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Abstract

Are there times when durable spending is less responsive to economic stimulus? We
argue that aggregate durable expenditures respond more sluggishly to economic shocks
during recessions because microeconomic frictions lead to declines in the frequency of
households� durable adjustment. We show this by �rst using indirect inference to
estimate a heterogeneous agent incomplete markets model with �xed costs of durable
adjustment to match consumption dynamics in PSID microdata. We then show that
aggregating this model delivers an extremely procyclical Impulse Response Function
(IRF) of durable spending to aggregate shocks. For example, the response of durable
spending to an income shock in 1999 is estimated to be almost twice as large as if it
occurred in 2009. This procyclical IRF holds in response to standard business cycle
shocks as well as in response to various policy shocks, and it is robust to general
equilibrium. After estimating this robust theoretical implication of micro frictions,
we provide additional direct empirical evidence for its importance using both cross-
sectional and time-series data.
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1 Introduction

Does the response of aggregate durable spending to a given change in policy depend on

the state of the business cycle? In this paper, we argue that microeconomic durable frictions

lead to sluggish macro responses during recessions.

Figure 1: Frequency of Durable Adjustment

We begin by using various data to show that while durable adjustment is always infre-

quent, households are particularly unlikely to adjust their durable holdings during recessions.

Figure 1 shows the frequency of durable adjustment in PSID data across time.1 We show

this both for a broad measure of durables, which is only available beginning with the PSID

redesign in 1999, as well as for housing, which is available for a longer time-series. Panel

logit regressions imply that recessions lead to a signi�cant decline in the probability of broad

durable adjustment of approximately 20% and a decline in the probability of buying/selling

1See Appendix 1 for a detailed description of the data construction for these and subsequent �gures.
Broad durables include both housing and vehicles while housing includes only housing adjustment. Fre-
quencies are annual.
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a house of approximately 15%. In addition to this time-series result, we �nd a strong re-

lationship between local business cycles and durable adjustment: a two-standard deviation

increase in state unemployment lowers the probability of broad durable adjustment in the

PSID by 30%-40% after controlling for various combinations of state, year and household

�xed e¤ects. See Appendix 1 for formal regression results.

Aggregate durable turnover shows a similar pattern: Figure 2 shows various measures

of durable sales in a year divided by initial stocks. The �rst panel shows the behavior of

new and used vehicle sales (as measured by CNW market research) and the second panel

shows the behavior of new and existing housing sales (as measured by Census and HUD).

While it is well-known that new durable purchases are highly cyclical, it is less widely

documented that used durables exhibit similar patterns. These facts reinforce each other so

that the probability that a randomly chosen house or car changes hands falls dramatically

in recessions.2

Figure 2: How Frequently Does the Durable Stock Change Hands?

These microeconomic adjustment patterns have important implications for business cycle

dynamics. In particular, infrequent and lumpy durable adjustment at the household level
2New (New+Existing) house turnover is 19% (22%) lower in recession years than non-recession years.

Similarly, New (New+Existing) vehicle turnover is 11% (14%) lower. See Appendix 1 for description of our
data.

3



leads aggregate durable expenditures to become much less responsive to shocks or unantici-

pated policy changes during recessions. Why is there a cyclical link between micro lumpiness

and aggregate responsiveness? Declines in wealth and income during recessions lead fewer

households to adjust their durable holdings upwards and more households to adjust them

downwards. However, the presence of depreciation means that the number of increases

declines more quickly than the number of decreases grows. Thus, during recessions, fewer

households adjust their durable holdings, which sharply reduces the elasticity of aggregate

durable expenditures to aggregate shocks.

Understanding the behavior of broad durable expenditures is crucial for understanding

recessions. Consumer durables and residential investment respectively accounted for 24%

and 33% of the total decline in real GDP between 2007-2009 so that declines in broad durable

spending account for more than half of the recession.3 From 1960-2013 both components of

GDP were highly cyclical and volatile, with reductions in consumer durable spending (res-

idential investment) accounting for 26.6% (58.3%) of real GDP changes during recessions.4

Leamer [2007] shows that residential investment and durable spending are the two most

importance components in explaining "Weakness in GDP" going into recessions prior to

2007-2009. Thus, in a pure accounting sense, stabilizing broad durable expenditures would

substantially moderate the business cycle, and indeed, a number of policy interventions

during the Great Recession were speci�cally designed to stimulate durable demand.5

We argue for the quantitative and empirical relevance of procyclical durable responsive-

ness in �ve steps:

1) We use indirect inference to estimate a heterogeneous agent incomplete markets

model with �xed costs of durable adjustment to match household behavior in PSID. In

particular, we use a novel "gaps" based approach that maximizes the �t between model

and data along the dimensions which are most important for explaining durable adjustment.

This procedure is extremely successful as our model is able to explain 72-86% of observed

variation in household adjustment probabilities. In addition, our estimated model matches

a variety of facts that are not directly targeted.

2) After arguing that our estimated model matches micro consumption dynamics, we

explore its implications for aggregate dynamics. We begin the macro analysis with a series of

aggregate shocks in partial equilibrium. We start with a partial equilibrium analysis because

it allows us to explore a more empirically realistic baseline model and provide more sensitivity

3This is the change in components of real chained GDP divided by the change in total real chained GDP
from 2007q4 to 2009q2.

4This is the average contribution to percent change in real gross domestic product from BEA Table 1.1.2
calculated over NBER recession quarters.

5For example, the Cash for Clunkers and First Time Home Buyers credit.
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analysis relative to what is feasible in general equilibrium. In addition, it allows us to

explore the implications of business cycles for household dynamics in a model that perfectly

replicates the aggregate behavior of income and wealth. We show that the response of

aggregate durable expenditures to a variety of shocks is highly procyclical. In particular, we

allow for shocks to income, wealth, taxes, interest rates and subsidies to durable adjustment.

In all cases there is substantial state-dependence so that the same shock has much smaller

e¤ects if it occurs in a recession than if it occurs during an expansion.6

3) As discussed above, the procyclical impulse response in our model is driven by variation

across time in the distribution of households�durable holdings together with the probability

they adjust. We next show that we can directly test for this reduced form implication in

PSID data, and we show that the data strongly supports this theoretical implication.

4) While steps 1-3 provide evidence for procyclical responsiveness in partial equilibrium,

a large literature argues that general equilibrium can undo these e¤ects. To assess this,

we next add general equilibrium to our model and show that our conclusions are robust.7

The key reason that GE is not particularly important in our framework is that households

can save in both illiquid wealth and liquid wealth. If households can only save in only one

asset so that Y = C + I as in Khan and Thomas [2008], then lumpy investment behavior

necessarily induces violations of consumption smoothing. With two sources of savings so

that Y = C + Ik + Id this is not the case.

5) Finally, we provide additional reduced form evidence that the response of durable

spending to economic shocks is indeed procyclical. In particular, we exploit geographical

variation to show that the response of MSA-level automobile spending to identi�ed wealth

shocks strongly interacts with local economic conditions: the response of auto spending to

wealth shocks is much higher in MSAs experiencing local booms than in MSAs experiencing

local recessions.8

Thus, a variety of structural, reduced-form and time-series evidence supports the conclu-

sion that durable expenditures respond less strongly to shocks during recessions. However,

it is important to note that our results are about the relative e¤ectiveness of durable stimulus

over the business cycle, so they do not on their own imply that durable stimulus is ine¤ective

during recessions. What they do imply is that policy makers will get less bang-for-the-buck

from policies designed to stabilize durable expenditures during recessions than suggested by

6Importantly, our model implies a state-dependent IRF but not an asymmetric IRF.
7One disadvantage of GE is that the set of permissible exogneous shocks is more limited. For example,

we can no longer introduce exogenous shocks to interest rates since these are determined endogenously. For
this reason, we focus on TFP shocks in general equilibrium.

8In the appendix, we also show that our model with �xed costs of durable adjustment is a substantially
better �t to aggregate time-series evidence than are existing models with durable consumption.
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linear VAR evidence. Indeed, in Berger and Vavra [2014] we provide evidence using non-

linear VARs that durable spending multipliers are substantially lower during recessions than

those implied by linear VARs. In addition, Kaplan and Violante [2014] argue that poli-

cies designed to stimulate non-durable spending are likely to become more e¤ective during

recessions, so such policies may be relatively more attractive for stabilization.

For most of the paper, we focus on analyzing a broad measure of durable spending

that encompasses both consumer durables and housing. We focus on this broad notion of

durables since procyclical responsiveness should apply to any purchase which is long-lived

and illiquid. These are important characteristics at the broadest level of durable aggregation.

In addition, both consumer durable spending and residential investment are very large and

have similar cyclical patterns.9 Nevertheless, focusing on this broad notion of durables

forces us to abstract from some institutional features that may be important for housing but

not for autos (or vice versa). For this reason, we consider several robustness checks that

focus separately on di¤erent durable components and show that our conclusions remain.

There is a long line of literature studying models with durable consumption.10 In pio-

neering work, Eberly [1994] estimates (S,s) triggers for household auto purchases based on

the stylized model of Grossman and Laroque [1990]. She then interacts these estimated trig-

gers with estimates of the household wealth distribution to explain the aggregate time-series

for U.S. auto purchases. We expand on this approach in several important ways. Since

her work is based on Grossman and Laroque [1990] she imposes a single (S,s) trigger. In

addition, she must exclude liquidity constrained households from her analysis. We show

that in our model, which allows for binding borrowing constraints as well as (S,s) triggers

that vary with income and wealth, these assumptions matter. In contrast to our model, the

Grossman and Laroque [1990] model has very little predictive power for most households�

durable adjustment. In a similar stylized model, Bar-Ilan and Blinder [1992] argue that (S,s)

models should lead durable spending to depend on the past history of durable purchases and

thus the distribution of households�current gaps.

Attanasio [2000] and Bajari, Chan, Krueger, and Miller [2013] use alternative estima-

9It is important to note that the stock of housing is somewhat larger than the stock of consumer durables,
but that this is due to slightly lower depreciation rates. The average level of real consumer durable expen-
diture is slightly larger than the average level of real residential investment.
10See Mankiw [1982], Bernanke [1985], and Caballero [1990] for studies of durables and the PIH hypothesis.

Bertola and Caballero [1990], Grossman and Laroque [1990] and Caballero [1993] provide analytical models
of durable consumption with �xed costs. Leahy and Zeira [2005], Luengo-Prado [2006], and Browning and
Crossley [2009] study the role of durable wealth for explaining non-durable consumption. There is also
a large body of work studying various aspects of durable consumption over the life-cycle including Dunn
[1998], Krueger and Fernandez-Villaverde [2010], and Diaz and Luengo-Prado [2010].
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tion procedures to try to understand automobile and housing demand. In contrast to our

approach, they estimate reduced form policy functions rather than solving the households�

dynamic programming problem. This approach makes the results less suitable for analyzing

policy changes that might alter the estimated reduced form relationships.

Iacoviello and Pavan [2013] build an incomplete markets model with �xed costs of housing

adjustment and aggregate shocks. In contrast to our paper, they perform a simple calibration

exercise for the parameters of the model and do not explore its ability to explain micro

dynamics. In addition, they focus on entirely di¤erent aggregate questions. While our model

is in�nite horizon, they instead build a life-cycle model, and computational considerations

then require an annual rather than quarterly frequency. As such, their model is less suited

for examining business cycle dynamics and they instead focus on explaining secular changes

in aggregate volatility.

Kaplan and Violante [2014] study the implications of illiquid wealth holdings such as

durables for the behavior of non-durable consumption and show that they are able to explain

the response of non-durable consumption to one-time �scal rebate payments. In addition,

they brie�y show that illiquidity can potentially lead to state-dependent consumption dy-

namics. We view our work as highly complementary to their own but it is distinct in several

ways. For the most part, we focus on the implications of illiquidity for durable expenditures

rather than for non-durable spending because durable spending is substantially more impor-

tant for understanding business cycle behavior. Since our motivation is understanding how

micro consumption dynamics in�uence aggregate business cycles, our model also features a

variety of aggregate shocks and we explore the implications of general equilibrium.

