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Are numerals estranged from a sense of the actual quantities they represent? We demonstrate that,
irrespective of numerical size or distance, direct comparison of the relative quantities represented by
symbolic and nonsymbolic formats leads to performance markedly worse than when comparing 2
nonsymbolic quantities (Experiment 1). Experiment 2 shows that this effect cannot be attributed to
differences in perceptual processing streams. Experiment 3 shows that there is no additional cost of
mixing 2 formats that are both symbolic; that is, the decrement in mixing formats is specific to mixing
symbolic and nonsymbolic representations. In sum, we show that accessing a sense of how much a
numerical symbol actually represents is a surprisingly difficult and nontrivial process. Our data are
consistent with the view that numerical symbols operate primarily as an associative system in which
relations between symbols come to overshadow those between symbols and their quantity referents.
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Does one really have a meaningful sense of very large quanti-
ties, like a million or a billion? Or does representing quantities in
exact, symbolic form come to change the way one thinks about
(and with) these numerical symbols themselves? In recent years,
evidence has accumulated in favor of a strong overlap between
symbolic and nonsymbolic number representation systems (De-
haene, 1997, 2008; Dehaene, Piazza, Pinel, & Cohen, 2003; Fias,
Lammertyn, Reynvoet, Dupont, & Orban, 2003; Gilmore, Mc-
Carthy, & Spelke, 2010; Halberda, Mazzocco, & Feigenson, 2008;
McCrink & Spelke 2010; Nieder & Dehane, 2009; Piazza et al.,
2010; Santens, Roggeman, Fias, & Verguts, 2010; Wagner &
Johnson, 2011). Considerable attention has been paid to the notion
that complex mathematical concepts are grounded in an evolution-
arily ancient, fundamental sense of quantity (e.g., which tribe

comprises more members, which bush contains more berries;
Nieder & Dehaene, 2009; Pica, Lemer, Izard, & Dehaene, 2004).
Furthermore, this view proposes that an intuitive sense of approx-
imate quantity (i.e., the approximate number system; ANS) should
be a fundamental aspect of any numerical symbol—that is, there
should be considerable overlap between symbolic and nonsym-
bolic numerical processes (Dehaene, 2008). Thus, accessing one’s
sense of quantity from a symbol should be a relatively fast and
effortless process.

On the other hand, it may be that through repeated use and
mastery of numerical symbols, the ties between exact numerical
symbols (e.g., Arabic numerals) are weakened to the point that
these symbols are often used with very little access to a sense of
the quantities they presumably represent. For example, it is hard to
imagine what a million actually looks or feels like; one’s intuitive
sense of what 1,000,000 actually means seems divorced from the
symbol that is meant to represent that quantity. Of course, we can
still use 1,000,000 in myriad ways; for example, it is easy enough
to understand that 999,999 � 1,000,000 � 1,000,001. The symbol
1,000,000 is comprehensible in terms of its relative (ordinal)
position with respect to other numerical symbols (Verguts & Fias,
2004), even if potentially divorced from the quantity it represents.

A crucial facet of numerical symbols is how they relate to other
symbols (Wiese, 2003); indeed, it may even be the case that with
repeated exposure to numerical symbols, symbol–symbol relations
in literate adults come to usurp symbol–quantity relations. As
found in abstract semantic representation more generally (Crutch
& Warrington, 2010), how a (numerical) symbol relates to other
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symbols may become more central to that symbol’s meaning than
how it relates to the quantity it supposedly represents (Deacon,
1997; Nieder, 2009). If so, eliciting a sense of the actual quantity
represented by a numerical symbol may be an onerous process,
because it is not typically necessary when using such symbols in a
normal mathematical context. The link between numerical sym-
bols and the quantities they represent (at least in terms of the ANS)
may thus be considerably weaker than previously assumed.

Current Study

One way to distinguish these hypotheses directly is to ask
participants to use numerical symbols in a context that forces them
to access how much a given symbol represents explicitly. We
asked participants to compare quantities represented either in sym-
bolic format (Arabic numeral or written number word) or nonsym-
bolic format (an array of dots flashed too briefly to count). In
Experiments 1–2, participants decided which item depicted the
greater quantity in three different conditions: numeral–numeral,
dot–dot, and mixed-format (dot–numeral or numeral–dot). In Ex-
periment 3, participants compared quantities in numeral–numeral,
number word–number word, and mixed-format (word–numeral or
numeral–word) conditions (see Figure 1).

