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Abstract

In this work, the effects of vibronic coupling competing with vibrational and/or vibronic relaxation on the femto-second
pump-probe stimulated emission spectra of molecules in condensed phases are investigated theoretically. The femto-second
pump—probe stimulated emission spectra are simulated as a function of temperature, excitation wavelength, and the energy
gap and vibronic coupling constant between the relevant electronic states. We find that the vibronic transition depends on the
excitation condition whether excitation occurs at higher or lower than the most probable transition level. Qur simulation
shows that even in non-equilibrium conditions a turn-over feature can be seen as a function of the energy gap between the
vibronic states.

We also analyze the fs pump—probe experimental data of 1,1'3,3,3"3'-hexamethylindotricarbocyanine iodide (HITCD in
solutions. We find that vibrational coherence and its relaxation is the major contribution in the early stage after excitation.

1. Introduction

Ultra-short time-resolved spectroscopic measurements have shed light on ultra-fast molecular dynamics
occurring in various materials ranging from semi-conductors to biological systems (for review [1]). One of the
most important issues in the femtosecond study of molecules in such condensed media is the elucidation of the
quantum mechanical role of the vibrational motions in facilitating vibronic transitions, electron transfer reactions
and energy transfer processes.

Recently, a number of experiments have reported quantum beats in the time-resolved profiles of molecules in
condensed phases opening a question whether non-equilibrated vibrational motions are important to relevant
reactions or not [2—4]. In the theoretical aspect of this question. how fast vibrational relaxation occurs will be a
criterion as to whether the assumption of thermal equilibrium is applicable or not [5.6]. If the relevant reaction
takes place in non-equilibrium conditions, one should consider the transient vibrational and/or vibronic
processes of the system.

Among such vibrational and /or vibronic processes. coherence transfer has drawn a great deal of attention
[7-19]. Simulating the wave packet dynamics with the Markoff master equation. May et al. have studied a
dissipative dynamics of a curve-crossing system [10-13]. To investigate the effects of vibrational coherence
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transfer on the vibronic dynamics of a similar system, Jean and Fleming have performed quantum mechanical
simulations [14]. From these studies, it has been shown that coherence transfer facilitates electronic curve
crossing.

Quite recently, a more detailed study has been reported by Jean on the effect of vibrational coherence on
electronic curve crossing [15]. It has been shown that interferences between coherent electronic and vibrational
motion give rise to complex oscillatory feature in the electronic population dynamics. Ohtsuki and Fujimura
have analytically derived the resonance condition for the bath-induced coherence transfer and shown numeri-
cally that the energy mismatch results in a strong reduction of the coherent transfer efficiency of the relevant
system [8,9].

The multi-dimensionality and /or multi-level of a relevant system lead to difficulty in performing quantum
mechanical simulations for dissipative systems. Pollad and Frisener, based on the density matrix formalism for a
multi-level quantum model [5], carried out the calculation of the quantum dynamics of systems consisting of a
number of levels [16]. Schneider et al. reported the dissipative electronic and vibrational dynamics of a
multi-mode and multi-level system and showed that the multi-tuning modes result in a switch-over feature of the
electronic population dynamics from coherent behavior to incoherent behavior [17). Quite recently, Wolfseder
and Domcke have applied the Monte Carlo wavefunction propagation method to the calculation of the quantum
dynamics of a multi-mode vibronic coupling system with dissipation [18].

Solvent dynamics is also one of the central issues on how the solvent facilitates or controls the chemical
processes. It becomes extremely important and interesting when the chemical process competes with solvent
dynamics. Recently, the photophysics of dye molecules in solution has attracted intense experimental and
theoretical attention [20-30]. For example, ultra-short time-resolved pump-probe measurements have been
performed to investigate the vibrational dynamics of 1,1'3,3,3' 3'-hexamethylindotricarbocyanine iodide (HITCI)
in a variety of solvents [20]. The observed pump—probe profiles show quantum beats arising from the creation
of the vibrational coherences of several modes. It is important to know the mechanism of how the vibrational
and vibronic coherences and their relaxation affect the quantum beats of such a multi-mode system from the
microscopic point of view, which, in turn, provides us a deeper understanding of the effects of solvent dynamics
on the photo-induced molecular processes.