Finally, our paper is closely related to Caballero, Engel, and Haltiwanger [1995], Ca-

ballero, Engel, and Haltiwanger [1997] and Bachmann, Caballero, and Engel [2013], which

argue for time-varying responsiveness arising from lumpy �rm behavior. Besides the ob-

vious di¤erence that we study households rather than �rms, there are several distinctions

between our analyses. In Caballero, Engel, and Haltiwanger [1995] and Caballero, Engel,

and Haltiwanger [1997] they impute capital and employment gaps and explore their aggregate

implications. Their gap imputation relies on an assumption that �rms�reset targets follow a

random walk, while our procedure requires no such assumption. Bachmann, Caballero, and

Engel [2013] build a quantitative GE model of �rm investment and targets various aggregate

time-series facts to address concerns that these early papers were not robust to general equi-

librium and lacked quantitative realism. However, they do not test their model implications

in micro data.11

11The literature on �rm lumpiness must also contend with issues that are not present in our household
environment. In particular, it can make a large quantitative di¤erence whether these models are calibrated
to match �rm vs. establishment moments, and it is not clear what level of aggregation corresponds to an
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To summarize, our analysis overlaps in part with many papers, but we believe we are

the �rst paper to jointly explore the micro and macro implications of household durable

adjustment in an estimated, structural GE model. We believe the synthesis of microdata,

structural modeling and general equilibrium is important for providing an accurate assess-

ment of the impact of policy changes.

2 Model and Estimation

2.1 Model Description

Our baseline model for estimation is a standard incomplete markets model with the addi-

tion of household durable consumption subject to �xed costs of adjustment. Households

maximize expected discounted utility of a consumption aggregate, and they are subject to

idiosyncratic earnings shocks as well as borrowing constraints. In this section, we describe

the partial equilibrium version of the model with no aggregate shocks, and in the following

sections we discuss the addition of aggregate shocks: �rst in partial and then in general

equilibrium.

Households solve:

max
cit;d

i
t;a

i
t

E
X

�t

0B@
h
(cit)

v
(dit)

1�v
i1�


� 1
1� 


1CA
s:t:

cit = wh�it (1� �) + (1 + r)ait�1 + dit�1 (1� �d)� dit � ait � A(dit; d
i
t�1)

ait � �(1� �)dit; d
i
t � 0

log �it = �� log �
i
t�1 + "it with "

i
t � N(0; ��);

where cit, d
i
t and a

i
t are household i�s non-durable consumption, durable stock, and liquid

assets, respectively. The parameter � is the quarterly discount factor, v is the relative

weight on non-durable consumption in period utility, and 1=
 is the intertemporal elasticity

of substitution.12 �it represents shocks to idiosyncratic labor earnings, h is a household�s

economic decision maker. In contrast, for household level durable adjustment, the correct level of aggregation
does not have any such ambiguity.
12Piazzesi and Schneider [2007] provides some evidence in favor of the Cobb-Douglas period utility function.

Note the Cobb-Douglas utility function also means we can normalize the service �ows from durables to be
equal to the stock without loss of generality.
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�xed13 hours of work while w and r are the aggregate wage and interest rate, �d is the

depreciation rate of durables and � is a proportional payroll tax. Finally, A(dit; d
i
t�1) is the

�xed adjustment cost that households face when adjusting their durable stock. We assume

that A takes the form

A(d; d�1) =

(
0 if d = [1� �d (1� �)] d�1

F d (1� �d) d�1 + F twh�it else.

Following Bachmann, Caballero, and Engel [2013] 0 � � � 1 is a "required maintenance"
parameter. Positive values of � represent the fact that some maintenance is required to

continue enjoying the �ows from durable consumption, e.g., �xing a �at tire on a car or

�xing a broken furnace in a house.14 When a household adjusts its durable stock, it must

pay �xed adjustment costs that take two forms. First, they lose a �xed fraction of the

value of their durable stock. These costs correspond to brokers fees, titling costs, etc.

Second, households face some time cost of adjusting their durable holdings. These costs

correspond to, e.g., the time involved in searching for a new house or in researching which

car to purchase. We allow for this general speci�cation because these two adjustment costs

may interact di¤erently with the business cycle. The opportunity cost of time is procyclical

so that time costs will tend to generate countercyclical durable adjustment. Conversely,

�xed costs that are proportional to the stock of durables have the most bite when income is

low and tend to generate procyclical durable adjustment. Estimating a speci�cation with

both costs allows the data to inform their relative importance.

Given these assumptions, the in�nite horizon problem can be recast recursively as

13Endogenizing hours complicates the model and does not a¤ect our main conclusions.
14In previous versions of this paper, we considered an adjustment cost function that allowed households

to endogenously choose the amount of maintenance between 0 and 1 without paying the �xed adjustment
cost. This led to similar results but substantially increases the computational burden of the model, which
makes estimation infeasible.
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V (a�1; d�1; �) = max
�
V adjust (a�1; d�1; �) ; V

noadjust (a�1; d�1; �)
�

with

V adjust (a�1; d�1; �) = max
c;d;a

[cvd1�v]
1�


1� 

+ �E"V (a; d; �

0)

s:t:

c = wh� (1� �) + (1 + r)a�1 + d�1 (1� �d)� d� a� F d (1� �d) d�1 � F twh�

a > �(1� �)d

log �0 = �� log � + " with " � N(0; ��)

V noadjust (a�1; d�1; �) = max
c;a

[cvd1�v]
1�


1� 

+ �E"V (a; d�1 (1� �d (1� �)) ; �0)

s:t:

c = wh� (1� �) + (1 + r)a�1 � �d�d�1 � a

a > �(1� �)d

log �0 = �� log � + " with " � N(0; ��)

We now turn to a discussion of how we estimate the parameters of the model. The

computational solution of the model is discussed in Appendix 4.

2.2 Estimation

To decrease computational burden, our estimation procedure proceeds in two steps: we �rst

calibrate some subset of parameters for which we have reliable external evidence. We then

estimate the remaining parameters using an indirect inference procedure, which we describe

shortly.

2.2.1 Calibration and Model Restrictions

We calibrate several parameters of our model in standard ways but have explored the robust-

ness of our conclusions to changes in these parameters. We set r = 0:0125, which delivers

an annual interest rate of approximately 5%, and we set the discount factor � = 0:98: In

our benchmark model we set 
 = 2. We normalize w = 1 and set h = 1=3: We calibrate

the idiosyncratic productivity process to match the persistence and variance of annual labor

earnings in PSID data which yields a persistence of idiosyncratic earnings of 0.975 and a

standard deviation of 0.1, and we set the payroll tax equal to 5% to re�ect a combination
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of the statutory rate with phaseouts for high income.15 We calibrate the depreciation rate

of durables to match data from the BEA, weighted by the relative size of the housing and

consumer durable stocks. That is, we set �d = �BEAH
HBEA

HBEA+CDBEA +�
BEA
CD

CDBEA

HBEA+CDBEA ; which

delivers a quarterly value of 0.018. For simplicity, we abstract from growth, but this does

not a¤ect our conclusions.16

In the general formulation of our model, durables serve a dual role: they provide direct

utility to households, but they also serve as collateral against which households can borrow.

For most of the analysis that follows, we will shut down this second channel by setting � = 1.

However, in Appendix 3 we estimate a version of the model with � = 0:20 so that households

need only pay a 20% down payment to purchase new durable holdings. We show that this

version of the model delivers similar results both for micro and macro durable dynamics.

There are two main reasons that we choose to make the model with � = 1 our benchmark:

First, when � < 1 and there is no adjustment costs on a, the model implies that households

can costlessly adjust their durable equity. In other words, such a parameterization implies

that households can costlessly re�nance, which is clearly counterfactual. Since it is infeasi-

ble to solve a more realistic model with liquid assets, semi-liquid durable equity, and illiquid

durables we concentrate on the case with no re�nancing rather than the case with costless

re�nancing as our benchmark. Second, if collateral constraints become looser during expan-

sions this will tend to amplify all of our results since when down-payment requirements are

low households can rapidly adjust their durable holdings in response to shocks. In contrast,

when down-payment requirements are large, households must save a larger amount of liquid

assets before increasing their durable holdings. By shutting this channel down, our quanti-

tative conclusions are thus relatively conservative. Setting � = 1 in our benchmark model

also makes our results more comparable to the model in Kaplan and Violante [2014], which

rules out collateralized borrowing against illiquid assets.

In addition to exploring the role of collateral constraints, Appendix 3 also explores a

second important empirical extension of our model. In particular, we consider the role

of rental markets for our analysis and provide evidence that introducing rental markets

has little quantitative e¤ect on our results. While rental markets are not particularly

15Since the tax is �xed across time, and hours are exogenous this plays essentially no role in our analysis.
Using a higher value to match overall income taxes (or excluding taxes from the model entirely) yields
nearly identical results along all dimensions. We only include the tax so that we can perform simple policy
experiments with temporary and permanent tax changes in the following section.
16Varying the depreciation rate within reasonable ranges or including trend income growth consistent with

that over our sample period had negligible e¤ects on our results. For simplicity and comparison with most
business cycle models, we abstract from growth and focus on deviations around a steady-state.
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important for consumer durables, they play a large role in housing markets. It would

be desirable to build a model with separate consumer durables and housing, but this is

technically infeasible. We disallow rental markets in our benchmark model for three reasons:

1) Consumer durable spending represents more than half of total broad durable spending

from 1960-2013, and rental markets are not important for consumer durables. 2) Introducing

rental markets increases the computational burden of the problem substantially by adding

an additional choice.17 3) The indirect inference procedure we describe next is based

on the "gap" between a households�current durable holdings and those it would hold if it

temporarily faced no adjustment costs. De�ning gaps in a world with rental markets is

not straightforward.18 Focusing on a benchmark model without rentals and restricting the

empirical analysis to homeowners obviates all of these issues. Nevertheless, Appendix 3

shows that the introduction of rental markets does not alter our conclusions.19

2.2.2 Estimation Procedure

The remaining parameters of our model are the proportional �xed cost of durable adjustment,

F d; the time cost of durable adjustment F t, the non-durable weight in utility v, and the level

of required maintenance �. In addition, we also estimate a measurement error parameter,

��, which allows for all variables in the data and model to be reported with some error. We

assume that the reported value of a variable bZ is the true value Z plus some percentage

measurement error: bZ = Z (1 +b�) with b� � iid N(0; ��).

We estimate these parameters using a "gap" based indirect inference procedure. First

note that in models with �xed adjustment costs, we can always de�ne a gap x = log d� �
log(d�1); where d� is the choice of d that solves the maximization problem in V adjust. Intu-

itively, x measures the di¤erence between the stock of durables that a household inherits at

the start of a period and the stock of durables that a household would choose if it adjusted

today. However, since the household does face adjustment costs, its actual choice of durables

today may or may not be equal to d�. If V adjust > V noadjust then the household will choose

to adjust and set d = d� and otherwise, the household will choose to not adjust and will set

d = d�1 (1� �d (1� �)) : The larger the (absolute) value of x the more likely it is that the

gains from adjusting exceed the �xed adjustment cost. Thus, the adjustment hazard h(x)

will be increasing in the (absolute) size of the gap. This implies that measuring household

17It also requires estimating the relative value of renting versus owning.
18In the data it is also not obvious how to de�ne durable stocks for households that simultaneously rent

apartments while owning vehicles.
19In addition, homeownership rates are fairly stable across time with only mild procyclicality. Further-

more, for the small changes that are observed, homeownership rates rise somewhat more quickly in expansions
than they fall in booms, so that accounting for rental markets in the data would amplify our conclusions.
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gaps is essential for understanding households�durable adjustment decisions.

In addition, the distribution of gaps f (x) plus the adjustment hazard h(x) also deter-

mines aggregate durable expenditures at a particular point in time. Aggregate durable

expenditures will be given by the amount that a given household purchases when adjusting

times its probability of adjusting. This implies that aggregate durable expenditures are

given by ID =
R
xht (x) ft (x) dx; where ht (x) is the probability of adjusting at time t as a

function of the gap and ft (x) is the distribution of gaps at time t.20 Given that the distri-

bution of gaps and hazards is critical for understanding both micro and macro adjustment,

the goal of our indirect inference procedure is to pick parameters so that distributions of

gaps and hazards in the model match those in the data.

The parameters we are estimating crucially a¤ect the demand for durables, and hence

the distribution of gaps and probability of adjustment. In particular, F d a¤ects the width

and steepness of the adjustment hazard and F t a¤ects the symmetry of the hazard since

households that are decreasing durables tend to be poorer and have lower opportunity costs

of time. The level of durable vs. non-durables and thus the mean gap in the data is a¤ected

by v, � a¤ects the skewness of the gap distribution, and the degree of measurement error

a¤ects the level of the hazard (the probability that a household with no observed gap adjusts

anyway).21

Using superscript m to represent model objects and superscript d to represent data ob-

jects, let fmp (x) and h
m
p (x) be the distribution of gaps and hazard implied by the model with

vector of parameters p: If we knew the distribution of gaps and hazards in the data, fd (x) and

hd (x), we would then pick p to solve minp
nR h�

fmp (x)� fd (x)
�2
+
�
hmp (x)� hd (x)

�2i
dx
o
:

That is, we would pick our parameters so that the simulated distribution of gaps and hazards

in the model match those in the data. If we observed x in the data, this procedure would

be straightforward. The obvious complication with implementing this procedure is that we

do not observe x in the data, so we cannot compute fd (x) and hd (x).