If numerical symbols retain a strong link to an approximate
sense of the quantities they represent, then mixing formats
should be akin to comparing two entities that ostensibly differ
only in representational quality (sharpness of approximate tun-
ing curves; Merten & Nieder, 2009; Piazza, Izard, Pinel, Le
Bihan, & Dehaene, 2004). Adults are faster and more accurate
when comparing two numeral stimuli than two dot stimuli
(Buckley & Gillman, 1974; Lyons & Beilock, 2009). Thus,
replacing one dot stimulus with a (superior) numeral stimulus
should improve mixed-format comparison performance (rela-

tive to dot– dot comparison). According to the hypothesis that
symbolic and nonsymbolic quantity representations draw from
the same neural populations (Dehaene, 2008; Santens et al.,
2010), mixed-format comparisons (which combine a broadly
tuned dot stimulus with a finely tuned numeral stimulus) in
Experiments 1–2 should yield performance somewhere in be-
tween that of numeral–numeral comparisons (two finely tuned
stimuli) and dot– dot comparisons (two broadly tuned stimuli).
Put more conservatively, mixed performance should at least be
no worse than dot– dot comparisons.

By contrast, if symbolic numbers have become detached from
an intuitive sense of the nonsymbolic quantities to which they
presumably refer, accessing this sense of quantity directly from a
numerical symbol may incur an additional processing cost. Hence,
mixed-format comparisons should lead to worse performance than
either numeral–numeral or dot–dot comparisons. Note that this
prediction holds even if numerical symbols and the ANS were
never associated to begin with (e.g., Butterworth, 2010; Le Corre
& Carey, 2007), though see the Discussion for further consider-
ation of this issue.

In Experiment 3, we tested whether the potential cost of mixing
formats observed in Experiments 1–2 might simply be due to
mixing representational or visual format, rather than to asymmetric
accessing of quantity information. We expected quantities pre-
sented as number words to be represented symbolically, as in the
case of numerals. We thus predicted that directly comparing a
numeral with a number word should not yield performance worse
than word–word comparisons (which were expected to yield less
efficient performance than numeral–numeral comparisons; Da-
mian, 2004). This result would suggest that the performance deg-
radation seen for mixed comparisons is not simply due to mixing
representational or visual formats.

Figure 1. Examples of comparison tasks from Experiment 1 (a–c) and Experiment 2 (d–f). Trial timing was
the same for Experiments 2–3. NN � numeral–numeral; DD � dot–dot; MX � mixed-format; ITI � intertrial
interval; ISI � interstimulus interval; resp. � response.
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Method and Results

Procedures and Stimuli

Participants in Experiment 1 and Experiment 3 were two sepa-
rate samples of 21 University of Chicago students. Participants in
Experiment 2 were 21 Dartmouth College students.

In all experiments, participants’ task was to decide which stim-
ulus represented the greater quantity. Participants were to press a
key with their left middle finger if they thought the left (Experi-
ment 1) or first (Experiments 2–3) stimulus was greater, press a
key with their right middle finger if they thought the right (Ex-
periment 1) or second (Experiments 2–3) stimulus was greater, or
press a third key (space bar) with both index fingers if they thought
the two stimuli were numerically equal (catch trials). In all exper-
iments, there were 48 critical trials and 16 catch trials (see below)
in each condition. Without catch trials, when one had seen 1 or 4
(or 10 or 40) as the first stimulus, the decision would be trivially
easy, requiring no further processing of relative quantity. Catch
trials were omitted from data analysis (see Goldfarb, Henik, Ru-
binsten, Bloch-David, & Gertner, 2011, for a discussion of the
difficulty in interpreting numerical matching judgments). For crit-
ical trials, comparisons were subdivided into four categories:
small–far, small–close, large–far, large–close. In all conditions,
half of critical trials were numerically small (1–4) and half were
large (10, 20, 30, 40); orthogonally, half of critical trials were
numerically close (|n1–n2| � 1, 10) and half were far (|n1–n2| � 2,
3, 20, 30).