The purpose of this work is to provide the insight of how the vibrational and vibronic coherences and their
relaxation processes affect the vibronic transitions between the relevant electronic states and, in turn, how these
processes influence the quantum beats appearing in the fs time-resolved stimulated emission spectra. We have
thus extensively studied the effects of vibronic coupling competing with vibrational and /or vibronic relaxation
on the fs pump-probe stimulated emission spectra of molecules in condensed phases. We will show the effect
of vibronic coupling constant, temperature, excitation wavelength, and the energy gap between the relevant
electronic states on the fs pump—probe stimulated emission spectra.

In Section 2, we briefly describe a theoretical treatment of the fs pump-—probe stimulated emission spectra,
the coupled master equations for the vibrational population and vibrational and/or vibronic coherence
dynamics, and microscopic expressions of the rate constants for these vibrational and vibronic processes. In
Section 3, we perform numerical calculations to investigate the effect of vibronic coupling constant, tempera-
ture, excitation wavelength, and the energy gap between the relevant electronic states on the transient dynamics
appearing in the spectra. Based on our theoretical treatment, we shall analyze fs pump—probe experimental data
of HITCI in solutions.

2. Theory

2.1. Pump-~probe time-resolved stimulated emission spectra

Here we consider a model for the pump-probe time-resolved measurement of a system with two vibror}\ic
manifolds {n} and {m} embedded in a heat-bath. The two vibronic manifolds are coupled by the interaction H'.
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A pumping laser excites the system from the ground vibronic manifold {g} to the excited vibronic manifold {n}.
After excitation, a probing laser is applied to induce transitions from the manifold {a} to the manifold {g} via
stimulated emission and /or to higher excited manifolds via induced absorption. In this work, we shall focus on
the pump-probe time-resolved stimulated emission experiment. In this case, an expression for the time-resolved
profiles is derived in terms of the imaginary part of the transient susceptibility f”(wpu,wpr,r). In the adiabatic
approximation and the Condon approximation, it has been shown that [22,31,32]

o ﬁ"g ® ﬁﬁ"
X (wpu’wpr’7)= -—ZZ fl Re{pnn'(wpu’T)an'(wpr)}' (1)
n
Here w,,, . 7. and i, represent the central frequency of the pumping laser, that of the probing laser, the
time interval between the two pulses, and the transition dipole moment, respectively and anr(wp,) is the
band-shape function associated with the probing optical process. In Eq. (1), p,, is the density matrix element of
the molecular system after excitation by the pump pulse.

2.2. Relaxation and coherence dynamics

The Liouville equation for the density matrix p of the system in the absence of the radiation fields is given
by [22]
dp N . i .
@ ip - ). )
where I is the damping operator due to the interaction between the system and the heat bath.
By applying the adiabatic approximation and letting { g} = (a.{u}), {m} = (b.{v]), and {n} = (¢, {w}) where,
for example, {u} represents the vibrational quantum numbers of the vibrational modes of the electronic ground
state, the coupled master equations, for example, for p,, .. can be written as

dpbvv('w . by ew’ i
dr == (lwbv.vw + I_‘hu.l'W) Pou.cw — Z Ih’:,l)(; Pho cw s ;{ Z <bvl‘,h((Q)lCW>( p('w.('w - pbv,bv)
v’ 124
i W w v #v
- —’_{ Z <bU|JbC( Q)lcwl>pcw',hv - Z pbv‘hv'<bv/l‘]bc(Q)]Cw‘> > (3)
ow'=0 bo'=0

where the vibronic dephasing rate constant for the vibronic coherence bv <> cw is given by
— bv.cw
Iy —_Zv'*u.w'*wrb o

bv.cw vew
We have assumed that the interaction Hamiltonian is given by A = [e> 7, ,(Q) bl + h.c. where Q denotes the
normal coordinate. In the next section, we shall present a model of the relaxation processes.