While we do not directly observe x in the data, this procedure is not hopeless because

we can impute x using restrictions implied by our structural model.22 We know that in our

model, there is a mapping from observables to d� and thus x. That is, for a particular set of

parameters, we can construct a model-generated function Gm that maps variables z which

are observable in both the data and the model to x, which is only observable in the model:

20This intuitive expression ignores maintenance expenditures, but quantitatively in the simulated model
these are close to constant across time so that this intuitive expression is highly accurate for capturing
changes in durable expenditures numerically.
21We have a more formal discussion of identi�cation in Appendix 3.
22This is analogous to the procedure in Caballero, Engel, and Haltiwanger [1995] and Caballero, Engel, and

Haltiwanger [1997], but in those papers they impute gaps using some simple rules of thumb that approximate
the true model but are not actually consistent with optimal behavior.
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xm = Gm (zm). By applying this same function to actual data, we can then impute a gap

measure: xd = Gm
�
zd
�
: Thus, imposing structural restrictions from our model allows us

to overcome a methodological challenge by imputing unobservable empirical objects from

observable empirical objects.

The data requirement for estimation is then that we observe the variables in z, and

that we observe households�adjustment decisions so that we can construct hd (Gm (z)) : We

leave a more complete discussion of the functional form of Gm, as well as a discussion of

z for Appendix 2. There we argue that data on a; d; c is required to accurately predict

model gaps.23 In addition, we require panel data on these objects so that we can construct

adjustment hazards and control for unmodeled household �xed e¤ects. To our knowledge,

the only data sets satisfying this restriction are the PSID24 (from 1999-2011), and the Italian

Survey of Household Income and Wealth (SHIW). We concentrate mainly on PSID data but

discuss some results for SHIW in Appendix 2. We mention the data for our estimation before

formally stating our estimation procedure because it introduces two additional complications:

1) PSID data is self-reported and subject to substantial measurement error. 2) Beginning

with the sample redesign, PSID only collects data every other year while our model period is

quarterly. We address both of these complications directly by aggregating our model data

to the same frequency as the PSID and introducing measurement error when comparing our

model objects to their empirical counterparts. With this in mind, we now formally state

our estimation procedure:

1) For a given set of parameters p, solve the model and compute xm = Gm (zm) : 2) Intro-

duce measurement error and aggregate the model to the same frequency as PSID to compute

model gaps with sampling error: cxm = Gm
�czm�. 3) Compute imputed gaps in the PSID:bxd = Gm

� bzd� :25 4) Compute the di¤erence between model simulated hazards and densities
and those in the data: Lp =

R ��
fmp
�cxm�� fd

� bxd��2 + �hmp �cxm�� hd
� bxd��2� dx: We

then repeat 1-4 with a di¤erent set of parameters and minimize L. Finally, we bootstrap

standard errors for all model parameters as well as distributions and hazards, but for brevity

we leave the discussion to Appendix 2.

In the standard language of indirect inference, our reduced form auxiliary model is given

by f
�
Gm

�czm�� and associated hazard h �Gm �czm��. Let �
�czm� be the joint density of

23We have tried also using income as an additional element of z and it yielded similar results. See
Appendix 3.
24Prior to the PSID sample redesign in 1999, only food consumption was recorded and there was no

consistent data on vehicle holdings
25Note that in the data, we only observe empirical objects with measurement error so for notational sym-

metry we replace zd with bzd from this point forward, since we only compare model objects with measurement
error to the data.
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model variables. This joint density together with its evolution encompasses the full struc-

ture of the model, but the pdf f (Gm (bz)) summarizes the complicated joint-density of model
variables with measurement error �

�czm� in a one-dimensional distribution of gaps. The

hazard h
�
Gm

�czm�� collapses the time-series evolution of the joint-density of czm into a

one-dimensional probability of adjustment as a function of gaps. Thus, our indirect infer-

ence estimator in essence collapses high-dimensional joint-densities � (bz) to more practical
one-dimensional functions. Since our reduced form auxiliary model is collapsing some in-

formation from the full structural model and is also introducing measurement error and

time-aggregation bias, it will in general be a misspeci�ed description of the dynamics of

the true model. However, it is important to note that as usual in indirect inference, con-

sistent estimation does not require the auxiliary model to be correctly speci�ed. As long

as the reduced form model is computed identically on actual and simulated data we will

achieve consistent estimation. We further discuss this point in addition to a discussion of

identi�cation of our structural parameters in Appendix 2.

Now that we have formally stated our estimation procedure, we provide some additional

discussion in intuitive terms before turning to results. It is important to note that since

the distribution of gaps in the model as well as in the data are purely functions of the joint

distribution of observables, bz, our estimation strategy is in some sense trying to make these
joint distributions line up with each other. If the joint distribution of observables in the

model �(czm) was able to perfectly match the joint distribution of observables in the data
�(bz), then by construction the distribution of gaps in the model and data would be identical.
However, given that we have few parameters and that �( bzd) is an extremely high dimen-

sional object, a perfect �t is clearly unobtainable.26 Since it is infeasible to perfectly match

the joint-distribution of wealth, durable holdings and non-durable consumption, which mo-

ments of this distribution are most important to match? Our gap-based indirect inference

procedure provides the answer to this question. We should weight moments of �( bzd) by

their importance for determining gaps. For example, if our model told us that the ratio

of non-durable to durable consumption was extremely important for determining household

gaps, while liquid wealth was unimportant, then our estimation strategy would place more

weight on matching the former distribution and less weight on matching the latter.

In the following section, we will show that our best �t parameters yield a distribution of

gaps in the model that is an extremely good �t to the distribution in the data, which means

26A large literature exists just trying to match the wealth-distribution. Matching �
�
zd
�
is a vastly

more di¢ cult goal since wealth, durable and non-durable expenditures are not independent. For ex-
ample, existing studies that target the wealth distribution attempt to match

R
f(a)da while �

�
zd
�
=R

a

R
d

R
c
fa;d;c(a; d; c)dadddc is clearly a much more complicated object.
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wematch the moments of � (bz) that are important for determining gaps.27 More importantly,
we show that our model is very accurate at predicting actual durable adjustment in the data.

Since hd
�
Gm

� bzd�� is the actual adjustment probability in the data for a household with
imputed gap bxd = Gm

� bzd� there is no guarantee that this empirical adjustment probability
will correspond to that in the model. This implies that calculating the empirical hazard

as a function of imputed durable gaps provides a test for model misspeci�cation: if our

structural model is misspeci�ed then our imputed gaps bxd will not be particularly useful
for explaining observed adjustment probabilities. For example, if G was a random uniform

function, hd
� bxd� would be completely �at. If imputed gaps are completely random then

households with large imputed gaps will be just as likely to adjust as households with gaps

of zero. Finding an upward sloping empirical hazard as a function of (absolute) imputed

gaps is evidence that our model provides useful predictive power for households� actual

durable adjustment decisions in the data. In essence, our estimation procedure is trying to

maximize the ability of our model to explain actual durable adjustment patterns but there

is no guarantee that we would succeed at this goal.

We now turn to a brief description of our data and then present results showing that our

model is a very good �t for both the density of gaps and the empirical adjustment hazard

while simpler existing models are unsuccessful at explaining actual durable adjustment.

2.2.3 Data Description

Here we brie�y describe the data and sample restrictions for our benchmark estimation. We

leave a more detailed description and various robustness descriptions for Appendix 1. Our

estimation uses data from the PSID from 1999-2011. Households are interviewed every other

year, and are asked a variety of questions about non-durable consumption, wealth, housing,

vehicles and income. While it would be desirable to extend the analysis to data before 1999,

the previous PSID samples only collected food consumption rather than broad non-durable

consumption. In addition, vehicle data was not constructed consistently across time.

The value of c is the sum of all components of food consumption, utilities, transportation

expenses, schooling expenses and health services. Our measure of d is the sum of housing

and vehicle values and a is the sum of business value, stocks, IRAs, cash and bonds minus the

value of outstanding debt. Since our benchmark model does not include rental markets, we

restrict our estimation to continuous home-owners in our benchmark results. In Appendix 3

27In the following section, we show that our model is a good �t for various moments of � (z), which shows
that our best �t parameters do not produce unrealistic distributions of observables: This suggests that an
alternative estimation procedure directly targeting � (z) would likely yield similar results. However, by
construction, such a procedure would be less accurate at predicting actual household durable adjustment
patterns.
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we discuss an extension of our model to include rental markets and adjust our PSID analysis

accordingly. After constructing measures of c,d, and a per household member we de�ate

nominal values using NIPA price indices, adjust for household age and remove a household

�xed e¤ect.28

We restrict our analysis to households that are in the nationally representative core

sample, whose head is less than 65 years of age, and which have non-missing data on c;

d and a. See Appendix 1 for additional discussion of our data, cleaning procedures and

alternative robustness checks.

2.3 Estimation Results

Table 1 displays our parameter point estimates together with bootstrapped 95% con�dence

intervals. Our point estimate for the fraction of the value of durables lost when adjusting is

0.0525. This is line with estimates of the size of realtors fees, and it is also similar to values

typically used in the literature.29 In the following sections, we show that this �xed cost has

important implications for aggregate dynamics. In contrast, we estimate a negligible (and

statistically insigni�cant) time cost of durable adjustment. While not directly targeted, we

show that the non-durable share in utility of 0.88 delivers ratios of durable to non-durable

expenditures that are consistent with the data. The point estimate for our measurement

error parameter implies that measurement error is distributed mean zero with standard

deviation of 8%. This implies that a reported value will be within 5% (10%, 15%) of the

true value approximately 47% (80%, 94%) of the time. Finally, our estimated maintenance

parameter implies that households o¤set 80% of depreciation each quarter.30

Table I

Parameter Point Estimate 95% Con�dence Interval

F d (Fixed Cost Stock) 0.0525 (0.043,0.068)

F t (Fixed Cost Time) 0.001 (0.000,0.004)

� (Utility Flow Non-Dur) 0.88 (0.875,0.885)

m (Measurement Error) 0.08 (0.06,0.10)

� (Maintenance) 0.80 (0.75,0.95)

28The age �xed e¤ects removes pure demographic e¤ects, which we do not model. Household �xed e¤ects
remove any unmodeled permanent di¤erences across households (which are ex-ante identical in the model).
29Diaz and Luengo-Prado [2010] calibrate a value of 0.05 and Bajari, Chan, Krueger, and Miller [2013]

estimates a value of 0.06 in models of housing adjustment. Eberly [1994] uses a transaction cost of 0.05 in
her analysis of automobiles.
30This relatively large maintenance value is required to explain the fact that both housing and vehicle

adjustment are less frequent than would be expected by the "raw" depreciation numbers.
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Given these estimated parameters, how well does our model �t the distribution of gaps

and hazard in the data? Figure 3 shows the distribution of gaps in the model, cxm, and
imputed gaps in the data, bxd: The shaded areas are bootstrapped 95 percent con�dence
intervals. Overall, the �t is extremely close with overlapping con�dence intervals at all

points. Again, this close �t between model and data means that for our best �t parameters

the model is able to match �( bzd) along the dimensions important for explaining gaps. In

addition, the estimated densities are moderately negatively skewed due to the presence of

depreciation, which we will show has important implications for aggregate dynamics.31

Figure 3: Distribution of Gaps in Model and PSID

Figure 4 shows the adjustment hazard in the model and in the data. In the model, this

is equal to the probability that a household adjusts for a given gap cxm: Note that the hazard
in the model does not follow a strict (S,s) rule, jumping from 0 to 1 at some threshold. This

is because di¤erent state variables can map to the same gap so that sometimes a household

with a given gap will choose to adjust and other times it will not.32 In the data, the hazard

is equal to the actual empirical probability that a household with an imputed gap bxd chooses
to adjust. As stressed in the previous section, this is a very strong test of whether the

structural model is well-speci�ed. If the model is very misspeci�ed then the imputed gapsbxd will have little predictive power for empirical durable adjustment.
31The skewness of the gap distribution is approximately -.35.
32Note that if we conditioned on all state variables rather than just the gap, households would follow a

strict (S,s) rule.
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Figure 4: Adjustment Probabilities in Model and PSID

