
Distribution of directional change as a signature of
complex dynamics
Stanislav Burova, S. M. Ali Tabeia, Toan Huynhb, Michael P. Murrellc, Louis H. Philipsond, Stuart A. Ricea,b,1,
Margaret L. Gardela,c,e, Norbert F. Scherera,b,c, and Aaron R. Dinnera,b,c,1

aJames Franck Institute, bDepartment of Chemistry, cInstitute for Biophysical Dynamics, dDepartment of Medicine, and eDepartment of Physics, University of
Chicago, Chicago, IL 60637

Contributed by Stuart A. Rice, October 18, 2013 (sent for review July 30, 2013)

Analyses of random walks traditionally use the mean square dis-
placement (MSD) as an order parameter characterizing dynamics.
We show that the distribution of relative angles of motion between
successive time intervals of random walks in two or more dimen-
sions provides information about stochastic processes beyond the
MSD. We illustrate the behavior of this measure for common mod-
els and apply it to experimental particle tracking data. For a col-
loidal system, the distribution of relative angles reports sensitively
on caging as the density varies. For transport mediated by molec-
ular motors on filament networks in vitro and in vivo, we discover
self-similar properties that cannot be described by existing models
and discuss possible scenarios that can lead to the elucidated
statistical features.
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Complex dynamics often emerge from ensembles of interact-
ing constituents. Trajectories that are obtained by tracking

individual constituents contain information beyond the evolution
of ensemble properties, and these data can thus reveal new mech-
anistic features of the system studied. Examples cut across disciplines
and include quantum dots (1), colloidal beads (2), features in cells
(3, 4), fish in schools (5), birds in flocks (6), and primates in social
groups (7, 8). These data (individual trajectories) demand the-
oretical frameworks for characterizing and interpreting them.
The standard reporter for different forms of motion is the

mean square displacement (MSD)
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where brackets and overlines denote ensemble and time aver-
ages, respectively. In simple Brownian motion (9), the MSD
grows linearly with the separation in time between two observa-
tion points (the lag time, Δ) and does not depend on the amount
of data included in averages (the measurement time, T)—i.e.,
there is ergodicity. Anomalous (i.e., non-Brownian) dynamics
can arise from correlations in the walk steps. Correlations in
the step sizes [e.g., as in fractional Brownian motion (FBM)]
(10) give rise to nonlinear scaling of the MSD with lag time,
retaining ergodicity (11). By contrast, a power-law distribution
of dwell times [e.g., as in a continuous time random walk
(CTRW)] (12) is associated with linear scaling with lag time but
nonergodicity (13, 14). The two types of correlations can exist
together (4, 15).
Despite the success of the MSD as an order parameter for

dynamics, it is essentially a 1D measure. We expect random walks
in two and more dimensions to contain information beyond the
MSD, and various alternative analyses have been suggested (16)
(Conclusions). In this paper, we introduce a statistical measure of
such information. Specifically, we consider the relative angle, which
quantifies the direction of motion over successive time intervals.
We show that different models of stochastic processes give rise to
different distributions of relative angles and how the intervals can

be varied to probe contributing time scales. We apply our order
parameter to 2D experimental data obtained for mesoscopic sys-
tems. We examine colloidal suspensions at two densities and show
that the distribution of relative angles is a sensitive means of de-
tecting and quantifying caging. Two different cytoskeletal systems
are considered: insulin-containing vesicles (granules) in a pancreatic
cell line (4) and in vitro mixtures of purified myosin motors and
actin filaments. These active systems exhibit a common signature
of directional motion that cannot be understood in terms of existing
models. We propose possible scenarios that could lead to the ob-
served statistics. Together, these examples show that the distribu-
tion of relative angles is a straightforward probe of complex dy-
namics that provides information beyond the MSD.