2.3. A model of vibrational relaxation and dephasing

It has been found that the short-range interaction model can be applied to study the vibrational relaxation of
molecules in condensed phases [33]. In this section, we shall apply this model to treat vibrational relaxation and
pure dephasing in condensed phases. For this purpose, we apply the secular approximation to Eq. (3). This
assumption allows one to focus on several important system—heat bath induced processes such as the vibrational
popuiation transition processes, the vibrational coherence transfer processes, and the vibronic processes.

Employing V= byF,,Qexpl— Zjajqj)< bl as the system-heat bath interaction, where ¢, denotes the
vibrational coordiate of the j-th heat-bath mode, we obtain the vibrational population decay rate constant as
{22,34]

Foppe = E Wiobeosas (4)
A= 41
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where

Wiy pprr =€ wc'b/ksrwbm e = (vt 1)e™ ww/kaly b (5)
and

Wbu.bu»l__—vylb—»O' (6)
Here y/_,, represents the vibrational relaxation rate constant for the transition v = 1 > v =0 and is given by

Flzb *
b — : = = itw = L~ ilw
Yiso= m[ dtexp{——ltwf’ib}exp[ZSj{(l +27,) + (1 +7,)e"™ +Re" J}] , (7)
vi - j

where ﬁwj denotes the one quantum energy of the j-th heat bath mode,

2
S =:‘_j_ = ﬁ)i and 7 _( ﬁwj/ksr_l)*l
iZap BTy R el '
J

With the same interaction model used in Eq. (4), the vibrational relaxation rate constants associated with the
vibrational population transitions bv + 1 — bv and bv — bv — 1 are given by

botl

R = (1 )y (5
and

=0, = Ue‘ﬁwf'b/kBTYf’qo ; (8b)
respectively.

The rate constants of the vibrational coherence dynamics such as vibrational coherence transfer can be
derived by using the same interaction model used in Eq. (4). For example, the rate constant of the vibrational
coherence transfer process from bv+ 1 bv'+1 to bv < b and from bv— 1 b — 1 to bv < by is,
respectively, given by

_Fb';'{;u’l"burﬂzw‘*lVU/+17|b—>o (%92)
and
_beulf/:u’l'bv(_ = ‘/;‘/U_,exp(_ﬁwfib/kBT)’YIb—) 0- (9b)

The pure dephasing rate constant can be derived by using the second order term with respect to the system
variable and, for example, assuming V=1, _, |A)Q’F,,({(¢gD{Al where F,,({q)) = F,,exp(— L,a;,q,), we
find the vibronic pure dephasing rate constant D,, .. as

1 2 1 2
D, =lv+— Dby + — @
bo,cw ( 2) Vb 2 Y.

v+ 1/2\(w+1/2 )
- 5 : )ﬂﬁZP/</|F5({q})|/'></'|Ff({q})'/'>5(E/'/)
Wy, @iy, s
v+1/2V(w+1/2 ﬁ ,
_( 7 )( — )TfﬁEP/</|E-‘({(1})f//></'|sz({q})f/ Y(E, ). (10)
Wi vib £

In the case of {a,’,j} = {a(lj}, it follows that

+1/2 w+1/2\°
- h/ - L-/ )ﬂﬁzZP/|</|F;3({q})1/'>2(E/«/)- (11)
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In the case in which the vibrational frequencies of the two electronic potentials are same, we find

wacw: (U— W)Z,y[(jd) (12)
where
Fiy * | |
yi = m[ dtexp{itwfib}exp[ ZS]{(I +27,) + (1 +l_1,-)elrw, + ﬁje"’%}] . (13)
2 Wyip o g

In a similar manner, in the case of {«} J.} ={a’ J.} we can obtain the rate constant of the vibronic coherence
transfer for bu + 1< cw + 1 to bv <> cw as well. The vibrational pure dephasing rate constant is given by
exchanging the subscripts cw (or bv) with bv' (or ¢w’) in Egs. (12) and (13).

Finally, we should note that the secular approximation allows us to omit the terms arising from the coherence

creation or annihilation, i.e., for example, in Eq. (3) I',’*7 . _, has been omitted.