Overall, our model is extremely successful at predicting actual durable adjustment in

the data.33 We can assess this more formally using several quantitative measures of the �t

between the model and hazard. First, we can compare the additional explanatory power

of our model versus a Calvo model that just implies all households adjust with the same

probability. That is, we compute R2 = 1�
Pbx(fm(bx)[hm(bx)�hd(bx)])2Pbx(fm(bx)[hm(bx)�freq])2 . This tells us how much

of the total variation in the hazard predicted by the model is observed in the empirical

hazard.34 The R2 = 0:91. Thus, 91% of the total variation in hazards predicted by our

model is observed in actual data. This statistic tells us something about the global �t of

the model over the whole distribution of gaps, but we might also be interested in a local

measure of �t: given a gap, how well does the model predicted hazard match the empirical

hazard? To assess this, we compute
R � jhm(bx)�hd(bx)j

hd(bx) fm (bx) dbx� : This tells us the average
percentage deviation between the model and empirical hazards. We �nd that the average

deviation is .276 so that given a gap, we can on average explain 72% of the observed hazard

33Clearly the standard errors for the empirical hazard are wider than those for the model but the hazard
is strongly upward sloping. Wider standard errors in the data occur because there is some idiosyncratic
adjustment in the data not explained by our model and this "noise" interacts with sampling error in regions
of the gap distribution with little mass.
34We weight the deviations between hd (bx) and hm (bx) by fm (bx) to account for the fact that more gap

mass is close to zero than far out in the tails. That means that we should care more about getting the
hazard correct in the middle of the distribution. If we weight all points in the hazard equally rather than
weighting by the gap density then we get an R2 = 0:98:
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in the data.35 Thus, while our model is not a perfect �t to the empirical hazard, we can

explain a very large fraction of observed adjustment probabilities.36

It is important to note that since we only have �ve parameters, there was no guarantee

that any con�guration of parameters would be successful at matching the reduced form

hazard and density of gaps. In this sense, the predictive power of our model is not driven

mechanically by imputing empirical gaps from our model structure. In Appendix 2, we

show this more explicitly by performing an identical estimation procedure using the model

of Grossman and Laroque [1990], which has served as the basis for many existing empirical

studies. We show there that the empirical hazard computed from imputed gaps is nearly �at,

and is, if anything downward sloping. This implies that the model actually has modestly

negative predictive power: when the model predicts that households in the data should be

more likely to adjust than average, they are empirically less likely to adjust than average.

Thus, we view the strong ability of our benchmark model to predict empirical adjustment

patterns as its main strength: while the structure used to impute gaps is complicated, given

our imputed gap we are highly accurate at predicting when households will adjust.

In addition to the hazard and density, which are explicitly targeted by our indirect

inference estimation procedure, we can also assess the model �t along various dimensions

which are not directly targeted. Kaplan and Violante [2014] emphasize the importance of

"wealthy-hand-to-mouth" consumers for explaining household consumption dynamics. They

argue that many households have a large fraction of their wealth in illiquid assets such as

durables and that these households may behave quite di¤erently from those with access

to liquid wealth. Thus, if we want to take seriously the implications of our model for

consumption dynamics, it is important that it implies reasonable numbers of both hand-

to-mouth and wealthy-hand-to-mouth households. We de�ne a hand-to-mouth household

as one who has liquid assets less than one-half of their monthly labor earnings, and we

then de�ne a hand-to-mouth household as wealthy-hand-to-mouth if its durable holdings

are greater than the 25th percentile of durable holdings in the population.37 Using this

de�nition in PSID data, 28.7% of households are hand-to-mouth and 17.8% of households

are wealthy-hand-to-mouth. While the estimation does not directly target these numbers it

35The average absolute di¤erence (rather than percentage di¤erence) between the model and empirical
hazard is .038. In addition, as noted in the previous footnote, we weight deviations by the density of gaps.
If we instead weight all points on the hazard equally then we explain 86% of the observed hazard in the data
and �nd an absolute deviation of .032.
36We do not model life-cycle interactions or shocks to locational preferences that might interact with

housing decisions. We suspect that the unexplained portion of durable adjustment is largely driven by these
factors, which should be largely independent of the business cycle.
37Using di¤erent de�nitions such as 1/4 of monthly earnings for hand-to-mouth or the 50th percentile for

durable holdings produces similar �ts between model and data.
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produces extremely similar results, with 26.4% of households hand-to-mouth and 18.0% of

households wealthy-hand-to-mouth.

In addition, our model produces an average frequency of adjustment which is close to that

in PSID data. Using our broad de�nition of durables that encompasses housing+vehicles,

durable stocks in the PSID data have an annual frequency of adjustment of 10.8%. The

model implies a frequency of adjustment of only slightly above this at 12.9%.

Figure 5: Durable Holdings in Model and Data

Finally, we can assess the model�s ability to match the overall patterns of durable holdings

in the data. In Figure 5 we show four di¤erent slices of the durable distribution in � (bz). We
show the unconditional distribution of durable holdings as well as the relationship between

durable holdings and non-durable consumption, the relationship between durable holdings

and total wealth, and the relationship between durable holdings and income. Overall, the

model is a good �t to the data. The only place where the model misses somewhat more

substantially is on the mean level of durable holdings. While the distribution of durable

holdings around the mean in the model and data are quite similar, the model overstates mean

durable holdings relative to the data by roughly 10%. However, this does not have important

consequences for any of our results. We can re�t a version of the model that explicitly targets

mean durable holdings to be equal in the model and data. By construction, this model is a
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slightly worse �t for the distribution of gaps and hazards but gives almost identical aggregate

results. Again, the fact that our benchmark estimation does not exactly match mean durable

holdings in the data implies that mean durable holdings are not particularly important for

determining the distribution of gaps and hazards.38

Overall our estimated model is a good �t to household level consumption dynamics both

along targeted as well as untargeted dimensions. Bolstered by this good microeconomic �t,

we now explore the aggregate implications of our model.

3 Aggregate Implications of Lumpy Durable Purchases

We explore the macroeconomic implications of our model by �rst exploring the response

to a number of shocks in partial equilibrium. The use of partial equilibrium analysis has

several advantages: 1) Partial equilibrium is substantially faster to compute than general

equilibrium, which allows us to explore the robustness of our results to various extensions such

as collateralized borrowing and rental markets and to perform additional sensitivity analysis.

2) In partial equilibrium we can explore a number of aggregate shocks (such as exogenous

changes in interest rates) that are more challenging to model in general equilibrium. We

will argue that lumpy micro adjustment has important implications for how actual durable

spending responds to any shock that changes desired durable holdings, so it is important to

explore robustness to a variety of shocks.39 3) In partial equilibrium, we can pick a sequence

of aggregate income and wealth shocks that exactly reproduces the behavior of U.S. GDP

and capital across time so that our simulated economy well-approximates the actual U.S.

economy.

3.1 Aggregate Income Shocks

We begin by exploring the implications of aggregate income shocks. For brevity, we leave

the full model description to Appendix 4 and just discuss the changes in the model relative

to the previous section. In the previous section, we assumed that log �0 = �� log � + "

with " � N(0; ��) where " is an idiosyncratic income shock. We introduce aggregate

income shocks by assuming that total household wages log ytot are the sum of an idiosyncratic

component plus an additional aggregate shock:

38This makes sense since as average durable holdings rise both d�1 and d� will tend to rise and gaps are
not that a¤ected. Furthermore, time-series movements in aggregate durable expenditures also don�t depend
much on mean durable holdings since they are determined by changes in d rather than levels of d.
39Since our mechanism applies in a wide-variety of environments and in response to a variety of shocks, we

prefer to focus on documenting the generality of our mechanism rather than taking a stand on a particular
source of business cycle shocks or focusing on the institutional details of one particular policy change.
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log ytot = log � + log y:

As before, we assume that the idiosyncratic component of income, log �, follows an AR

process with persistence 0.975 and standard deviation of 0.10. We assume that the aggre-

gate component of income, log y, follows an AR process with persistence 0.87 and standard

deviation 0.008 to match the behavior of hp�ltered GDP from 1960-2013.40 This adds

one additional aggregate state-variable to the household�s problem but solution methods are

otherwise unchanged. We solve this model using the parameters previously estimated and

then compute impulse response functions to log y shocks.

Motivated by the evidence in Figure 1, we are particularly interested in whether micro

non-linearities in durable adjustment lead durable spending to respond di¤erently to income

shocks which occur at di¤erent points in the business cycle. To do this, we must �rst

de�ne booms and recessions in our model. We match our model to U.S. data by picking

a particular sequence of aggregate income shocks in the model log y1960q1; :::; log y2013q4 to

exactly reproduce hp�ltered US GDP from 1960-2013. Given this sequence of shocks, we

can then compute the impulse response of durable expenditures to an additional impulse to

aggregate income at each date. That is, we feed a sequence of aggregate shocks exogenously

into our model for 212 quarters. Then given the history of aggregate shocks up to each

date, we compute the full impulse response function to an additional shock at that date.

See Appendix 4 for additional discussion of the computation of impulse responses.

We summarize our state-dependent impulse response in three ways. First, following

Bachmann, Caballero, and Engel [2013], we compute the �rst element of the impulse response

function (IRF) for each quarter between 1960q1 and 2013q4. This "Responsiveness Index"

provides an estimate of how much durable expenditures will respond to an aggregate shock

to income in the quarter in which it occurs. We are particularly interested in the IRF on

impact since this has direct relevance for how durable expenditures are likely to respond

in the short-run to shocks or stimulus policies during recessions. Second, we report the

cumulative response41 of durable expenditures to the same impulse to income. Figure 6

shows that measured either using either method, durable expenditures are substantially less

responsive to income shocks during recessions.42

40Calibrating the income shocks to labor compensation yields nearly identical results.
41The cumulative response is the total area under the impulse response function from 1-8 quarters (after

which the IRFs are indistinguishable from zero).
42As we will show more formally when discussing what drives this result, this is evidence of an impulse

response that depends on the state of the business cycle, it is not evidence of an asymmetric response to
positive and negative shocks. Negative income shocks in booms also have bigger e¤ects on durable spending
than negative income shocks in recessions.
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Figure 6: How Responsive Are Durable Expenditures to Income Shocks?

On average, the IRF on impact in recessions is only 54% of that in expansions, indicating

an economically signi�cant amount of state-dependence. Table 2 shows that the 95th

percentile of the IRF on impact is 174% larger than the 5th percentile and that the 95th

percentile of the cumulative IRF is 46% larger than the 5th percentile.

Table 2
Aggregate Shock

IRF 95impact
IRF 5impact

IRF 95cum
IRF 5cum

Income 2.74 1.46

Wealth 6.17 4.72

Interest Rate 2.29 2.17

Tax 1.60 1.52

Durable Purchase Subsidy 1.85 1.91

95 is the 95th percentile across time. 5 is 5th percentile

across time. Impact computes the �rst element of the

IRF and cum is the total area under the IRF

The third way we examine the extent of state-dependence is by plotting the entire impulse

response function for particular dates. The years 1999 and 2009 are boom and recession

years which also overlap with dates in our PSID data, so we focus on the average IRF in
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these years:43

Figure 7: Durable Expenditure Impulse Responses to 1% Aggregate Income Shock

Figure 7 shows that the IRF on impact in 1999 is estimated to be almost twice as large

as that in 2009. While the IRF on impact is most relevant for assessing the short-run

impact of economic shocks during recessions, these di¤erences persist for several quarters:

the cumulative IRF in 1999 is more than 30% larger than that in 2009.

Before turning to an explanation for this procyclical durable spending IRF, we show that

the same result holds for a variety of other aggregate shocks. Beyond just providing a simple

robustness check, this is important because we want to argue that the aggregate implications

of lumpy micro adjustment apply to a wide-class of aggregate shocks. Essentially all shocks

that are commonly used to explain business cycles yield similar implications.

