never liquidate

2 (pH3; pH3 + H2] only liquidate when y2 = L 2

> pH 3 + H2 always liquidate

(82)

So the proceeds to the fund of issuing debt in period 1 is

P1(D2) = 1D 2 � pH 3 D2 + 1pH 3<D 2 � pH 3+ H 2 [pD2 + (1 � p)�pH 3] + 1D 2>pH 3+ H 2 �pH 3 (83)

Next, we consider the issuance of debt in period 0 (D1). Given the amount of money that

can be raised in period 1 (P1), and coupon payment C1(y1). (It is straightforward to show that

C1(H1) > C 1(L 1)).

D1

8
>>><

>>>:

� P1 + C1(L 1) fund never liquidates

2 (P1 + C1(L 1); P1 + C1(H1)] fund only liquidates when y1 = L 1

> P 1 + C1(H1) fund always liquidates

(84)

Notice the liquidation in period 1 is at the fund level, i.e. the asset being sold on the market is the

debt contract between the �rm and the fund.

The amount of money that can be raised in period 0 is

P0(D1; D2) = 1D 1 � P1 (D 2 )+ C1 (L 1 )D1 + 1P1 (D 2 )+ C1 (L 1 )<D 1 � P1 (D 2 )+ C1 (H 1 ) [pD1 + (1 � p)�P 1(D2)]

(85)

+ 1D 1>P 1 (D 2 )+ C1 (H 1 ) [pC1(H1) + �P 1(D2)] (86)

The entrepreneur's problem is maxD 1 ;C1 ;D 2 P0, this gives us

D2 = pH3 + H2 (87)

P1 = p(pH3 + H2) + (1 � p)�pH 3 (88)

D1 = p(pH3 + H2) + (1 � p)�pH 3 + H1 (89)

C1 = y1 (90)

P0(indirect) = p[H1 + p(pH3 + H2) + (1 � p)�pH 3] + (1 � p)� [p(pH3 + H2) + (1 � p)�pH 3] (91)

Comparing this with the short-term direct �nancing case in the previous subsection

P0(indirect) � P0(short debt) = p[H1 + p(pH3 + H2) + (1 � p)�pH 3] (92)

+ (1 � p)� [p(pH3 + H2) + (1 � p)�pH 3] (93)

� f p[H1 + p(pH3 + H2) + (1 � p)�pH 3] + (1 � p)� (pH2 + �pH 3)g (94)

= (1 � p)�p (1 � � )pH3 (95)
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The di�erence occurs in the case wheny1 = L 1, so rollover fails in the �rst period. In the short

debt �nancing case, the �rm's asset is being liquidated, where as in the indirect �nancing case, only

the fund's asset (one period debt) is being liquidated. Since short-term asset incurs lower discount

on the secondary market, the indirect �nancing method is able to raise more funds.

Appendix B Proof for Proposition 1

We �rst show that Fd;l;t = Fd;l , i.e. the optimal Fd for each layer is constant over time if the
managers do not face rollover issues in this period. We start from the problem between layer
(L � 1) and the households. Layer (L � 1) is given a contract � L � 2 by layer (L � 2); the contract
speci�es a sequence of payments if debt maturesf Fd;L � 2;t gT

t=0 and a payment if project matures
Fy;L � 2. T is the stopping time, either when the contract or when the project matures. Plugging in
PL � 1, layer L � 1 maximizes the following,

max
Fd;l � 1

� PL � 2 + � y Fy;L � 2 + (1 � � y )E
h
(1 � � d)L � (VL � 1(y0; � L � 1; � L � 2; L ) + VL (y0; � L � 1; L )) (96)

+
L � 2X

i =0

(1 � � d) i [� d1i
rollover (�V L � 1(y; � 0

L � 1; � 0
L � 2; L ) + �F d;L � 2 + (1 � � )Fd;l � 1) + (1 � 1i

rollover )( �B i (y; L) � c(L � i � 1))]

(97)

+ (1 � � d)L � 1� d1L � 1
rollover (�V L � 1(y; � 0

L � 1; � L � 2; L ) + (1 � � )Fd;l � 1) + (1 � 1L � 1
rollover )( �B L � 1(y; L) � c)

i

(98)

s:t: Fd;l � 1 � Fd;L � 2 (99)

The �rst order condition with respect to Fd;l � 1;t is

0 = � � � d
L � 1;t + E[(1 � � )

L � 1X

i =0

(1 � � d) i � d1i
rollover ] (100)

+ (1 � � d)L � 1� d
dPr(rollover at layer L � 1)

dFd;l � 1;t
(Fd;l � 1;t � �B L � 1(y; L) + c) (101)

where � � d
L � 1;t is the Lagrangian Multiplier in front of Fd;L � 2;t � Fd;L � 1;t � 0.