3. Simulation and discussion
3.1. A single harmonic displaced oscillator mode system

We consider a model for a system consisting of the ground state manifold {au} and the two electronically
excited vibronic manifolds {bv} and {cw}. To apply our theory to this system, these two electronically excited
vibronic manifolds are coupled via vibronic coupling. We also assume that the pumping and probing lasers
interacts only with the vibronic manifold {bv} but not with {cw}. By applying the Condon approximation to the
vibronic coupling terms in Eq. (5), i.e., {bv|J, (@lcw) = J, {bvlcw), and by applying the secular approxima-
tion to the equations, we find

dpy. 5
v.ov —fw
_&T_—_— _[{U+(1 +U)e v‘h/’(BT}')’l—'O-+’‘yb] phv,bv
(L +0)Y 50 Phoriboet T Ue“ﬁw"h/kBT% - 0Pbo—1.b0-1
i
- ;L_ Z {ch<bulcw>pcw.bv - pbv.cw‘]cb<cw‘bv>} ’ (14)
cw=0
dpyy by .
dv - == (lwbv.bv' + rbv.bu' + yb)pbu.bu'
T
- rb’;v.;u}'burﬂpbw Lbv'+1 beulf;u!'bur—lpbv— 1,60~ 1
i
- ;L' Z {ch<bvl(’w>pcwubv’ - pbu,('w Jcb< CW‘bU>} 4 (15)
ow=0
and
dPyy,cu - +T + + 2} — [yt lbyEl — o= lew=!
dr (lwbv,cw bv.cw (’Yb Yc)/ pbv,('w bv,cw pbv+ bew'+ 1 bv,cw Py - l,ew—1
i i wEw
-5 Z (‘]b('< bulcw>pcw.cw - ‘]cb< cw‘bv>pbu.bv) — Z ch< bvlcw’>p€w'.cw
h hu=0 h cow'=0
v #p
- Z Pouvsu s LewlbV' D}, (16)

bv'=0
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where, for example. J,. and {bvlcw) represent the electronic coupling and the Franck—Condon overlap
integrals, respectively. Here we have included in Eqs. (14)-(16) y, and y. as the radiative decay constant
and /or the rate constant of non-radiative transitions other than the vibronic process of interest. Here the initial
conditions of Eqgs. (14) and (16) due to pumping are given in Appendix A and p,, . (7=0)=0.

Now we are in a position to determine pump-probe stimulated emission spectra on the basis of Egs.
(14)-(16). For this purpose, we solve the coupled master equations numerically with the initial conditions given
in Appendix A and then using Eq. (1) we can calculate pump-probe stimulated emission spectra. Notice that
Fyy wpr) in Eq. (1) is also given in Appendix A. For numerical simulation, we employ the Runge—Kutta
algorithm with a time step of 4 femtoseconds, and take from 7 to 16 vibrational states for each electronic state in
order to achieve convergence of the numerical calculations.

First we shall investigate the vibronic coupling constant dependence of the pump-probe stimulated emission
spectra. For this purpose, we set fiw,, = A 0% =hwl, =o', =100 cm™' and the Huang—Rhys factors are
S,. = 2.5 for and S,, = 1.0, which are used for the Franck—Condon overlap integrals in Egs. (14)-(16), (al)
and (a2). The excitation energy is chosen such that it is resonant to the most probable transition, ie.,
hw, =Hhw,+S, o, The vibrational relaxation rate constants are Ay, , = hy{, o =hy/ o=hy{ =
53cm™! and Ay = Ay = Ayl = fiyP =53 cm™", and the radiative constant is Ay, = iy, = fiy, = 0.0053
cm™'. For the pumping and probing optical processes, we set T, =T7,=80fsand Ay, = hy, =66 cm” ', The
temperature is set at 10 K.

Fig. 1 shows the spectra simulated for (a) the weak coupling case #J = #iJ, = #J_, = 0.53 cm™', (b) the
intermediate coupling case A/ = 1.3 cm™', and (c) the strong coupling £/ =5.3 cm~' with the energy gap
between the two electronic states b and ¢, fw,, =100 cm~'. The spectra are shown as a function of the
probing frequency and the time interval between the pump and probe processes.