3.2 Aggregate Wealth Shocks

While we consider income shocks to be the most natural proxy for U.S. business cycles in a

partial equilibrium model, we next show that wealth shocks deliver similar results. We think

of these shocks as proxying for declines in stock market value or other asset holdings during

recessions which will a¤ect households�consumption decisions. We assume that households�

43Other boom and recession years yield similar results.
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liquid wealth is subject to aggregate shocks which follow some AR process in logs. That

is, a0actual = a0choice � w0 with logw0 = �w logw + "w: We calibrate these shocks to match

the persistence and standard deviation of the hp�ltered quarterly U.S. capital stock, which

we construct using a perpetual inventory method as in Bachmann, Caballero, and Engel

[2013]. This yields a quarterly persistence of 0.95 and a standard deviation of 0.003 so that

aggregate wealth shocks are small but highly persistent.

Figure 8: How Responsive Are Durables to Wealth Shocks?

Figure 8 shows that the durable response to wealth shocks is even more procyclical than

the response to income shocks.44 Table II shows that the 95th percentile of the IRF on

impact is more than 6 times as large as the 5th percentile. The 95th percentile of the

cumulative IRF is almost 5 times larger than the 5th percentile.45

Our baseline wealth shock is a proportionate equal decline in all households wealth so

that all households face the same shock. However, rich households have a greater proportion

of their total wealth in liquid assets and so are more a¤ected by these shocks. Nevertheless,

this proportional shock may still understate distributional e¤ects of wealth shocks if rich

44Note that the model business cycles in the two versions of the model are not identical, since in one
aggregate income exactly matches U.S. GDP, in the other aggregate wealth exactly matches U.S. capital.
Solving a model with both shocks simultaneously would be much more computationally di¢ cult.
45Wealth shocks induce greater time-series variation in IRFs because they are more persistent than income

shocks and lead to larger movements in households desired durable holdings�.
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households hold assets which are riskier and lose more value during recessions. To assess

the importance of this channel, we have resolved a version of the model with wealth shocks

that only a¤ect wealthy households as well as with wealth shocks that are increasing in the

level of household wealth. For brevity we do not plot the results but note that all of our

conclusions are strengthened under these alternative speci�cations: if wealth shocks mainly

a¤ect the rich then the IRF becomes even more procyclical.46

3.3 Policy Shocks

In addition, we can compute impulse responses to shocks that roughly correspond to various

policy experiments. Since we do not think the business cycle is primarily driven by any

of these policy experiments, we now perform a slightly di¤erent experiment. Rather than

assuming that there are stochastic shocks to policy and picking these shocks to match the

behavior of GDP, we introduce one-time unanticipated policy shocks on top of our previous

model with aggregate income shocks. That is, we assume that households are subject to

aggregate income shocks which, as before, are picked to match the behavior of U.S. GDP.

We then compute the optimal response of households to a one-time unanticipated policy

experiment at di¤erent points in the business cycle (as de�ned by aggregate income).

While it is not computationally feasible to simultaneously introduce stochastic policy

shocks together with stochastic aggregate income shocks, we can compute the durable re-

sponse to changes in policy that are either completely temporary or are fully permanent.

For brevity we only report results for permanent policy shocks, but temporary shocks de-

liver similar time variation. We compute the impulse response to three policy shocks: a

permanent decline in the interest rate, a permanent decline in the payroll tax, and a subsidy

to durable adjustment (which is �nanced by an increase in taxes).47 We view these policy

experiments as rough approximations to the various stimulus policies such as reductions in

payroll taxes and "Cash-for-Clunkers" that were implemented during the recession of 2007-

2009. While we believe a more detailed quantitative study of these particular policies is an

important subject for future research, in this paper we want to focus on the broad fact that

micro-level household behavior has important implications for a broad variety of aggregate

shocks, which necessitates abstracting from some of the institutional details important to

each of these policies.

Figure 9 plots the impulse response to each of these three policy shocks. Again, the IRF

46This is because as we show shortly, in a model with liquidity constraints but no illiquid wealth, the
IRF is mildly countercyclical. Since this countercyclical e¤ect of liquidity constraints is entirely driven by
households close to the liquidity constraint, if these constrained households do not face wealth shocks then
this e¤ect is shut down and the IRF becomes more procyclical.
47In the modeling appendix we describe each of these experiments in more detail.
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Figure 9: Impulse Response to Policy Shocks

is procyclical. Table II shows that across time, the 95th percentile of the IRF on impact is

60-129% larger than the 5th percentile for the interest rate, tax and durable subsidy shock.

3.4 Robustness Results

The previous sub-sections show that in response to a variety of aggregate shocks, durable ex-

penditures exhibit strongly procyclical impulse response functions. This conclusion is highly

robust to a number of model extensions. As previously discussed, our benchmark analysis

focuses on the broadest interpretation of durables with �xed adjustment costs. Nevertheless,

this forces us to abstract from features that may make housing respond di¤erently to shocks

than automobiles or other consumer durables. The use of partial equilibrium simpli�es

the computation of the model so that it is feasible to explore some of these questions. In

Appendix 2, we introduce rental markets and collateralized borrowing into our model and

show that the model continues to deliver a quantitatively signi�cant procyclical IRF.

In addition, Section 5 introduces general equilibrium into our benchmark model and

shows that results continue to go through.
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4 Understanding Procyclical IRFs: Fixed Costs and

Cross-Sectional Implications

4.1 Importance of Fixed Costs

Why is the IRF of durable expenditures to aggregate shocks procyclical? These aggregate

patterns arise because of the household-level non-linearities induced by �xed costs of durable

adjustment. We �rst show this by documenting that the procyclical impulse response

disappears when durable adjustment is frictionless. We then discuss the microeconomic

mechanism that drives our result and provide additional evidence for this channel by further

exploiting our PSID data.

Figure 10: Impulse Response to 1% Income Shocks (Frictionless Durable Adjustment)

Figure 10 shows the impulse response to income shocks in a model which is otherwise

identical to our benchmark model but with F d � F t � 0. Clearly there is much less

variation in impulse responses across time than in the model with �xed costs. Furthermore,

what variation there is now countercyclical instead of procyclical. The reason the IRF

becomes countercyclical when there are no �xed costs of adjustment is that during recessions,

more households are close to the borrowing constraint, which increases the response of their

durable expenditures to income shocks. This is just a manifestation of the classic result that
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marginal propensities to consume out of income shocks are larger for liquidity constrained

households.

This experiment with no �xed costs of adjustment is important because it shows that

our results are driven by �xed costs rather than just by the sequence of aggregate shocks.

In a model with incomplete markets, state-dependent IRFs could arise even without �xed

costs of adjustment as the business cycle interacts with borrowing constraints. Indeed, we

�nd evidence of this e¤ect, but it works in the opposite direction of our headline result and

is relatively mild.

4.2 The Role of the Cross-Section

Thus, in the model with no �xed costs of adjustment, which is inconsistent with micro data,

the IRF is mildly countercyclical. In contrast, in our benchmark model with �xed costs,

that matches micro data, there is an extremely procyclical IRF. Why do �xed costs of

adjustment induce a procyclical IRF? We can see this by returning to the expression for

aggregate durable investment: ID =
R
xht (x) ft (x) dx: The more households that choose

to adjust their durable holdings and the larger the size of the gaps, the more responsive will

be aggregate durable investment. Caballero and Engel [2007] show that this formula can be

used to calculate the response of the economy on impact to aggregate shocks. In particular,

if there is a positive shock �d� to households�desired durable holdings then the IRF on

impact is given by:

IRF impactt = lim
�d�!0

�ID

�d�
=

Z
ht (x) ft (x) dx+

Z
xh0t(x)ft(x)dx: (1)

The more households that are adjusting
�R

ht (x) ft (x) dx
�
or that are close to the mar-

gin of adjustment
R
xh0t(x)ft(x)dx, the greater will be the aggregate response of durable

expenditures.

Figure 11 plots the distribution of durable gaps and adjustment hazard in a boom and

in a recession, for the model with aggregate income shocks.48 On average the distribution

has negative skewness because depreciation means that more households want to increase

than to decrease durable holdings. This becomes more pronounced during the boom, as

households�desired durable holdings rise and the distribution of durable gaps shifts to the

right.49 As more households are now further from their desired level of durables, they move

48Note that here we are plotting the true model hazards and gaps (with no measurement error) while
Figure 5 plots the distribution and hazard for model data with measurement error. While the true hazard
is zero when the durable gap is equal to zero, measurement error leads the measured hazard to be strictly
positive at all points.
49The model with business cycles driven by aggregate wealth shocks delivers stronger movements in the
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Figure 11: Model Gap Distribution and Hazard: Boom Vs. Bust

into the region with a higher probability of adjustment, and since all households that adjust

will respond to aggregate shocks, aggregate durable expenditures become more responsive

to these shocks. This is ampli�ed by the increase in the probability of adjustment during

a boom. Households are more likely to adjust to a given durable gap during a boom than

during a recession as the �xed costs of durable adjustment represent a smaller fraction of

household income.

Note that this increase in responsiveness is symmetric in the sign of the aggregate shock.

During booms, a shock that increases households�desired durable holdings will raise aggre-

gate durable expenditures by more than if this same shock occurs in a recession. But it is

also true that during booms, a shock that lowers households�desired durable holdings will

lower aggregate durable expenditures by more than if the same shock occurs in a recession.

Our model implies an IRF that depends on the state of the business cycle; it does not imply

an asymmetric IRF. Together the rightward shift of f (x) and the vertical shift in h (x)

greatly amplify the response of aggregate durable expenditures to any shock that changes

households�desired durable stocks.

Given the importance of shifts in the distribution and hazard for explaining our pro-

cyclical IRF, it is important to provide additional support for this theoretical mechanism.

distribution of gaps since wealth shocks are more persistent.
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Figure 12: Estimated Gap Distribution and Hazard in PSID: Boom Vs. Recession

Since our estimation procedure delivers values for hd( bxd) and fd( bxd) for each PSID sample
year between 1999 and 2011, it is straightforward to test whether empirical hazards and

gap distributions move across time as predicted by the model.50 Furthermore, we can use

(1) to calculate a reduced form responsiveness index IRF impactt implied by the PSID data

and compare it to the model. Figure 12 shows that exactly as predicted by the model, the

distribution of households�desired durable holdings shifts to the right and that the hazard

of durable adjustment shifts up during booms. If anything, the variation in the data is even

stronger than that predicted by our model which suggests that the simultaneous presence

of wealth, income and other shocks over the business cycle all push households�decisions in

the same direction.

Given that our estimation targeted only the average distribution and hazard in the PSID

data and exploited no time-series variation in these distributions, this serves as another strong

support for our model. Matching the average distribution and hazard in the data provides

no guarantee that the time-series variation in the data will conform to the predictions of our

theoretical model.

Figure 13 shows the PSID estimates of the IRF on impact computed using Formula (1)

from 1999-2011. Comparing IRF impactt in Figure 13 to that implied by the model in the

50That is, for PSID observables in a particular year bzdt; we can compute fdt �Gm � bzdt �� and then compute
the empirical adjustment hazard as the actual probability of adjustment given imputed gaps in that year.
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�rst panel of Figure 6 shows that the PSID micro data implies procyclical responsiveness

that is both qualitatively and quantitatively similar to our structural model.51

Figure 13: Impulse Response Implied by PSID Gap Distribution and Hazard

In Appendix 3, we again explore the robustness of our empirical results to the inclusion of

rental markets and collateralized borrowing. Since changing the structural model changes

both our parameter estimates as well as the imputed gaps in the data, our estimates of

hd( bxd) and fd( bxd) are slightly di¤erent in these alternative speci�cations. Nevertheless, we
show that we again �nd shifts in the distribution and hazards, as well as time-variation in

the implied impulse response on impact, that conform with our theoretical predictions.

5 Robustness to General Equilibrium

There is a large and important literature studying the role of general equilibrium in models

of lumpy �rm investment. In an extremely in�uential paper Khan and Thomas [2008] show

that general equilibrium can eliminate the aggregate e¤ects of micro lumpiness that had been

found in earlier partial equilibrium work such as Caballero, Engel, and Haltiwanger [1995].

51Unfortunately, as we note in the discussion of the data for our estimation, prior to 1999, the PSID does
not collect the necessary data to estimate gaps and hazards so this responsiveness index cannot be calculated
further back in time.
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Given that our evidence thus far is purely partial equilibrium, it is important to explore

whether a similar e¤ect arises in our model. Does the inclusion of general equilibrium

price movements eliminate the time-varying IRF that we �nd in partial equilibrium? In

this section we provide evidence that it does not, and we provide intuition for why general

equilibrium is less important for lumpy household durable adjustment than is often found

for lumpy �rm investment.