If � L � 2 = � �
L � 2 is stationary and Fd;L � 2;t is constant over time, then F �

d;l � 1;t = Fd;l � 1.
The same logic applies toF �

d;l;t = Fd;l for all 0 � l � L � 1. For 0 � l < L � 1, its objective
can be written as

max
F d;l

� Pl � 1 + � y Fy;l � 1 + (1 � � y )�
n

(1 � � d ) l +2 EVl (y
0; � l ; � l � 1 ; L ) + (1 � � d ) l +1 � d E(1 � 1 l +1

rollover )Vl (y
0; � 0

l ; � l � 1 ; L ) (102)

+
l � 1X

i =0

(1 � � d ) i � d E[1 i
rollover (Fd;l � 1 � Fd;l +1 � P 0

l � 1 � P 0
l + max

� 0
l

(P 0
l + Vl (y

0; � 0
l ; � 0

l � 1 ; L )) + max
� 0

l +1

(P 0
l +1 + Vl +1 (y0; � 0

l +1 ; � l ; L )))]

(103)

+ (1 � � d ) l � d E[1 l
rollover (� Fd;l +1 � P 0

l + max
� 0

l

(P 0
l + Vl (y

0; � 0
l ; � l � 1 ; L ))) + max

� l +1 0
(P 0

l +1 + Vl +1 (y0; � 0
l +1 ; � l ; L ))] (104)

+ (1 � � d ) l +2 EVl +1 (y0; � l +1 ; � l ; L ) + (1 � � d ) l +1 � d E[1 l +1
rollover (� Fd;l +1 + max

� 0
l +1

Vl +1 (y0; � 0
l +1 ; � l ; L ))]

o
+ Pl +1 (105)

we know in equilibrium P0
l � 1 = max � 0

l
(P0

l + Vl (y0; � 0
l ; � 0

l � 1; L )) and P0
l = max � 0

l +1
(P0

l+1 + Vl+1 (y0; � 0
l+1 ; � 0

l ; L )),
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so the above can be simpli�ed as

max
F d;l

� Pl � 1 + � y Fy;l � 1 + (1 � � y )�
n

(1 � � d ) l +2 EVl (y
0; � l ; � l � 1 ; L ) + (1 � � d ) l +1 � d E(1 � 1 l +1

rollover )Vl (y
0; � 0

l ; � l � 1 ; L ) (106)

+
l � 1X

i =0

(1 � � d ) i � d E[1 i
rollover (Fd;l � 1 � Fd;l +1 )] + (1 � � d ) l � d E[1 l

rollover (� Fd;l +1 + Vl (y
0; � 0

l ; � l � 1 ; L ) + Vl +1 (y0; � 0
l +1 ; � 0

l ; L ) + P 0
l +1 )]

(107)

+ (1 � � d ) l +2 EVl +1 (y0; � l +1 ; � l ; L ) + (1 � � d ) l +1 � d E[1 l +1
rollover (� Fd;l +1 + P 0

l +1 + Vl +1 (y0; � 0
l +1 ; � l ; L ))]

o
+ Pl +1 (108)

subject to Fd;l;t � Fd;l � 1;t . Denote the Lagrangian multiplier as � � d
l;t . The �rst order condition of

Fd;l;1 is

0 = � � � d
l;1 + � � d

l+1 ;1 +
dPl+1

dFd;l;1
(109)

= � � � d
l;t + � � d

l+1 ;t + (1 � � d) l � d
dPr(rollover at layer l)

dFd;l;1
(Fd;l � 1 � �B L � 1(y; L) + c) (110)

The �rst order condition with respect to Fd;l;t is

0 = � � � d
l;t + � � d

l+1 ;t +
dPl+1

dFd;l;t
(111)

= � � � d
l;t + � � d

l+1 ;t + (1 � � d) l � d
dPr(rollover at layer l)

dFd;l;t
(Fd;l � 1 � �B l � 1(y; L) + c) (112)

If � �
l � 1 does not depend on history and is stationary, then it is straightforward that F �

d;l;t = Fd;l .