For dot–dot trials in Experiments 1–2, half of the arrays in a
given comparison pair were equated in terms of overall area (net
area of all dots in an array), and the remaining arrays were equated
in terms of individual dot area; orthogonally, half of the array pairs
were equated in terms of overall contour length (perimeter of the
whole array), and the remainder were equated in terms of average
local density (distance between neighbors). Pairs equating for each
of these parameters were presented randomly (to decrease the
likelihood that participants would rely on any one parameter for

the duration of the experiment). No array was ever presented to a
participant twice. Number words in Experiment 3 were presented
in English (centered, 24-point Arial font).

Trials were always blocked by condition (with rest and instruc-
tions between blocks and block order randomized across partici-
pants). On Experiment 1 mixed-format trials, which side (left or
right) contained the dot array was balanced and randomized across
trials. In Experiment 2, mixed-format trials were completed in two
separate blocks as a function of which stimulus type (dot or
numeral) was presented first. Mixed-format performance did not
depend on presentation order.

Results

In all experiments, two behavioral measures were collected:
response times and error rates. Our hypotheses concerned only the
difference between the mixed-format and the single-format condi-
tion that yielded the worst performance in each experiment. An
examination of means in Table 1 shows that response times and
error rates tended to be higher for dot–dot comparisons than for
numeral–numeral comparisons in Experiments 1–2 and higher for
word–word comparisons than for numeral–numeral comparisons
in Experiment 3. Results described below (and shown in Figure 2)
therefore focus on the contrast between mixed-format and dot–dot
comparisons in Experiments 1–2 and between mixed-format and
word–word comparisons in Experiment 3. Note that in all cases in
Experiments 1–2 where a significant difference was found be-
tween mixed-format and dot–dot conditions, the same was also
true for the contrast between mixed-format and numeral–numeral
conditions.

Experiment 1. In Experiment 1, response times were signif-
icantly longer for mixed-format than dot–dot trials in all catego-
ries, ts(20) � 7.97, ps � .001, ds � 1.74 (see Figure 2, top, white
bars). Error rates tended to be higher for mixed-format than dot–
dot trials as well: large–close: t(20) � 1.55, p � .137, d � 0.34;
large–far: t(20) � 5.23, p � .001, d � 1.14; small–close: t(20) �
2.30, p � .023, d � 0.51; small–far: t(20) � 2.69, p � .014, d �

Table 1
Condition Means in Each Category for Response Times (RT: msec) and Error Rates
(ER: % Wrong) for Experiments 1–3 (E.1–E.3, Respectively)

Note. Values in italics are standard errors of the mean. NN � numeral–numeral; DD � dot–dot; MX:
mixed-format; WW � word–word.
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0.59. There was no evidence of a speed–accuracy trade-off in
terms of format-mixing costs. In particular, no significant negative
slopes were observed when correlating the difference in errors
between conditions (mixed-format vs. dot–dot) and the difference
in response times (indeed, most correlations were weakly posi-
tive).

Experiment 2. It may have been that the difference between
dot–dot and mixed-format performance in Experiment 1 arose not
because of a weak link between the ANS and numerical symbols
but due to the cost of switching between different perceptual input
streams. Santens et al. (2010) showed that, unlike symbolic quan-
tities, nonsymbolic quantities progress through an intermediate
stage in the superior parietal lobe before arriving in the intrapari-
etal sulcus. By contrast, previous work has demonstrated that
occipitotemporal areas associated with visual word-form process-
ing are engaged in early perceptual decoding of numerical symbols
(Dehaene & Cohen 1995; Lyons & Ansari, 2009). It may simply
be that the cost of mixing formats in Experiment 1 was driven by
the inability to switch between these perceptual input streams—
and hence may say nothing about numerical representation per se.

To ensure this was not the case, in Experiments 2–3, we chose
an interstimulus interval (see Figure 1) that far exceeded (roughly
doubled) the potential switch-cost window seen in Experiment 1
(maximum switch cost was 426 ms; see Figure 2, top, white bars).
In addition, the 850 ms we allowed between Stimulus 1 onset and
Stimulus 2 onset exceeded the maximum duration typically ob-
served in visual attentional-blink paradigms (Kranczioch, De-
bener, Schwarzbach, Goebel, & Engel, 2005; Raymond, Shapiro,
& Arnell, 1992). This further reduced the possibility that any
evidence of mixing formats in Experiments 2–3 reflected switch-
ing between input processing streams.