Construction of the Relative Angle
In this section, we introduce our order parameter for quantifying
directional change. As shown in Fig. 1, each trajectory comprises
a set of recorded positions of the particles XðtÞ. Given these data,
we form the vectors that connect positions separated by Δ steps,
Vðt;ΔÞ=Xðt+ΔÞ−XðtÞ. We define the relative angle θðt;ΔÞ as
the angle between Vðt;ΔÞ and Vðt+Δ;ΔÞ

cos θðt;ΔÞ= Vðt;ΔÞ ·Vðt+Δ;ΔÞ
jVðt;ΔÞjjVðt+Δ;ΔÞj: [2]

In analogy to Eq. 1, the parameter Δ plays the role of a lag time;
it controls the degree of temporal coarse-graining. For a given Δ,
we compute θðt;ΔÞ across all times in each trajectory and then
across all particles. We build a histogram of these values and
normalize such that it integrates to one. The resulting probability
density function, Pðθ;ΔÞ, serves as our order parameter. We repeat
this procedure for different Δ and examine how the order param-
eter changes. The quantity that we calculate, Eq. 2, is reminiscent
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of a velocity autocorrelation function (17), but it differs in that
the V vectors are not instantaneous velocities and, importantly,
we do not ensemble average.

Dictionary of Model Signatures
The variation in Pðθ;ΔÞ with Δ can serve as a signature of dif-
ferent types of motion. As a simple example, consider an inertial
Langevin dynamics (17)

m
d2X
dt2

= − γ
dX
dt

+ ξðtÞ: [3]

Here m is the mass of the particle, −γdX=dt is a drag, and ξðtÞ is
a 2D noise vector ðξxðtÞ; ξyðtÞÞ where ξxðtÞ and ξyðtÞ are Gaussian
distributed uncorrelated noiseshξyðtÞξxðt′Þi=Dδxyδðt− t′Þ, where
δðt− t′Þ is the Dirac δ-function, δxy is the Kronecker δ-function,
and D is a constant noise strength (the brackets indicate ensem-
ble averaging). We integrate this equation of motion to obtain
a 2D trajectory. When Δ= 1 (Fig. 2, Upper), the distribution is
peaked at θ= 0, which is equivalent to θ= 2π owing to the peri-
odicity of the angle. The U-shape in this representation is a sig-
nature of inertial motion: at short times the particle tends to
continue in the same direction. As Δ increases, the noise ran-
domly shifts the direction of travel, causing the distribution to
flatten steadily (Fig. 2, lower three panels). For sufficiently large
temporal coarse-graining, successive vectors between sampled
points ½Vðt;ΔÞ� are completely independent and the distribution
is that of a simple random walk (Fig. 2, Δ = 300). The distribu-
tion remains flat for all further times, a signature of the self-
similarity of diffusion (18).
We can similarly understand the signatures of motions that are

influenced by various potentials. In Fig. 3A, we show Pðθ;ΔÞ for
various Δ for diffusion of a particle in a box. At short times, the

particle does not feel the boundary and the motion is just a
simple random walk. As the temporal coarse-graining increases, a
peak grows at θ= π. This peak indicates that the successive vectors
between sampled points are anticorrelated in direction—the reflec-
ting boundaries force the particle to reverse its motion. Eventually

Fig. 1. Schematic of the construction of relative angles. (Upper) We sample
a Brownian motion (gray line) at regular time intervals (red circles); these
points are connected by vectors and angles between successive vectors are
calculated. One time interval (Δ=1) is indicated by the solid blue arrows, and
another, which is twice as long (Δ=2), is indicated by the dashed blue
arrows. (Lower) Calculation of the angle θð1; 1Þ given the vectors in the first
two (shorter) time intervals in the upper panel.
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Fig. 2. Relative angle distributions for underdamped motion with various
degrees of temporal coarse-graining (see text). Histograms are for a trajectory of
10,000 steps generated by leapfrog integration (35) of Eq. 3 with time step 0.1
with γ=m= 1 and
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=m= 1; the sampling interval (unit of D) is one time step.
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Fig. 3. Relative angle distributions for particles subject to confining potentials.
For each model, different panels represent different degrees of temporal
coarse-graining as indicated. (A) Diffusion in a square box. The trajectory was
obtained by integrating Eq. 3withm= 1 and