The common characteristic of the quantum beats appearing in the calculated spectra for all cases is that the
vibrational coherence is dominant after excitation and it lasts up to about 2 ~ 4 ps. As the vibronic coupling
constant becomes larger, the spectra shown in the panel (b) and (c) start decreasing their intensities after 2 ~ 4
ps, while the spectra of the panel (a) shows a plateau feature. In the intermediate case, the vibronic transition
takes place almost constantly. This is due to the fact that the vibronic coupling is not strong enough to transfer
back the population from the electronic state ¢, compared with the vibrational relaxation process of the
electronic state c. The situation is quite different in the strong coupling case. After the vibrational quantum
beats disappear, new quantum beats take over in the spectra. The new oscillatory feature results from the
creation of the vibronic coherence and shows a quite different phase relation versus the probe frequency,
compared with the temporal behavior observed in the vibrational quantum beats.

This situation can be seen more clearly if the spectra are depicted in a counter map. Fig. 2 shows the
comparison of the contour maps for the three cases. All the contour maps show in- and out-of phase relations
within 2 ps as a function of the probing frequency. No out-of phase relations appear after 2 ~ 4 ps in the panels
(a) and (b), indicating the system reaches the vibrational equilibrium state. However, in the case (c) one can see
the out-of phase relations disappear after 2ps although the spectra still show the quantum beats.

The behavior of the calculated spectra of the strong coupling case can easily be understood in terms of the
vibrational population dynamics. Fig. 3 shows simulation of the population dynamics of the two vibronic
manifolds. The populations p,, ,.(7) and p_ . (7) after excitation are calculated for (a) the weak coupling
case and (b) the strong coupling case used in Fig. 1. The panel (b) in Fig. 3 clearly shows the population
transfer between the two electronic states due to the creation of the vibronic coherence. Since all the vibrational
population of the state & is transferred into v =0 if no population transfer takes place between the two
electronic states, the time-resolved stimulated emission spectra forms a peak at Ao, =fhw, = S, iwy,.
However, when the population of v = 0 is transferred into the electronic state ¢ the intensity of the spectra
decreases showing its peak at fw, =fiw,, — S, i,

It is informative to show how the vibrational motion of each electronic state evolves in time. For this
purpose, we also demonstrate a wave packet representation of the density matrices p, ,(Q.7) and p, (Q.7) in
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Fig. 1. Coupling constant dependence of the pump-probe stimulated emission spectra. The spectra are simulated for the cases: (a) the weak
coupling AJ = 0.53 cm'; (b) the intermediate coupling #/ = 1.3 cm™ '; (¢) the strong coupling #J = 5.3 ¢m™". The parameters used in
the calculation are given in the text.

Fig. 4. The density matrices are calculated for the strong coupling case. The wave packets are obtained by
transforming the density matrix in an energy representation to that in a normal mode coordinate representation.
For example, p, ,,(Q,r) is given by {6]

P (0.7) = Z Z (lev)(bv|pb STV HCbU'|Q) = Z Z Probo {T) X5, (Q) X5 (2) (17)

=0 v'= _
where
1/2
\/B /T :
X0l 0) = | 5= | Hi((B, Q)exp( - B,07/2).

= w’, /A and H, (B, O) is Hermite polynomials.
b vib bv b
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Fig. 2. A contour map representation of the calculated pump—probe stimulated emission spectra. The spectra are mapped for the cases: (a)

M. Hayashi et al. / Chemical Physics 217 (1997) 259-273

8 4y " 8 1y i1 8 dle gl
1 + [ L
1 r 1 r L
7 ] - 7 ] [ 7 4 L
] r ] ] s
6 - ] o -
4 [ 6 ] N t
1 [ ] [
5 - 5 o F
g ] [ o ] I o T
3 r o ] [ 2 [
i 0 1 B [ r
24 F 2 4] 2 r
[ r 1 F [ r
E A - - E :
3 A L -
2 ] L 2] o s
] (& [ ] ; b
14 2> - 1] L +
0 E 0 E 3
500 0 -500 500 0 -500
-1
. L _ . oy
Oy ~ Opg +80y, / cm ! Opp — Wpg +SWp / CM W~ Opg +8Wp / €M

the weak coupling; (b) the intermediate coupling; (c} the strong coupling. The calculated spectra are taken from Fig.