Next, we show that Fd;l = Fd across layers. Since the problem is identical over time, we loose

the time subscript. The �rst order condition with respect to Fd;l � 1 in equilibrium is

0 = � � � d
L � 1 + (1 � � )

L � 1X

l=0

(1 � � d) l � dPr(rollover at layer l)+ (113)

(1 � � d)L � 1� d
dPr(rollover at layer L � 1)

dFd;l � 1
[Fd;l � 1 � �B l � 1(y; L) + c] (114)

The �rst order condition with respect to Fd;l for 0 < l < L � 1 is,

0 = � � � d
l + � � d

l+1 + (1 � � d) l � d
dPr(rollover at layer l)

dFd;l
(Fd;l � 1 � �B l (y; L) + c(L � l )) (115)

For l = 0, the �rst order condition is

0 = � � � d
0 + � � d

1 + � d
dPr(rollover at layer l)

dFd;0
(Fd;l � 1 � �B l (y; L) + c(L � l )) (116)

Substituting in all the Lagrangian multipliers.

0 = � � � d
0 + (1 � � )

L � 1X

l=0

(1 � � d) l � dPr(rollover at layer l)

+
L � 1X

l=0

(1 � � d) l � d
dPr(rollover at layer l)

dFd;l
(Fd;l � 1 � �B l (y; L) + c(L � l )) (117)
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Denote layer-0's choice asFd;0 = Fd, satisfying equation (117). If � � d
0 > 0, then Fd = e, and since

� � d
L � 1 � � � d

L � 2 � ::: � � � d
0 > 0 (118)

so all the constraints are binding, i.e. Fd;l � 1 = Fd;L � 2 = ::: = Fd.

If � � d
0 = 0, then Fd < e, it must be the case that dPr(rollover at layer l )

dFd;l
< 0 holds for at least

one l. Denote l̂ as the smallest l such that dPr(rollover at layer l )
dFd;l

< 0. This implies that for l < l̂ ,
dPr(rollover at layer l)

dFd;l
= 0, so the �rst order conditions for Fd;l (l � l̂ ) are the same as that for

Fd;0. In other words, Fd;l = Fd. For l < l̂ , we have � � d
l > 0, so the constraint is binding, i.e.

Fd;l � 1 = Fd;L � 2 = ::: = Fd;l̂ � 1 = Fd.

So far we have shown that when there is no rollover concerns, we haveFd;l;t = Fd being constant

over time and across layers. Now we just to show wheny is small, and when the money raised

from the unconstrained optimal contract is smaller than the amount owed, the managers cannot

deviate and set higherFd. For managers in layer 1 to layerL � 1, becauseFd;l � Fd;l � 1 is binding,

they cannot set higherFd. For layer 0, as we will show in Appendix B, Assumption 1 ensures that

Fd;0 � e is binding. Hence the entrepreneur at layer 0 cannot deviate and set higherFd either. As

a result, Fd;l;t = Fd for all layer l and time t.

We next proceed to show thatFy;l;t = min( Fy;l � 1;t ; Fy;l ), where Fy;l is a function of Fd;l .

At time t, for a given sequence of future paymentsf Fy;L � 1;t+ j g1
j =1 , there exists Fy;L � 1;t such

that

PL � 1 = VL (f Fy;L � 1;t ; f Fy;L � 1;t+ j g1
j =1 ; Fd;l � 1g; L ) = R̂ (119)

Becauseyt is i.i.d. across periods,Fy;L � 1;t does not depend on the history ofy.

Since the fund manager can always renegotiate with the households, it must be the case that

Fy;l � 1;t � minf Fy;L � 1;t ; Fy;L � 2;t g (120)

If Fy;l � 1;t < min(Fy;L � 1;t ; Fy;L � 2;t ), then by setting ~Fy;l � 1;t = min( Fy;L � 1;t ; Fy;L � 2;t ) and setting
~Fy;L � 1;t+1 = Fy;L � 1;t+1 � � (min( Fy;L � 1;t ; Fy;L � 2;t ) � Fy;l � 1;t ), both the households and the fund

manager remain indi�erent. So without loss of generality, we can assume

Fy;l � 1;t = min( Fy;L � 1;t ; Fy;L � 2;t ) (121)

Next, we proceed to showFy;L � 1;t must be a constant.

Given our hypothesized form ofFy;L � 2 and the fact that yt is i.i.d., the distribution of Fy;L � 2;t

is stationary. If F� y ;t < F � y ;t+1 , then it must exist j , such that

Et [Fy;L � 1;t+ j ] > Et+1 [Fy;L � 1;t+ j +1 ] (122)

) Et [min(Fy;L � 1;t+ j ; Fy;L � 2;t+ j )] > Et+1 [(Fy;L � 1;t+ j +1 ; Fy;L � 2;t+ j +1 )] (123)

) Fy;L � 1;t+ j > F y;L � 1;t+ j +1 (124)

However, at time t + j , the problem faced by the fund is exactly the same as at timet because of

stationarity: at both point t and t + j , the manager is trying to �nd the best subsequent of payment
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such the debt is worth Fd;l � 1 to households. The two problems are identical. Hence it must be the

case that

Fy;L � 1;t+ j < F y;L � 1;t+ j +1 (125)

This is a contradiction. So Fy;L � 1;t = Fy;l � 1, i.e. it must be a constant over time.