In Experiment 2, response times were significantly longer for
mixed-format than dot–dot trials in all categories: large–close:
t(20) � 4.53, p � .001, d � 0.99; large–far: t(20) � 5.56, p �
.001, d � 1.21; small–close: t(20) � 3.07, p � .006, d � 0.67;
small–far: t(20) � 4.18, p � .001, d � 0.91; see Figure 2, middle,
white bars). Error rates tended to be higher for mixed-format than
dot–dot trials: large–close: t(20) � 1.52, p � .144, d � 0.33;
large–far: t(20) � 3.91, p � .001, d � 0.86; small–close: t(20) �
1.82, p � .084, d � 0.40; small–far: t(20) � 2.13, p � .046, d �
0.46. As with Experiment 1, there was no evidence of a speed–
accuracy trade-off in terms of format-mixing costs.

How might participants actually be translating between sym-
bolic and nonsymbolic quantities? Izard and Dehaene (2008) dem-
onstrated that participants show an underestimation effect when
asked to quickly estimate the approximate number of dots in an
array by stating aloud a symbolic, verbal label (e.g., “fifty”). In our
data, there was evidence for systematic underestimation of dots,
suggesting that participants may have been converting the dot
arrays into verbal, symbolic labels to compare them directly with
numerals. To demonstrate this, we looked separately at (mixed-
format) trials for which the dot array was greater than the numeral
and trials for which the opposite was true. When the dot array is
greater, performance should be negatively affected by underesti-
mation of the dot array because it should seem numerically closer
to the numeral than it actually is. By contrast, when the dot array
is numerically less, performance should be positively affected by
underestimation because it should seem numerically further from
the numeral than it actually is.

Figure 2. Comparison of the cost (mean difference, in milliseconds) of
mixing formats. Error bars are 95% confidence intervals (all critical con-
trasts were within-subjects, two-tailed). Hence, if the lower bar crosses 0,
there was no significant cost of mixing formats. MX � mixed-format
(symbolic/nonsymbolic in Experiments 1–2, symbolic/symbolic in Exper-
iment 3); DD � dot–dot; NN � numeral–numeral; WW � word–word;
RT � response times.
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In Experiment 2 (no effects were significant for either measure
in Experiment 1; ps � .133), participants tended to respond more
slowly when the dot array was greater than the numeral (977 ms)
than when the numeral was greater than the dot array (934 ms),
F(1, 20) � 11.75, p � .003, �2 � .37. Participants also tended to
make more errors when the dot array was greater than the numeral
(24.7%) than when the numeral was greater than the dot array
(8.4%), F(1, 20) � 53.67, p � .001, �2 � .73. Crucially, we
observed longer response times for mixed-format versus dot–dot
comparisons even for mixed-format cases in which the numeral
was greater than the dot array: large–close: t(20) � 3.07, p � .006,
d � 0.67; large–far: t(20) � 2.20, p � .039, d � 0.48; small–
close: t(20) � 3.05, p � .006, d � 0.67; small–far: t(20) � 2.57,
p � .018, d � 0.56. Underestimation of dot arrays cannot explain
the observed mixing costs.

Experiment 3. In Experiment 3, we tested whether the cost of
mixing formats observed in Experiments 1–2 might be due to
mixing visual formats. Here, in contrast to the mixed-format
conditions above, we predicted that mixing symbolic visual for-
mats (numerals and number words) would not lead to worse
performance than that seen for the worst performing single-format
condition (word–word; see Table 1, bottom).

Performance did not significantly differ between mixed-format
and word–word conditions either for response times, large–close:
t(20) � �0.41, p � .687, d � �0.09; large–far: t(20) � �0.46,
p � .648, d � �0.10; small–close: t(20) � 0.88, p � .390, d �
0.19; small–far: t(20) � 0.43, p � .671, d � 0.09 (see Figure 2,
bottom, grey bars), or for error rates, large–close: t(20) � �0.48,
p � .636, d � �0.10; large–far: t(20) � �0.01, p � .992, d �
0.00; small–close: t(20) � 0.23, p � .818, d � 0.05; small–far:
t(20) � 0.12, p � .907, d � 0.03. Experiment 3 results are
consistent with the hypothesis that switching between visual nu-
merical formats—so long as both formats point to symbolic rep-
resentations—does not incur the same cost as that arising when
switching between symbolic and nonsymbolic numerical formats.