(@) 1e4 (b) 1eq . I
] [ [

E 1 5 r
g s 1 1
§ se-5 S 565 - L
5 1 B
3 > |
g ] 3 bv=0
a o TX3\z2 1 I

Oe+0 0e+0 L 5 ———

0 2 4 [ 8
time / psec time / psec

led4 b oot ia by Ll 1e-4 " PR S ol
5 I 1
< ] 1 2 ]
2 Se-5 4+ 9 5e5 -
K 1 T B 1
2 ] 1 2 ]
Q? 1 cw=0 { @

] 11 1 ]
0et0 Ay Oe+0 A
0 2 4 6 8

time / psec

time / psec

1.

Fig. 3. Simulation of the population dynamics of the two vibronic manifolds after excitation. The populations p,. ;) and P, cp(ry aT€
calculated for (a) the intermediate coupling case #/ = 1.3 ¢m ™' and (b) the strong coupling case #J = 5.3 cm™ '. The excitation condition is

the same as that used in Fig. 1. In each case, the upper and lower panels show the vibrational populations of the electronic states b and c,
respectively.
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Fig. 4. A wave packet representation of the density matrices p, ,(Q.7) and p. (Q,7). The density matrix is calculated for the strong

coupling case AJ = 5.3 cm~'. The wave packets are obtained on the basis of Eq. (17) with the calculated results used in the case (¢} shown
in Fig. 1.

Fig. 4 shows the motion of the wavepacket of the electronic state b and that of the electronic state ¢ for the
case (c) shown in Fig. 1. Within 2 ps, the wavepacket of the electronic state b is migrated on the harmonic
potential surface losing its energy and coherence through the system-heat bath interaction and subsequently the
motion stops, showing the vibrational wavefunction of the v = 0. The wavepacket of the electronic state ¢, on
the other hand, forms around 1ps, showing a slight motion but not a large motion as seen in the electronic state
b up to 2 ps. Since from the Huang-Rhys coupling constant we can see that the most probable transition takes

place between v =0 and w = 1, the dominant feature of the wavepacket of the electronic state ¢ in the early

time is the formation of the vibrational wavefunction of w = 1 on the potential surface of the electronic state ¢.
The w = 0 character appears eventually due to the vibrational relaxation.

Now we shall investigate the excitation wavelength dependence of the pump-—probe stimulated emission
spectra. Fig. 5 shows the spectra simulated as a function of the pumping frequency at i w_, = fi w,,. The rest of
the parameters are the same as those used in Fig. 1. One can see in Fig. 5 that the quantum beats due to the
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Fig. 5. Excitation wavelength dependence of the pump-probe stimulated emission spectra. The spectra are simulated at a pumping energy of
ho, =

= hw,,. The rest of the parameters used in the calculation are the same as those in the case (c) in Fig. 1 except for the excitation
frequency.
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Fig. 6. Temperature dependence of the pump-probe stimulated emission spectra. The spectra are demonstrated as a function of temperature
at 7= 300 K. The rest of the parameters used in the calculation are the same as those in the case (c) shown in Fig. | except for the
temperature.

vibrational coherence appear with in 2 ~ 3 ps. Although compared with the ones in the panel (c) shown in Fig.
1, the intensity is smaller due to the off resonance effect, the temporal behaviors of the beats of both cases
within 2 ~ 3 ps are quite similar. The excitation condition, in this case, misses the vibrational level which
undergoes the most probable vibronic transition to the electronic state ¢ so that the vibronic transition will occur
more slowly than the case in the panel (¢) shown in Fig. 1. In fact, one can see that the intensity of the spectra
around 8 ps is slightly higher than that shown in Fig. 1. When the pumping frequency is off-resonant but higher
than the most probable transition vibrational level, it takes some more time for v =0 to have considerable
population via vibrational relaxation. In addition, in this case, secondary and tertiary probable transition paths
are open to the population created at higher level via excitation.