ffiffiffiffiDp
=γ = 0:1 in a 10×10 region; the

time step and sampling interval were both 0.1. (B) Dynamics steered by a har-
monic potential. Same parameters as in A with a similar effective bounding
region: hðx − hxiÞ2i= hðy − hyiÞ2i=25=3 and drift hxðtÞi= hyðtÞi= 0:003t.
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the distribution converges to a stationary profile, again charac-
teristic of a self-similarity. Analogous behavior is observed for
other confining potentials, with the shape of the peak at θ= π
dependent on the details of the specific form.
In Fig. 3B, we show the behavior of Pðθ;ΔÞ of a particle under

the influence of a harmonic potential with a steadily translating
minimum (i.e., a steered dynamics, as in an optical trap experi-
ment). At finite times, the distribution is peaked at θ= π due to
the trap, just like the situation immediately above. However, as
the confining potential moves, the particle dynamics are posi-
tively correlated overall, causing the peak to break in two and
ultimately give rise to an inertial signature (compare Fig. 3B,
Δ = 24000, with Fig. 2, Δ = 1).
Complex media can give rise to more complex dynamics

with correlated steps, as discussed in the Introduction. For
example, transport in a viscoelastic environment is expected
to give rise to FBM (19). FBM is a stationary Gaussian
process where the spatial position XðtÞ is correlated such that

hXðtÞXðt+ΔÞi∼
�
jtj2H+jt+Δj2H−jΔj2H

�
, where H is the Hurst

exponent. When 0<H < 1=2, the motion is subdiffusive because
the steps are negatively correlated, and we find Pðθ;ΔÞ to be akin
to that of a confining potential (Fig. 4A; H = 0:2 and 0.4)—i.e.,
there is a tendency for reversals. In contrast, when 1=2<H < 1,
the motion is superdiffusive because the steps are positively
correlated and we find an interial-like signature (Fig. 4A;
H = 0:6).
As already discussed, alternative anomalous dynamics arise

from a power-law distribution of dwell times for steps (i.e., a
CTRW). A pure CTRW signature is shown in Fig. 4B ðH = 0:5Þ.
The directional anticorrelation peak at θ= π decreases with Δ.
When the step sizes are described by FBM and the dwell times
are described by CTRW (i.e., when ergodic and nonergodic processes

coexist), we say that FBM is subordinated to CTRW (see refs. 4,
15, and 20 for examples). Examples of Pðθ;ΔÞ for such dynamics
are shown in the remaining panels in Fig. 4B. The H = 0:2 case is
quite similar to the CTRW (H = 0.5), but, in the H = 0:7 case
(i.e., when there are positively correlated steps, as in the case of
active transport), there is a progression from a confined signa-
ture to an inertial one with increasing temporal coarse-graining.
However, note that, in contrast to Fig. 3B, the peak at θ= 0
emerges without the peak at θ= π splitting. In other words, the
qualitative shape of the profiles at intermediate values of Δ can
be used to distinguish different motions.

Application to Experimental Data
We examine Pðθ;ΔÞ for particle tracking data from three dif-
ferent experimental situations.

Colloidal Suspensions. The first system is driven only by thermal
energy. It is a colloidal suspension of 1.58 ± 0.04-μm-diameter
silica spheres in water between parallel glass plates that are
separated by 1.76 ± 0.05 μm (21). The data are those for packing
fractions of ϕ= 0:316 and ϕ= 0:681 from ref. 21. We expect the
colloidal particles to move freely at the former ϕ and to be close
to jammed at the latter ϕ. Consistent with these ideas, we find
that Pðθ;ΔÞ for ϕ= 0:316 is almost flat (Fig. 5B, Upper), whereas
that for ϕ= 0:681 exhibits a pronounced peak at θ= π (Fig. 5B,
Lower), similar to the profile for a particle in a box (Fig. 3A). The
peak in Fig. 5B, Lower decays slightly as the temporal coarse-
graining interval is lengthened; we interpret this decay to reflect the
fact that particles are not completely confined by their neighbors—
they eventually escape their neighbors and the system mixes after
many such events. The dependence on Δ provides quantitative
information about the time scale of such dynamics. Caging and
escape were identified previously in colloidal suspensions (21, 22)
and can be directly observed for specific trajectories. Likewise,
backscattering of neighboring particles in simulations has long been
visualized through the velocity autocorrelation function (23).
However, Pðθ;ΔÞ provides a much more sensitive statistical probe:
Pðθ;ΔÞ for ϕ= 0:68 shows a peak at θ= π when the corresponding
MSD is already linear (Fig. 5A).