Comparing Experiments 2 and 3. As a final test, we asked
whether the format-switching costs were significantly greater for
translating between numerals and dots (Experiment 2) than for
translating between numerals and number words (Experiment 3).
In addition, we asked whether this cost was modulated by numer-
ical size and/or numerical distance.

We submitted mixing costs for Experiment 2 (white bars, Fig-
ure 2, middle) and Experiment 3 (grey bars, Figure 2, bottom) to
a 2 (Experiment: 2, 3; between-subjects) � 2 (Size: small, large;
within-subjects) � 2 (Distance: close, far; within-subjects)
ANOVA. For response times, the main effect of experiment was
significant, F(1, 40) � 13.61, p � .001, �2 � .25; the average
format-mixing cost in Experiment 2 was 84 ms; the average cost in
Experiment 3 was 3 ms. There was also a significant Experi-
ment � Size interaction, F(1, 40) � 11.60, p � .002, �2 � .23. For
large quantities, format-mixing costs were 109 ms in Experiment
2 and �8 ms in Experiment 3, F(1, 40) � 21.78, p � .001, �2 �
.35. For small quantities, format-mixing costs were 59 ms in
Experiment 2 and 7 ms in Experiment 3, F(1, 40) � 5.25, p �
.027, �2 � .12. There were no significant effects of distance
(remaining Fs � 1). For error rates, the main effect of experiment
was significant, F(1, 40) � 18.96, p � .001,�2 � .32; the average
format-mixing cost in Experiment 2 was 5.6% errors; the average
cost in Experiment 3 was 0.0% errors (all other effects, ps � .130).

In sum, the cost of mixing symbolic and nonsymbolic quantities
(numeral vs. dot array) is greater than the cost of mixing two
symbolic quantities (numeral vs. number word). Furthermore, it
appears that symbolic and nonsymbolic quantities are somewhat
distinct even for small quantities, albeit more so for large quanti-
ties. The small quantities used here (1–4) are within the subitizing
range for adults (Mandler & Shebo, 1982; Revkin, Piazza, Izard,
Cohen, & Dehaene, 2008). Such quantities tend to be represented
with high acuity as they do not exceed the capacity of visual
short-term memory (Ansari, Lyons, van Eimeren, & Xu, 2007;
Luck & Vogel, 1997; Pylyshyn, 2001). Hence, neither familiarity
(even the large quantities were multiples of 10) nor representa-
tional acuity (i.e., sharpness of small-number tuning curves;
Merten & Nieder, 2009; Piazza et al., 2004) fully explains the cost
of switching between symbolic and nonsymbolic quantities.

Discussion

Experiments 1 and 2 provide clear evidence that numerical
comparisons between symbolic and nonsymbolic quantities are
considerably more difficult than comparisons of two nonsymbolic
quantities. One might expect the comparison of a highly accurate
stimulus (numeral) and an inaccurate stimulus (dot array) to be
easier (or at least no worse) than the comparison of two inaccurate
stimuli (two dot arrays). Our data suggest instead that a numeral
does not provide direct access to an approximate sense of the
quantity it represents. Rather, it appears that additional, inefficient
processing is required to compare symbolic with nonsymbolic
quantities.