Next we shall investigate the temperature dependence of the pump-probe stimulated emission spectra. The
spectra are demonstrated as a function of temperatures at 7= 300 K in Fig. 6. The rest of the parameters are the
same as those employed in the case (c) shown in Fig. 1. Fig. 6 shows that the temperature effect destroys both
vibrational and vibronic coherence. However, the quantum beats originated from the vibrational coherence are
still a dominant feature in the early time region before 2 ps.

Finally we shall investigate the energy gap dependence of the pump—probe stimulated emission spectra. In
Fig. 7, the spectra are simulated at various energy gaps of the two electronic states b and c, i.e., & w,. = (a) 80;
(b) 90; (c) 100; (d) 110; (e) 120; (f) 200; (g) 250; (h) 500 cm~'. The parameters used in the calculations are the
same as the case (c) shown in Fig. 1 except for the energy gap between the two electronic states.

Fig. 7 shows that the temporal behavior of each spectrum is almost identical, that is, the quantum beats
appearing within 2 ps result from the vibrational coherence. Thus, they do not depend on the energy gap.
However, the long time behavior of the spectra is quite different and interesting. The dynamics appearing in the
calculated spectra depends strongly on the energy gap between the two electronic states. The calculated
stimulated emission spectrum at fw, = 100 cm™~' decreases its intensity most rapidly among the calculated
spectra. As the energy gap becomes either larger or smaller than this condition, the intensities decrease slowly.
This tendency can be explained in terms of the energy conservation and the Franck—Condon factor. Since for
the Huang—Rhys factor S, = 1, the transition occurs most effectively when fiw, = nfiw,, where n=1.As n
increases, the Franck—Condon factor becomes smaller and the quantum beats due to the vibronic coherence
disappear even for the case in which the energy is conserved.
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Fig. 7. Energy gap dependence of the pump-probe stimulated emission spectra. The spectra are simulated as a function of the energy gap:
tw,. = (a) 80; (b) 90; (¢} 100; (d) 110; (e) 120; (f) 200; (g) 250: (h) S00 cm ™~ '. The parameters used in the simulation are the same as those
for the case (c) shown in Fig. | except for the energy gap between the two electronic states b and c.

3.2. Application to the analysis of experimental femtosecond pump-probe spectra of a multi-dimensional system

Recently, fs time-resolved measurements have been performed for 1,1'3,3,3'3-hexamethylindotricar-
bocyanine iodide (HITCD in various solvents with laser pulses of a few ten femtoseconds [20]. The observed
spectra show quantum beats arising from the excitation of several vibrational modes and also exhibit
non-exponential decays with time constants of about sub-picoseconds and several picoseconds.

In this sub-section, we shall attempt to apply our theoretical treatment to investigate the dynamics appearing
in the observed spectra of this multi-dimension vibrational (i.e. multi-mode) system, that is, we would like to
know how fast the vibrational relaxation is and how multi-mode excitation affects coherence dynamics. For this
purpose, we shall consider a two-mode model and employ the short time excitation approximation for the
pumping process in which the vibrational coherences between the electronic ground state and excited state are
created. The latter assumption allows us to ignore the off-diagonal (or secular) terms associated with the
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ig. 8. The calculated pump—probe stimulated emission spectra of the multi-dimensional system. The simulations are performed for (a) the
long time region and (b) the short time region

vibronic relaxation processes in the master equation for the pumping process, and to factorize the initial
condition into a product of each mode. In this case, under the Franck—Condon approximation we find

5

2
pu | — =g — g
pbu,bu’(Tpu) = ﬁ2 {/“Lb,a : Epu( wpu)}{:u'b.a ’ Epu( - wpu } H Z
Jj=1 a;=0
For performing the simulation, we set fiw, = o) =fhw) =hwo|

Puu<bv|au >(auﬁbv> (18)

=160 cm ™' and the Huang-Rhys factors are
S5 =04 and S, ,=0.2 for the low frequency mode, and % w, = fi w;]

=hw!=hw{=550 cm™' and the
Huang—Rhys factors are S,,, = 0.11 and S, , = 0.1 for the high frequency mode. The energy gap between the
two electronic states is set to be A w,. = 170 <:m"1 The vibrational relaxation and dephasing rate constants are
fzy,_,o—ﬁy,_,o—hy]ao—ﬁy]aOWSJ em™ L Ay P =y =iyl = Ay P =13 cm” and hys® = hyl®
=hyll) =hy{¥ =066 cm~'. The radiative constant 1s by, = hy,=hy,=00053 cm”'. For the probing
processes, we set 7= 20 fs and h You = ﬁypr =265 cm~'. The temperature is set at 300 K. We take from 4 to 6
vibrational states for the 170 cm ™' mode and 2 states for the 550 cm™'. The time step are taken to be 1 fs and
2.67 fs for the short and long time simulations, respectively.