Next, we consider the lending relationship between layerl � 1 and layer l (1 � l < L ),

Similar to before, because creditors can always renegotiate

Fy;l � 1;t � minf Fy;L � 1;t ; Fy;L � 2;t g (126)

where Fy;L � 1;t is de�ned as

Pl � 1(f Fy;L � 1;t ; f Fy;l � 1;t+ j g1
j =0 ; Fd;l � 1g) = Fd;l � 1 (127)

If Fy;l � 1;t < minf Fy;L � 1;t ; Fy;L � 2;t g, we show then there is a (weakly) better contract for layerl � 1
manager. Denote � = min( Fy;L � 1;t ; Fy;L � 2;t ) � Fy;L � 2;t . Set ~Fy;l � 1;t = min( Fy;L � 1;t ; Fy;L � 2;t ), and

~F y;L � 1 ;t +1 = F y;L � 1 ;t +1 �
� y �

� (1 � � y )[(1 � � d ) l +1 � y + (1 � � d ) l � d Pr(rollover at layer l ) � y + (1 � � d ) l � d
d Pr(rollover at layer l )

dF y;l � 1
V l ]

(128)

layer l 's payo� then remains unchanged. For layer l � 1, the change in payo� is also 0. Hence

without loss of generality, we can assume

Fy;l � 1;t = min( Fy;L � 1;t ; Fy;L � 2;t ) (129)

The proof for Fy;L � 1;t = Fy;l � 1 carries directly over for a generall Fy;L � 1;t = Fy;l � 1. Hence

Fy;l � 1;t = min( Fy;l � 1; Fy;L � 2;t ) (130)

For layer 0 (the entrepreneur),

Fy;0;t = min( Fy ; yt ) (131)

We have now established stationarity. We move on to showFd;l = Fd, and Fy;l = Fy , i.e. they are

the same constant across layers.

Lastly, we show Fy;l = Fy follows from Fd;l = Fd. By the de�nition of Fy;l ,

Fd;l = Pl+1 + Vl+1 (f Fd;l+1 ; Fy;l +1 g; f Fd;l ; Fy;l g) (132)

In competition, it must be the case that

Pl = Pl+1 + Vl+1 (133)

Pl = Fd;l = Fd (134)

The same is true forPl+1 = Fd. This implies

Vl+1 (f Fd; Fy;l +1 g; f Fd; Fy;l g) = 0 (135)
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From the HJB of Vl+1 , we can see that it is proportional to Fy;l � Fy;l +1 . Hence for Vl+1 = 0, it

must be the case that

Fy;l = Fy;l +1 = Fy (136)

As mentioned before, in equilibrium, Fy is the minimal payment if project matures such that

the new households are willing to rollover debt, for a givenFd. By de�nition

Fd = VL (f Fy ; Fdg; L ) for y � Fy (137)

) Fd = � yFy + vL (f Fy ; Fdg; L ) (138)

Since all layers have the sameFy and rollover fails when y < F y , we have

Pr(rollover at layer l) = 1 � H (Fy) (139)

Plug this expression in the �rst order condition of Fd, we get

� � � d
0 + (1 � � )

L � 1X

l=0

ml � d(1 � H (Fy)) �
L � 1X

l=0

ml � dh(Fy)
dFy

dFd
(Fd � �B l (Fy ; L ) + c(L � l )) = 0

(140)

� � d
0 (e � Fd) = 0 (141)

� � d
0 � 0 (142)

When Fd � e is binding,

dFy

dFd
=

1
� y

(143)

hence

(1 � � )(1 � mL )(1 � H (Fy)) �
L � 1X

l=0

ml � dh(Fy)
1
� y

(Fd � �B l (Fy ; L ) + c(L � l )) (144)

� (1 � � )(1 � mL )(1 � H (Fy)) �
L � 1X

l=0

ml � dh(Fy)
1
� y

(Fd + c(L � l )) (145)

Under Assumption 1, the above equation is greater than or equal to 0. HenceFd = e.

B.1 Solving for Value Functions

Similar to the de�nition of vL (L ), de�ne bl (L ) as the stationary component ofB l (L ),

bl (L ) � B l (L ) � � y min(Fy ; y) (146)

Using the expressions forB l (L ) and VL (L ), we can write them in matrix form,

	

2

6
6
6
6
6
6
4

b0(L )

b1(L )

:::

bL � 1(L )

vL (L )

3

7
7
7
7
7
7
5

= � (147)
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