Our results are partially consistent with the place-code model of
symbolic number representation proposed by Verguts and Fias
(2004), in which a numerical symbol is at least in part represented
in terms of its relative ordinal position. Our results go further,
however, by suggesting that numerical symbols operate primarily
as an associative system in which relations between symbols come
to overshadow those between symbols and their quantity referents
and may even become devoid of a strong sense of nonsymbolic
quantity per se (Deacon, 1997; Nieder, 2009). Thus, it will be
important for future research to understand symbolic number rep-
resentation in a way perhaps tied only indirectly to actual quantity
referents (e.g., Lyons & Beilock, 2011). This may be especially
interesting to consider in a developmental context and with respect
to the individual differences that limit exactly how and when
numerical symbols are best understood in conjunction with or
separate from one’s more intuitive number sense (Ansari, 2008;
Holloway & Ansari, 2010; Lyons & Beilock, 2009; Santens et al.,
2010). In one interesting example, Siegler and Opfer (2003) dem-
onstrated that the mapping between numerical symbols and con-
tinuous visuospatial frames changes from logarithmic to linear and
that this change is related to various improvements in other math-
ematical abilities (e.g., Booth & Siegler, 2008; Opfer & Siegler,
2007). Although the relation between a continuous visuospatial
“mental number line” and both numerical symbols and the ANS
remains a contentious one (Chen & Verguts, 2010; Gevers et al.,
2010; Santens & Gevers, 2008; van Dijck, Gevers, Lafosse, Dor-
icchi, & Fias, 2011), the Siegler and Opfer work points to one
potential mechanism by which the symbolic number representation
system itself changes. An intriguing possibility is that the transi-
tion from a logarithmic to linear mapping of symbolic numbers
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onto visual space is also a reflection of the process by which
symbolic numbers become estranged from their ANS counterparts.

Another interesting example of the interaction between sym-
bolic numbers and the ANS is the systematic underestimation of
nonsymbolic quantities observed in Izard and Dehaene (2008;
found also in the current work). This underestimation may be due
in part to systematic inefficiencies in translating between repre-
sentation systems, necessitated by the fact that symbolic and
nonsymbolic representations of number have become estranged.
The recalibration effect they observe may be seen as a corrective
reweighting of this translation process. However, implementation
of this reweighting appears to engender an additional processing
cost; even for cases in which the dot array was numerically less
than the numeral, we found a cost of mixing formats (Experiment
2 of the current work).

Here it is important to note it may be the case that number sense
and numerical symbols were simply never associated with one
another in the first place (Butterworth, 2010; Le Corre & Carey,
2007), and our data are broadly consistent with such a proposal.
On the other hand, considerable neural evidence has accrued
suggesting that the neural substrates underlying the ANS do over-
lap at least to some extent with those thought to underlie symbolic
representations of number (Dehaene et al., 2003; Fias et al., 2003;
Nieder & Dehane, 2009; Piazza et al., 2007; Santens et al., 2010).
Furthermore, recent developmental evidence suggests that individ-
ual differences in ANS acuity are linked with symbol-based math
abilities from a relatively young age (Gilmore et al., 2010; Hal-
berda et al., 2008; McCrink & Spelke 2010; Piazza et al., 2010;
Wagner & Johnson, 2011) and even into adulthood (Lyons &
Beilock, 2011). If symbolic and nonsymbolic representations were
never overlapping to begin with, the results from these studies
could only be explained by an increase in the overlap between
ANS and symbolic number representation over the course of
development. Our data dispel this hypothesis: At least for adults,
the mature endpoint involves two relatively distinct representation
systems for symbolic and nonsymbolic numbers. Nevertheless,
only future developmental work can unpack all the relevant mech-
anisms underlying numerical symbol learning at earlier ages. The
specific question of how development shapes the relation between
numerical symbols and the ANS is directly motivated by the
current work.

On a broader note, a recent paper (Gebuis & Reynvoet, 2012;
see also the supplemental materials to the current paper for addi-
tional methodological considerations raised by their work) sug-
gests that nonsymbolic quantity is more grounded in low-level
visual parameters than has been previously assumed. Because our
data show that accessing an approximate sense of quantity from
numerical symbols is much more difficult than previously thought,
we argue that numerical symbols are more estranged from this
perceptual, nonsymbolic grounding than has been previously as-
sumed. In sum, we feel our results parallel those of Gebuis and
Reynvoet, and the two papers together call into question previous
assumptions about the nature of both symbolic and nonsymbolic
representations of quantity.

In sum, our data speak to the interaction between an evolution-
arily ancient (ANS) number system and a recent, culturally in-
vented one. Although numerical symbols may or may not have
co-opted ANS representations early in development, they appear to
have emerged as a system distinct from the ANS—and perhaps a

complex associative system unique unto itself. The data reported
here plainly call into question the strength of the link in literate
adults between numerical symbols and a sense of the quantities
they are meant to represent. Future studies aimed at understanding
the cognitive and neural basis of more complex math skills in
particular should consider not only the commonalities across sys-
tems but also the unique properties that symbolic representations
of number bring to the table.
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