0

1

2
A

0

1

2
B

0

1

P(
;

)

0

1

0 0.2 0.4 0.6 0.8 1
0

1

/2
0 0.2 0.4 0.6 0.8 1

0

1

/2

H=0.5

H=0.7H=0.6

H=0.4

H=0.2 H=0.4

Fig. 4. Relative angle distributions for random walks leading to anomalous
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τ>1. During the τ periods, the dynamics of the particle follow Eq. 3withm= 1,
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Insulin Granules.More complex dynamics can arise in systems with
active elements, such as molecular motors. Here, we study the
transport of insulin-containing vesicles (granules). In addition to
active elements, these dynamics are influenced by fluctuations of
the crowded cellular environment. Analysis of the MSD recently
indicated that these granules combine ergodic and nonergodic
random walk processes (4), and we showed that a hybrid model
that subordinated a FBM with H ≈ 0:35 to a CTRW with dwell
time distribution ψðτÞ∼ τ−ð1+βÞ (with β∼ 0:8) accounted for a
host of statistics of the motion (4). This model provides a simple
physical mechanism for obtaining characteristic insulin secretion
profiles comprised of a burst followed by sustained release (see
ref. 4 for further discussion of the biological implications). In the
present study, we obtain similar scalings with different fluores-
cent constructs [proinsulin-enhanced green fluorescent protein
(EGFP) (24) vs. syncollin-EGFP (4)]. Specifically, the dwell-time

distribution exponent β is obtained from
D
R2ðT;ΔÞ

E
∼Tβ−1 (Fig.

6, Upper Right) (13) and then the Hurst exponent H is obtained

from
���R2ðT;ΔÞ

���∼Δα (Fig. 6, Upper Left) and α= 1− β+ 2Hβ (25).

We plot Pðθ;ΔÞ for various temporal coarse-grainings in Fig. 6.
At small Δ, there are two peaks: a larger one at θ= π and a
smaller one at θ= 0. The former shrinks and the latter grows with
Δ, ultimately becoming equal in size. Given the model in ref. 4, it
is worth comparing the profile in Fig. 6 with those in Fig. 4.
As discussed above, CTRW gives rise to an effective confine-
ment, leading to a peak at θ= π (Fig. 4B), which decays to
a uniform distribution of θ as particles escape their traps, in
analogy to the colloidal suspension discussed above. The profile
for FBM depends on the Hurst exponent. FBM with H < 0:5
(subdiffusive or negatively correlated steps) exhibits a peak at
θ= π (Fig. 4A), whereas FBM with H > 0:5 (superdiffusive or
positively correlated steps) exhibits a peak at θ= 0. The sub-
ordinated model in ref. 4 combines CTRW with FBM with
H < 0:5 and thus captures the peak at θ= π, including its decay.
However, that model fails to reproduce the peak at θ= 0 that is
characteristic of active transport. This limitation of the simple

model in ref. 4 is not surprising, as a minority of the granules are
superdiffusive (4).
We can reproduce the observed behavior (Fig. 7A, Upper) by

expansion of the subordinated model to include Hurst exponents
above and below 0.5 for different particles (Fig. 7A, Lower), as
could arise from spatial heterogeneity within the cells. The main
limitation of this approach is that Pðθ;ΔÞ is very sensitive to the
distribution of H; the amplitude of the variation in Pðθ;ΔÞ is also
restricted to the range shown. An alternative way to account for
the observed shape of Pðθ;ΔÞ is to assume that the motion is
anisotropic, again from spatial heterogeneity. We show the be-
havior for regular diffusion with two different ratios of diffusion
coefficients in the Cartesian directions x and y in Fig. 7B. In this
case, the profile can be tuned to make the peaks more pro-
nounced. We do not detect global differences in properties of the
motion, but it is possible for local differences to exist. A deeper
understanding of the structure of Pðθ;ΔÞ for this system requires
exploration of microscopic models with explicit molecular fea-
tures, which is beyond the scope of the present study. Rather, the
key point is that the relative angle distribution reveals directional
correlations and self-similarity that are not evident in the MSD
(or measures of angular correlation that are averages) (16),
and these features can be used to further constrain models of
transport.