Our general equilibrium model is identical to our benchmark partial equilibrium model,

but we now endogenize the aggregate wage and interest rate. To ease comparison of our

model�s aggregate dynamics with those in the existing literature, we focus on an RBC version

of the model with aggregate TFP shocks Zt. The setup is extremely similar to the partial

equilibrium model, so we leave the details to Appendix 4. The main di¤erence is that the

previously exogenous interest rate and wage must now satisfy the �rst order conditions of a

representative �rm. We assume that �rms forecast these prices using the methods in Krusell

and Smith [1998]. In addition, aggregate state variables must be consistent with individual

household decision rules.

Where possible, we choose all parameters in the general equilibrium model to be identical

to those in our benchmark estimation, but there are several new parameters and restrictions

imposed by general equilibrium. Since the interest rate is endogenous, we now choose � to

target the steady-state interest rate used in partial equilibrium: r = 0:0125. We pick the

depreciation rate of capital �k = 0:022 to match the average ratio of investment to capital.52

We choose a capital share of � = 0:3, and we pick �Z = 0:95 and �Z = 0:008 to match the

behavior of U.S. TFP.

We solve the model by conjecturing an aggregate law of motion, approximating the value

function by linearly interpolating53 between continuous grid points, solving the contraction,

simulating the household problem and updating the aggregate law of motion until conver-

gence is obtained. In equilibrium, the aggregate law of motion is highly accurate. See

Appendix 4 for additional details on the solution method.

As is typical in general equilibrium models, there are now fewer degrees of freedom along

which we can add shocks to the model, so the experiments we can perform are simpler in

nature. Since income and wealth are now endogenous, we can no longer directly introduce

aggregate shocks to these variables. Instead, we focus on the response of durable expendi-

tures to the exogenous TFP shocks in our model. We do this not because we want to take

52Changing �k to higher or lower values does not a¤ect our conclusions.
53We have found that linear interpolation gives speed advantages that make it attractive relative to cubic

spline or other interpolation methods. While linear interpolation will introduce kinks into the value function,
we do not rely on derivative based methods for solving the household problem, so this does not prove
particularly problematic.
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a �rm stand on TFP shocks as the most important driver of U.S. business cycles but rather

for illustrative simplicity. In the partial equilibrium section of the paper we showed that

our results apply to a large variety of aggregate shocks and we simply want to argue that

general equilibrium does not undo our basic conclusions.

Figure 14: How Responsive are Durable Expenditures to TFP Shocks in General Equilib-
rium?

Just as in partial equilibrium, we �nd a quantitatively large procyclical IRF. Figure 14

shows that there is large and procyclical variation in the IRF across time. It is worth noting

that movements in the IRF in this version of the model do not line up quite as sharply with

recessions as in Figure 6. However, recall that we are feeding very di¤erent aggregate shocks

into these two models. In Figure 6, we were hitting the economy with aggregate income

shocks that exactly correspond to actual U.S. GDP, while in Figure 14 we are hitting the

economy with TFP shocks that correspond to U.S. Solow Residuals. Since TFP in the data

does not perfectly comove with GDP, it is not surprising that the resulting IRF would line

up less sharply with observed recessions. Nevertheless, our general conclusion remains: after

sequences of TFP shocks that increase household income and wealth, durable responsiveness

rises.

Why does the addition of general equilibrium have little e¤ect for aggregate dynamics in

our environment while it has large e¤ects in Khan and Thomas [2008]? The main reason is
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because in our model, households have two sources of savings: households can save in liquid

assets a or illiquid assets d: In contrast, in Khan and Thomas [2008] households only have

access to savings through a. Khan and Thomas [2008] argue that the main reason general

equilibrium is so important in their model is because of household consumption smoothing

motives. If lumpy investment at the �rm level causes aggregate investment in capital to

move di¤erently than in a frictionless RBC model, the representative household would face

more consumption volatility. That is because in their model, Y = C+Ik; so a large change in

Ik necessitates a large change in C: Since households have a strong consumption smoothing

motive, there are then large price movements in general equilibrium that undo the partial

equilibrium e¤ects of lumpy investment.

In contrast, in our model Y = C + Ik + Id: In this environment, if lumpy durable

adjustment induces aggregate dynamics for Id that depart from the frictionless model, these

changes can be absorbed by Ik without implying a more volatile consumption process. That

is, with multiple sources of savings, large changes in the behavior of some component of

savings do not necessarily imply that households must violate consumption smoothing. This

is similar to the intuition in Bachmann and Ma [2013] who argue that the presence of

inventories in a model with lumpy investment reduces the importance of general equilibrium

e¤ects.

6 Geographical Evidence

We now exploit geographic variation to provide additional reduced form evidence for our

theoretical model with �xed costs of adjustment. The basic punchline of our structural

model is that the elasticity of durable spending to economic shocks should be lower during

recessions than during booms. We now exploit cross-sectional geographic variation to show

that this is indeed the case.

In particular, we show that MSA-level auto spending responds much more to housing

wealth shocks in locations experiencing local booms than in locations experiencing local

recessions. Our basic empirical strategy identi�es local wealth shocks using the empirical

methodology of Mian and Su� [2013], Mian and Su� [2014b] and Mian and Su� [2014a]. In

particular, we instrument for local house price changes using the geography based measure

of housing supply elasticity constructed by Saiz [2010]. Mian and Su� [2013] show that

this instrument has a strong �rst stage in explaining house price movements. Furthermore,

they provide various evidence that this instrument plausibly satis�es the exclusion restriction

by showing that it is uncorrelated with various other local economic variables, such as the

change in wages over the housing boom and bust.
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Our empirical strategy augments that in Mian and Su� by showing that the response of

MSA-level auto spending to housing wealth shocks strongly interacts with the state of the

local business cycle. In particular, our benchmark empirical results use the following two

stage least squares speci�cation:

� logAutoSalesi;t = �IV + �IV1 � log
dHPi;t ��Ui;t + �IV2 � log

dHP i;t + �IV3 �Ui;t + �Xi + "i;t

� logHPi;t = ! + �1Elasitictyi ��Ui;t + �2Elasitictyi + �3�Ui;t +	Xi + �i;t

� logHPi;t ��Ui;t =  + �1Elasitictyi ��Ui;t + �2Elasitictyi + �3�Ui;t +�Xi + �i;t;

where Xi is a vector of MSA-level controls including local employment shares and in-

come.54 We estimate this speci�cation using annual data from t = 2002; :::; 2012: See

Appendix 1 for discussion of the underlying data construction.

The main coe¢ cient of interest in the above speci�cation is �IV1 . Our structural model

implies that this coe¢ cient should be negative: auto spending in recession MSAs should

respond less to a given wealth shock than in boom MSAs.

Table 3 shows that �IV1 is indeed highly signi�cant and negative.55 Our benchmark

speci�cation in column (2) shows that a one-percentage point increase in an MSA�s un-

employment rate lowers the elasticity of its auto-spending to housing wealth shocks by 1.3

(relative to a median elasticity across MSAs of 3.2).56

Columns (3)-(6) show a number of robustness checks. In column (3) we include year �xed

e¤ects in our regressions. Since these year �xed e¤ects absorb the aggregate house price

movements over the housing boom and bust, all identi�cation then comes o¤ of cross-MSA

variation.57 The interaction of these purely local housing wealth shocks with local unem-

ployment changes is nearly unchanged. In column (4), we use the alternative instrument

of Charles, Hurst, and Notowidigdo [2014] to identify exogenous housing price movements.

This instrument uses only the "bubble" component of house price movements, under the

identifying assumption that fundamental factors should move smoothly so that structural

breaks in house prices should capture movements uncorrelated with fundamentals. Again,

the importance of the interaction is unchanged.

54These control for sector-speci�c shocks or local income shocks that may be correlated with our instrument
for house prices. See Mian and Su� [2013] for additional discussion. Removing these controls or adding
additional controls such as local wages did not a¤ect our results.
55Regressions are weighted by MSA population and standard errors are clustered by state.
56The median change in unemployment is 0, so that the elasticity equals �IV2 for the median MSA.
57We also �nd similar results when splitting the sample separately into the housing boom and bust.
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Table 3: Response of Automobile Spending to Wealth Shocks

(1) (2) (3) (4) (5) (6)

OLS Saiz IV Saiz IV + Year FE Bubble IV Saiz IV + Bartik IV Saiz IV

�House Price X �U -0.114� -1.314��� -1.174��� -1.286��� -1.429���

(0.063) (0.373) (0.353) (0.382) (0.414)

�House Price 1.522��� 3.206��� 3.634��� 3.184��� 2.339 9.391���

(0.119) (0.769) (0.906) (0.617) (2.367) (2.209)

�U -0.020 -0.056��� 0.024 -0.054��� -0.085�

(0.012) (0.012) (0.023) (0.018) (0.051)

�House Price X U -1.034���

(0.360)

Unemployment Rate -0.038�

(0.020)

Construction Share 2002 -0.140 -0.835 -0.776 -0.820� -0.883 -0.786�

(0.782) (0.544) (0.545) (0.440) (0.602) (0.474)

Non Tradeable Share 2002 0.380�� 0.644��� 0.683��� 0.639��� 0.602��� 0.494��

(0.187) (0.177) (0.179) (0.207) (0.209) (0.214)

Ln (AGI / Capita) 2002 0.036�� 0.003 0.004 0.004 0.001 0.039��

(0.017) (0.022) (0.022) (0.016) (0.022) (0.016)

N 2237 2237 2237 2237 2237 2237

Standard errors in parentheses, clustered at state-level. Results weighted by population. Sample period 2002-2012.
�p < 0:10, ��p < 0:05, ���p < 0:01

Our benchmark speci�cation treats unemployment movements as exogenous. This is

clearly a strong assumption, and there are reasons to believe that both local unemployment

and local house prices should be subject to endogeneity concerns. To address this, in Column

(5), we instrument for local house price movements using the Saiz instrument and instrument

for local unemployment movements using the popular Bartik [1991] instrument. This IV

strategy interacts the preexisting local composition of manufacturing with nationwide man-

ufacturing employment changes to construct exogenous movements in unemployment, under

the assumption that the local composition of the manufacturing sector is predetermined at

the time of the employment shock and that aggregate employment shocks are exogenous

to individual MSAs. Column (5) shows that auto sales in locations with high predicted

increases in unemployment again respond less to wealth shocks.

Finally, Column (6) uses an alternative measure of local business cycles. The procyclical

responsiveness in our structural model is driven by temporary business cycle shocks that
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move the distribution of households�durable gaps away from steady-state. Our model does

not predict that permanently moving to a more prosperous steady-state should lead to a

permanent increase in the responsiveness of durable spending to shocks. While di¤erences in

unemployment across MSAs are not permanent, they are highly persistent. For this reason,

our benchmark empirical speci�cation uses the change in unemployment as our measure of

local economic conditions. Nevertheless, Column (6) repeats our empirical exercise using

the level of MSA unemployment rather than the change in unemployment. We again �nd a

sign�cant interaction e¤ect, although as predicted, it is slightly less strong than under our

benchmark speci�cation.

In addition to this cross-sectional evidence, Appendix 5 uses time-series data on durable

spending to provide further support for our theoretical mechanism. In particular, we show

that the model with �xed costs of durable adjustment better �ts business cycle moments than

either frictionless models or models with convex adjustment costs. The model with �xed

costs of adjustment implies that aggregate durable spending should exhibit greater volatility

during booms, when responsiveness is high, than during recessions. Alternative models

make no such prediction. We show that time-series data strongly con�rms the prediction

of the model with �xed costs of adjustment. In addition, Berger and Vavra [2014] provide

additional time-series evidence for procyclical durable spending responsiveness. In that

paper, we use an STVAR to estimate the durable spending multiplier in response to identi�ed

government spending changes and show that it rises dramatically during expansions.

7 Conclusion

In this paper, we argue that household-level durable adjustment frictions matter for aggregate

dynamics. We use a novel indirect inference procedure to estimate an incomplete markets

model with �xed costs of durable adjustment and show that it does a very good job of

explaining various microeconomic consumption patterns. More importantly, this model

implies that as household wealth and income falls during a recession, fewer households adjust

their durable holdings or are on the margin of doing so. This means that the elasticity of

aggregate durable expenditures to shocks which a¤ect durable demand falls substantially.

We provide support for this mechanism in various ways. In addition to showing that

the average frequency of durable adjustment indeed falls in recessions, we show that cross-

sectional distributions in the PSID data move as predicted by our model and that MSA-level

auto spending is less responsive to wealth shocks that occur during local recessions.