Reconstituted Filament-Motor System. The final system that we
consider comprises a mixture of filamentous actin (F-actin),
myosin thick filaments (motors), and α-actinin (passive) cross-
linkers on a model membrane substrate. This system with motor
densities ≥0:3 μm−2 was used recently to show that F-actin buckling
breaks the symmetry between extensile and compressive forces
to generate contractility in cytoskeletal networks lacking sarcomeric
organization (26), as suggested previously (27, 28). Here, we
study the motion of the motors when they are at a lower density
(0.04 μm−2) such that they do not perturb the F-actin structure.
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In contrast to the cellular system discussed above (4), the
MSD varies linearly with lag time for this system (Fig. 8, Upper
Left). The MSD thus suggests that the dynamics of this system
are simpler than those of the insulin granules. However, the MSD
decays with measurement time with power-law scaling (Fig. 8,
Upper Right), as in the data for the insulin granules. We interpret
this aging as evidence for local trapping. This picture and, more
precisely, the MSD statistics are consistent with pure CTRW
motion and glassy dynamics.
Nevertheless, Pðθ;ΔÞ for the actomyosin system resembles that

for the pancreatic cell line, including the dependence on the
temporal coarse-graining interval (Fig. 8, Lower). Again, this
profile can be fit by a model with anisotropic diffusion, and the
amplitudes of the peaks sets the difference in diffusion co-
efficient (here, Dx=Dy = 0:42; cf. Fig. 7B). This system thus pro-
vides an opportunity for investigating the directional correlations
in a context in which all of the contributing elements are known.
One possible scenario is that the heads of each myosin thick
filament bind to different actin filaments and undergo a “tug-of-
war” that ultimately gives way to movement in one direction.
However, the fact that the peak at θ= 0 does not grow without
bound indicates that the directed motion cannot be sustained.
The stationarity of the distribution (within experimentally ac-
cessible time scales) imposes strong restrictions on the micro-
scopic dynamics and the structure of the filament network. Our
goal is not to investigate these dynamics here. Rather, it is to

show that the relative angle analysis reveals common features of
the filament-motor dynamics (Figs. 6 and 8), in contrast to the
MSD, which shows very different behaviors for the two systems
(diffusive vs. subdiffusive scaling).

Conclusions
We have introduced an order parameter for quantifying direc-
tional motion in stochastic trajectories, the distribution of rela-
tive angles for different temporal coarse-grainings, Pðθ;ΔÞ, and
we have shown that it gives unique insights into particle tracking
data. There is a long history of methods that seek to go beyond
the MSD to characterize dynamics (29, 30), particularly since the
advent of single-molecule tracking experiments. Recent innova-
tions include comparing exchange and persistence time distri-
butions to detect glassy behavior (31), p-variation (32), the mean
maximal excursion method for anomalous diffusion (33), and the
diffusivity distribution (34). However, these methods focus on
distributions of extents of changes (e.g., distances traveled) and
their scaling with time. By contrast, Pðθ;ΔÞ takes advantage of
the fact that multidimensional measurements contain additional
information about direction of motion. We find this order pa-
rameter to be a very sensitive measure of changes in dynamics,
and it provides quantitative information about the time scales
over which different dynamics contribute. These features are il-
lustrated by our analysis of colloidal suspensions: Pðθ;ΔÞ clearly
shows the transition from unconfined to confined dynamics with
packing fraction, and it yields insights into the time scales for
particles to escape their neighbors and mix. One recent study of
lipid droplets in live cells did examine direction of motion but
characterized it through the time correlation function for relative
angles (16), which is an ensemble average. Although it has been
shown that the velocity autocorrelation can yield information about
subtle features, such as anharmonicity (30), in general, averaging
obscures the heterogeneity in a population and the self-similarity
of the motion. Our single-particle analysis here reveals such fea-
tures in the filament-motor dynamics considered and thus pro-
vides constraints for the design of microscopic models of these
systems. As 3D data become available, additional (dihedral)
angles can be studied. Beyond that, an outstanding challenge is
development of a theoretical framework for the order parameter
and its behavior.
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