Our results have implications for estimating the e¢ cacy of durable stimulus. The re-

sponse of durable expenditures to changes in policy is highly dependent on the aggregate

39



state of the economy, which means that using estimates from linear VARs to estimate the

e¤ects of any such program is likely to be misleading. While a growing body of research

argues that the government spending multiplier should be countercyclical,58 the forces we

identify push in the opposite direction. In Berger and Vavra [2014] we provide STVAR

evidence that while the overall government spending multiplier is indeed countercyclical, the

"durable spending" multiplier is instead procyclical, just as predicted by our model.

In this paper, we emphasized the general mechanism that causes micro adjustment fric-

tions to lead to procyclical IRFs. As such, we considered a variety of aggregate shocks and

explored a very broad de�nition of durables that should include all durable goods subject

to transaction costs of adjustment. In future work, we plan to explore our model impli-

cations for particular policies such as the "Cash-for-Clunkers" program or the "First-Time-

Homebuyer" credit. Realistic policy analysis will require enriching our model to include

various institutional details that are beyond the scope of this paper. Nevertheless, our mod-

eling insights should continue to apply and we hope to quantify their importance for speci�c

policies. More generally, understanding durable spending patterns requires understanding

the level and distribution of wealth in an economy and how this distribution moves across

time.

58Due to, e.g., excess capacity or to the ZLB.
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8 Appendix 1: Data De�nitions and Cleaning

8.1 PSID Data

This appendix discusses provides additional discussion of our PSID data analysis. We

restrict our analysis to 1999-2011 because prior to 1999, the PSID did not collect the data

necessary for our analysis. Beginning in 1999, the PSID contains detailed information

on non-durable consumption, the value of housing and vehicles as well as various wealth

holdings. Although more detailed non-durable consumption data is available beginning in

2003, for comparability we use only variables that are available beginning in 1999. The value

for non-durable expenditures is the sum of all components of food consumption, utilities,

transportation expenses, schooling expenses and health services. Our measure of d�1 is the

sum of last periods housing value and vehicle values. Assets are the sum of business value,

stocks, iras, cash, bonds, minus the value of outstanding debt.

Our benchmark analysis is restricted to home-owners with household head < age 65.

After constructing each of our variables, we de�ate these nominal values using NIPA price

indices and remove a household �xed e¤ect. To de�ne durable adjustment, we combine

several questions in the PSID. In our benchmark results, we de�ne durable adjustment

as a self-reported house or vehicle sale together with a 20% change in the reported value

of the durable stock. We use a combination of self-reported adjustment and a minimum

threshold for several reasons. 1) Combining these indicators is likely to reduce spurious

adjustments due to measurement error. 2) Some house sales are likely to be the results

of idiosyncratic moves across location which may not lead to any substantial adjustment in

the size of the stock. 3) Finally, and most importantly, self-reported adjustment indicators

ask about adjustment over the previous three years while the sample is conducted every

two years. This implies that the same adjustment may be counted twice. Requiring a

simultaneous change in value and self-reported adjustment reduces this concern. We chose

a 25% threshold because the median change in the reported durable stock conditional on

self-reported adjustment is 40% while the median change conditional on no adjustment is

4%, so a 20% threshold roughly splits this distance. This adjustment de�nition generates an

adjustment probability of roughly 10%.

Figure 1 applies this adjustment de�nition to our broad measure of durables that includes

housing and vehicles as well as to a more narrow de�nition that focuses just on housing after

removing deterministic age e¤ects. We split the sample in 1999 for the housing series

because the sampling frequency and thus questions change slightly and there appears to be

a trend break in the series. Table A1 reports results a for a panel logit for the probability
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of adjustment on recession indicators. Overall, the probability of broad durable adjustment

falls by around 20% during recessions while the probability of buying/selling a house falls

by around 15%.

Table A1
Outcome Sample Period Odds Ratio Std. Err. #obs #households Age Controls

Sold (Broad d) 1999-2011 0.78*** 0.074 5316 1460 NO

1999-2011 0.84** 0.078 5316 1460 YES

Sold (House) 1969-1999 0.88*** 0.035 76851 8954 NO

1969-1999 0.85*** 0.033 76851 8954 YES

Since Figure 1 shows that for the 1999-2011 there is an overall downward trend in the

frequency of durable adjustment, there is some concern that the broad durable panel regres-

sions are capturing time-trends rather than something about recessions. To argue that this

is not the case, we perform a similar exercise using cross-state variation in unemployment

rates. Running a logit of broad durable adjustment on local unemployment rates shows that

a two standard deviation in unemployment lowers the odds of durable adjustment by 30-

40%. This statistically signi�cant decline in the frequency of durable adjustment is robust

to a variety of location, time and age controls.

Table A2
Odds Ratio

(1-Std E¤ect) Std. Err. Year FE State FE Age Controls

0.85*** 0.05 YES YES YES

0.79*** 0.03 YES NO YES

0.85*** 0.02 NO YES YES

0.84*** 0.02 NO NO YES

0.85*** 0.05 YES YES NO

0.79*** 0.03 YES NO NO

0.81*** 0.02 NO YES NO

0.80*** 0.02 NO NO NO

8.2 Robustness of PSID Cross-Sectional Results to Alternative

Data Cleaning Procedures

While we believe that our benchmark empirical speci�cation is reasonable, we also assess the

robustness of our results to alternative choices. To explore this, we apply the model point
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estimates dxdbenchmark = Gm
� dzdbenchmark

�
to observables computed under various alternative

assumptions: dxdalternative = Gm
� dzdalternative

�
: That is, we use the model point estimates com-

puted from our benchmark data de�nitions and apply them to alternative data de�nitions.

While it would be desirable to reestimate the entire model under di¤erent data assumptions,

this is numerically infeasible. The main empirical object of interest is whether the slope of

the empirical adjustment hazard as a function of (absolute) imputed durable gaps is upward

sloping. Towards that end, Table 8 displays the results of a regression of the probability

of adjustment on the absolute value of the durable gap for a range of alternative empirical

speci�cations.

adjusti;t = �+ �
��� dxdalternative;i;t

��� :
Table A3 reports results for a number of robustness checks:

Table A3
Speci�cation � t� stat

Benchmark 0.67 57.7

(1) Adj Threshold of 0.1 instead of 0.2 1.14 69.5

(2) Adj Threshold of 0.3 instead of 0.2 0.19 24.2

(3) No Adj Threshold 0.76 25.0

(4) 0.2 Threshold, Ignore self-reported adj 0.40 49.6

(5) Control for Year Fixed E¤ects in HH estimation 0.70 62.1

(6) No adjustment for HH size 0.60 51.6

(7) Exclude business value from a 0.67 57.3

(8) Keep only ages 25-55 0.74 45.9

(9) Do not use price de�ators 0.71 60.2

(10) Do not adjust for age e¤ects 0.65 54.5

8.3 Aggregate Data

The top panel of �gure 2 is constructed using proprietary data from the CNW auto market

research �rm. They collect data on both new and used auto sales across time. To construct

turnover rates, we merge this sales data with data on total registered vehicles from the DOT

(http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/�les/publications/

national_transportation_statistics/html/table_01_11.html). This measure of the ve-

hicle stock is available annually beginning in 1990 and is available every �ve years before

1990. To construct annual measures of vehicle registration before 1990 we use a perpetual

inventory method. For example, we observe the stock of vehicles in 1985 and 1990 and we

observe total purchases in each year from 1985-1990. We assume that there is a constant
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depreciation rate over each �ve year period and we pick this depreciation rate so that the

beginning and ending stock is consistent with annual purchases.

The bottom panel of Figure , we merge data from HUD and the census. HUD reports

data on existing home sales from 1969-2008:

((http://www.huduser.org/periodicals/ushmc/fall09/hist_data.pdf), which we merge with

data from the national association of realtors for recent years:

(https://research.stlouisfed.org/fred2/series/EXHOSLUSA495S/downloaddata), and the

census reports data on total housing stocks:

(http://www.census.gov/housing/hvs/data/histtab7.xls) as well as on new house pur-

chases: (https://research.stlouisfed.org/fred2/series/HSN1F).

In our time-series analysis in Appendix 5, we de�ne durable expenditures as real consumer

durable expenditures + real residential investment where real consumer durables are NIPA

Table 1.1.5 line 4 divided by NIPA Table 1.1.9 line 4 and real residential investment is NIPA

table 1.1.5 line 12 divided by NIPA Table 1.1.9 line 12. Non-durable consumption is de�ned

as non-durable goods (NIPA Table 1.1.5 line 5 divided by NIPA Table 1.1.9 line 5) + services

(Table 1.1.5 line 6 divided by Table 1.1.9 line 6) - housing services (Table 2.3.5 line 14 divided

by Table 2.4.4 line 14). Our measure of GDP is then the sum of non-durable consumption,

durable expenditures and private non-residential investment..

Constructing durable investment rates requires quarterly measures of the durable stock.

Following Bachmann, Caballero, and Engel [2013], we construct measures of real annual

durable stocks using nominal data from BEA Domestic Product and Income Tables 1.1.5 and

price de�ators from Table 1.1.9. We then next construct quarterly depreciation estimates

using annual nominal measures of depreciation from BEA Fixed Asset Table 1.1 together with

the price de�ators from Table 1.1.9. Since the BEA publishes annual measures of the stock of

durables and housing in Fixed Asset Table 1.1, we just need to construct quarterly measures

in between these annual observations. To do this, we combine the annual observations

with the quarterly expenditure and depreciation measures together with a standard stock

accumulation expression to construct quarterly stock measures. See Bachmann, Caballero,

and Engel [2013] for the more detailed procedure.

8.4 Geographic Data

We describe here the data used in Section 6. Our auto sales data is produced by R.L.

Polk. These zip-code level monthly auto sales numbers are proprietary and cannot be

shared without data provider approval. Please contact robert_sacka@polk.com for access

to the underlying data. We aggregate these zip-code level auto sales to MSAs and years,
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excluding the zip codes 74153 and 74117. All auto registrations by one large national

auto rental company occur in these two zip codes, so they are both large outliers and poor

measures of local auto demand. Following Mian and Su� [2012], we compute auto sales

relative to steady-state sales, as measured by average sales over 1990-1999.

Our house price data is constructed by CoreLogic and is also proprietary. Please contact

rmeyers@corelogic.com. We use two instruments to measure exogenous house price move-

ments in our empirical speci�cation. The �rst instrument is the geography based instrument

of Saiz [2010]. This instrument measures the di¢ culty of constructing new housing in an

MSA due to the presence of geographic features such as mountains and oceans. This data

is available at http://real.wharton.upenn.edu/~saiz/ In addition, we use the bubble IV in-

strument from Charles, Hurst, and Notowidigdo [2014]. This instrument is constructed by

searching for the presence of structural breaks in house price growth from 2002-2006. We

reproduce their procedure exactly, so see their paper for additional details.59

We construct the Bartik [1991] IV using data from County Business Patterns. For each

MSA i, we compute the share of employment !jt in each 4-digit manufacturing sector j

and year t. Let �ejt be aggregate U.S. manufacturing employment growth. Predicted

manufacturing employment in a given MSA is then d�eit = P
j !jt�1�ejt; and we use this

instrument to predict an exogenous component of MSA unemployment.

Our data for local employment share controls also comes from County Business Patterns.

We classify industries as construction, and non-tradeable using the de�nitions in Mian and

Su� [2014b]. Local income data comes from the IRS Statistics of Income.

59We thank Matt Notowidigdo for providing us the code to construct this instrument.
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9 Appendix 2: Estimation and Identi�cation

9.1 Estimation Algorithm and Construction of Standard Errors

In this section we provide additional details on our estimation algorithm, the particular

functional form we choose for Gm and the construction of standard errors for point estimates

and model targets.

A key requirement for our estimation algorithm is the construction of a function and set

of observables that solves: xm = Gm (z) : First, note that as long as d�1 2 z then predicting
xm is equivalent to predicting d� since x = log d� � log(d�1): Since we will assume that

d�1 is in the econometrician�s information set, we thus change notation and search for a

function d� = Gm (z) : The most straightforward way to construct Gm (z) is to make z

equal to the agents�(empirically observable) state-variables and then Gm will be equal to

the policy function that solves d� (a�1; d�1; �) = argmaxV adjust (a�1; d�1; �) : While this

function would exactly map observable states to choices in a world with perfect data, it is

problematic in a world with measurement error. Since this function is non-linear, even if

measurement error is on average zero it need not produce estimates which are on average

correct. That is, E [d� (a�1; d�1; �)] 6= d� (Ea�1; Ed�1; E�): if state-variables are measured

with noise and used as inputs to a highly non-linear function, then the resulting estimate

for d� need not be an unbiased estimate of the truth. Given this concern, we instead

approximate G by a linear function of various observable variables.

In particular, we assume that Gm (z) = �0 + �1a�1 + �2d�1 + �3c + �4
d�1
c
: In practice,

this functional form is highly accurate along various di¤erent metrics. First, we can ask how

well this linear function does at predicting actual model d� when there is no measurement

error. That is, given the true values for z; how well do we predict the actual d� in the

model? Running our regression of d�on z delivers an R2 = 0:98. Thus, we do not perfectly

match model gaps in an environment with no measurement error, but this function does an

extremely good job. (Note that using the true policy function would by construction deliver

an R2 = 1). We can next ask how well we do at matching the true d� implied by z if we

instead use a noisy measure bz as the input to our function. That is, how well does our model
do when regressing bd� = �0+ �1da�1+ �2dd�1+ �3bc+ �4cd�1c on actual d�. Overall we �nd an

R2 = :85, so even with noisily measured inputs, we are able to well predict actual durable

gaps in the model. In addition we �nd that E bd� = d�: In contrast, if we apply the model�s

true policy function to noisily measured state-variables then we �nd an R2 = 0:60 and we

also �nd that E bd� 6= d�. That is, imposing a simple linear relationship between inputs with

measurement error and outputs does a more successful job of producing the true model d�
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then does imposing actual model policy functions on these mismeasured inputs.60

Thus, the Gm that we choose performs quite well. Nevertheless, we have explored vari-

ous alternative functional forms including adding d�1
a�1+d�1

, y, and y
d
as additional predictors.

However, none of these alternatives provide much additional predictive power in the envi-

ronment with no measurement error and they perform less well in an environments where

variables are measured with noise. Since many households hold no liquid assets, introducing
d�1

a�1+d�1
as a predictor introduces collinearity issues when identifying the e¤ect of d�1. We

use information on consumption rather than earnings in our baseline speci�cation because

earnings is more frequently missing as households have spells of unemployment. Simulations

in the model suggest that we lose essentially no accuracy by using c instead of y when there

is no measurement error, and we gain substantial additional predictive power when there

is random missing data on y: Using ratios of y
d
is again problematic for households with

no earnings. Nevertheless, while these alternative functions seem to do slightly less well in

simulation at predicting true gaps in the model, we have re-run our benchmark model using

various alternative speci�cations and arrived at quite similar results implications.

Armed with our function Gm (z) = �0 + �1a�1 + �2d�1 + �3c + �4
d�1
c
, we now describe

in additional detail our estimation algorithm and construction of standard errors.

1) For a given set of parameters p, solve the model and regress d�m = �0 + �1 (am�1) +

�2
�
dm�1
�
+ �3c

m + �4

�
d�1
c

m
�
:

2) Given a measurement error parameter, simulate the model using sample sizes equal to

PSID, with measurement error and aggregate this simulated data to biannual frequencies.

Then compute estimates of gaps in the model: dd�m = �0 + �1

�dam�1� + �2

�ddm�1� + �3ccm +
�4

�dd�1
c

m
�
: In this step (and for identi�cation of measurement error) it is important to

note that we estimate the vector � using the true model relationship with no measurement

error and then apply that function to observables with simulated measurement error. This

implies that as we change the degree of measurement error, we do not change � and change

only the relationship between z and bz:
3) Compute cd�d in PSID data: cd�d = �0 + �1

�dad�1�+ �2

�ddd�1�+ �3
bcd + �4

�dd�1
c

d
�
:

4) Convert estimates of d� to measures of gaps: cxm = logdd�m � logddm�1 and bxd =
log cd�d � logddd�1:
5) Compute the density of gaps in the model and data fp, and calculate the probability

of adjustment as a function of imputed gap hmp (using the threshold for adjustment de�ned

60We can also assess the accuracy directly in data by looking at the relationship between actual durable
decisions when adjusting and those predicted by G. Again, the simple functional form is substantially more
accurate.
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in Appendix 1).

6) Compute Lp =
R ��

fmp
�cxm�� fd

� bxd��2 + �hmp �cxm�� hd
� bxd��2� dx

7) Repeat 1-6 over parameters to minimize Lp.

Steps 1-7 describe the procedure for constructing point estimates. To construct boot-

strapped standard errors we do the following:

8) Given our parameter point estimates, simulate data as in step 2) above.

9) Replace the PSID data in the previous estimation with the "fake data" simulated

from the model best �t point estimates.

10) Re-estimate the model to �nd point estimates which best �t the new "fake" PSID

data.

11) Record point estimates and implied hazards for this bootstrap replication. Also

record the implied distribution of gaps and hazards in the actual PSID data under this new

point estimate.

12) Repeat 8-12 1000 times to construct a distribution of bootstrapped standard errors

that accounts for sampling error.

9.2 Identi�cation

How are parameters identi�ed in our model? As usual in numerical models, we have no

proof of global identi�cation, but in practice we parameterize our hazard and density using

21 bins for each. This means that we have 42 targeted moments and only �ve parameters so

that the model appears to be overidenti�ed. In addition, starting the search for the best �t

parameters at various starting values converges to the same best-�t results, which suggests

that the model is globally identi�ed.

Furthermore, we can argue more strongly for local identi�cation by varying individual

parameters holding others �xed at their best �t estimates. Each of our parameters induces

independent variation on the model and data densities and hazards. In the following �gures,

we change one parameter at a time and explore its implications for model and data densities

and hazards. In each �gure, the blue lines correspond to model objects and green lines to

PSID objects.
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Figure 15: Changing v (Relative Utility of Non-Durables)
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Figure 16: Changing � (Maintenance)
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Figure 17: Changing Ft (Time cost of adjustment)
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Figure 18: Changing Fd (Fixed Cost Proportional to Stock)
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Figure 19: Changing Proportional Measurement Error

Changes in the �rst four parameters induce changes in both model and empirical densities.

This is because as we change these parameters we alter the function Gm that maps observ-

ables to gaps in the model. This in turn induces variation in PSID gaps: bxd = Gm
� bzd� :

In contrast, introducing measurement error a¤ects czm = (1+b�)zm but it does not a¤ect the
mapping between true model observables (with no measurement error) and outcomes. That

is, measurement error does not a¤ect Gm: As such, changing the degree of measurement

error has no e¤ect on the gaps and hazard imputed in PSID and only a¤ects the gaps and

hazards imputed for model simulated data (with measurement error). Since changing the

measurement error parameter has no e¤ect on PSID we plot its a¤ect only on model densities

and hazards. In addition, we show how the loss function varies as we change measurement

error to demonstrate that there is a clear minimum.

However, it is worth noting that the variation in densities and hazards induced by mea-

surement error is substantially less than that induced by the other parameters of our model,

so if any parameter is not particularly well-identi�ed it is probably the amount of measure-

ment error. However, this is not a huge concern for our results as we are not particularly

interested in assessing the amount of measurement error in PSID variables. Furthermore,

measurement error does not really a¤ect any of our conclusions aside from their a¤ect on

the overall �t and thus on the other parameters of their model. True impulse responses
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in the model are calculated without measurement error, so these IRFs are not a¤ected by

changes in measurement error. Since the measurement error parameter does not a¤ect the

actual PSID data, changing its importance has no e¤ect on the conclusions for the implied

IRF given by the PSID cross-section.

Finally, we can also construct surface plots for the loss-function as two di¤erent para-

meters are varied simultaneously. For brevity we do not report these plots, but again the

model appears to be globally identi�ed.

9.3 Applications to Alternative Models and Data

In this section, we explore two additional aspects of our estimation. 1) Can our estimation

procedure identify misspeci�ed models? 2) Does our model deliver useful out-of-sample

predictions?

9.3.1 Grossman and Laroque 1990 Model

Figure 20: Empirical Results for Grossman Laroque (1990) Model

First, to what extent is the empirical hazard actually a test for misspeci�cation in our

model? Since we target the density and hazard directly, perhaps it is just mechanical that

we �nd a good �t for these variables. To assess this, we apply our gap imputation procedure

to PSID data using the model from Grossman and Laroque [1990]. In this model, households

target a constant fraction of liquid wealth when adjusting, so it is straightforward to impute
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durable gaps. To what extent do these durable gaps provide predictive power for actual

adjustment patterns? Figure 20 shows that the answer is: not at all. Gaps imputed using

the structural model of 20 generate a nearly �at hazard (varying from 0.06 to 0.12) but more

importantly, the hazard is not upward sloping in the absolute gap. Households which are

predicted to adjust by the model are actually less likely to adjust.

Clearly the model of 20 is highly stylized since it ignores liquidity constraints and has

no non-durable consumption, and clearly these things matter empirically. The point of this

section is not that 20 is a bad model but is instead to illustrate that using an (S,s) model

with a theoretical upward sloping hazard to impute gaps does not imply that the resulting

empirical hazard need be upward sloping. In this sense, the behavior of the empirical hazard

implied by the structural model is indeed a good test for misspeci�cation of the structural

model.

9.3.2 SHIW Data

Our model was estimated to match PSID data, and we showed that we can �nd parameters

so that the model is a good �t to the behavior of households in this sample. In this sense,

our extremely strong �t is constructed "in-sample". If we apply our same model estimates

to data on which our model is not directly estimated, do we continue to �nd strong predictive

power? In this section we argue that the answer is yes.

To our knowledge the Bank of Italy Survey of Household Income and Wealth (SHIW)

data is the only other data set that exists with the necessary variables to apply our model

estimates.61 The SHIW collects detailed information on demographics, households consump-

tion and assets.62 Following Bertola, Guiso, and Pistaferri [2005], we only use the waves after

1987 as the survey methodology has remained roughly constant over this time period. In

particular, we use the 1989, 1991, 1993, 1995, 1998, 2000, 2002, 2004, 2006, 2008, 2010 and

2012 waves in our analysis. Each wave surveys a representative sample of 8000 Italian house-

holds. We focus our analysis on head of households. The value of non-durable consumption

in the data is de�ned as the sum of expenditure on apparel, schooling, entertainment, food,

medical expenses, housing repairs and additions and imputed rents. Our preferred measure

of the durable stock is the sum of end-of-period value of means of transport (includes autos,

motorcycles, caravans, boats and bicycles) and the value of real estate (housing and land).

Our results are robust to including other measures of durable adjustment including the value

of end-of-period stocks for furniture and jewelry. The SHIW also includes information on
61An alternative out-of-sample test would be to estimate the model on half of the PSID data and test it

on the other half of the PSID data. This produces similar results.
62The dataset can be downloaded here: https://www.bancaditalia.it/statistiche
/indcamp/bilfait;internal&action=_setlanguage.action?LANGUAGE=en
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durable �ows for means of transport, furniture, and jewelry. Net assets are the sum of all

deposits, CDs, securities, businesses and valuables minus the value of all liabilities to banks,

corporations and other households.

Figure 21: Imputed Gap and Hazard in SHIW data
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Next, we impose the same structural relationship from on the model on this data (as

we did in the PSID) to generate empirical measures of the empirical durable gap. Given

estimates of these gap, we can then calculate the probability of adjustment as a function

of the durable gap. Unfortunately, unlike the PSID, there are fewer variables explicitly

asking households about their durable adjustment, so we must de�ne adjustment purely in

terms of some adjustment threshold. We de�ne durable adjustment as times when the

household either had non-zero expenditure in a period on means of transport or a 40%

change in the reported value of real estate. The results are qualitatively robust (the hazard

rate is increasing in the durable gap) to using di¤erent minimum thresholds including the

25% threshold we used in our benchmark speci�cation in the PSID. The main di¤erence is

that a 25% threshold implies that the annual frequency of adjustment is approximately 30%,

whereas a 40% threshold implies an annual frequency of adjustment closer to 15%.

Figure 21 shows the distribution of gaps and hazards that arise in SHIW data when

applying our model which is estimated on PSID data. Clearly, we continue to �nd an

extremely strong upward sloping hazard. In addition, the gap distribution continues to

have negative skewness.

In addition to computing the average distribution and hazard, we can also redo the
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exercise in Section 4.2 using SHIW data. Figure 22 is the counterpart to Figure 13 in

the SHIW. Since there is no comparable business cycle dating committee for Italy, we plot

the implied impulse response on impact from SHIW against the Italian unemployment rate.

Just as in PSID data, the implied IRF is strongly procyclical. As unemployment falls, the

IRF increases substantially.

Figure 22: Responsiveness Implied by Cross-Section
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