Fig. 8 shows the calculated pump-probe stimulated emission spectra of the two dimensional system. From
the panel (a), we can see the temporal behavior of the spectra at the maximum intensity shows two oscillatory
components, accompanying with two decay components whose time constants are about 300 fs and 200 ps. Up
to 2ps, the low frequency mode retains coherence, resulting in a slight movement in the time-resolved spectra
versus the probing frequencies. One can clearly see the short time behavior in the panel (b) in Fig. 8. Since the
Huang—Rhys factor for the low frequency mode is small, the most probable transition takes place to v = 0.
From around 3 ps, the maximum intensity shows a slow decay resulting from the vibronic transition to the other
electronic state.

From this simulation, we can see that at least within the early time region after excitation, vibrational
coherence and its relaxation are the main contribution to the spectra and then most of the population are
accumulated at v = 0; vibronic transition then becomes dominant

A more quantitative discussion based on ab-initio calculation for the vibrational frequencies and their
displacements of HITCI and solvent effects on the fs time-resolved spectra will be reported later
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4. Summary

We have investigated the effects of the vibronic coupling competing with vibrational and/or vibronic
relaxation on the fs pump—probe stimulated emission spectra of molecules in condensed phases. Taking into
account vibronic and vibrational relaxation and vibronic coupling, we briefly derive the coupled master
equations for the vibrational population and vibrational and/or vibronic coherence dynamics. Microscopic
expressions of the rate constants for these vibrational and vibronic processes are obtained by employing a
short-range interaction model. By simulating the coupled master equations, we have studied the effect of
vibronic coupling constant, temperature, excitation wavelength, and the energy gap between the relevant
electronic states on the transient dynamics appearing in the spectra.

Although our numerical approach to the coupled master equations are quite similar to those reported by Jean
[15,35) and collaborators {14] and May and collaborators [10~13], our emphasis is mostly placed on showing
how vibrational and vibronic coherences are reflected in the pump—probe time-resolved stimulated emission
spectra. Most of the distinctive features due to vibrational and vibronic coherences were also seen in these
works. However, in the present work, we have shown that a turn-over feature can be seen in vibronic dynamics
appearing in the calculated pump-probe stimulated emission spectra as a function of the energy gap between the
two relevant vibronic states. We have found that vibronic quantum beats cannot be observed when the energy
gap becomes larger in which situation it leads to smaller Franck—-Condon overlaps between the energy
conserved levels.

To see the essence of the ultra-fast dynamics occurring in multi-dimensional system at room temperature, we
have attempted to analyze fs pump—probe experimental data of HITCI in a liquid phase. We have shown that
vibrational coherence and its relaxation are most likely to be the main contribution to the spectra within the
early time region after excitation, and then vibronic transition becomes dominant.

Finally, it should be noted that the importance of studying the quantum dynamics of multi-mode and
multi-level systems was also emphasized by Friesner et al. [5,16] and Domcke et al.[17,18]. More rigorous
quantum mechanical simulation techniques have been developed and extended by these groups.
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Appendix A

The initial condition for the vibrational coherence p,, ,,» can be obtained by the second order approximation

with respect to the system-Iaser interaction due to the pumping laser. Notice that in the Franck-Condon
approximation, we obtain [22,31,32]

1 o N
Penr(7=0) = =5 L g e { Fins Bl @) H{ B Epu ) Jbola Y aud v

1 1 _e‘iTpu(‘”b. IR YR 7Y
X

Wy g + lrbu'_au' - wpu + l’ypu + 1'yh/z Wpy by ™ lrhu‘bu' 1Y,

e‘Tw("’m’ a il a — W FiY, Ty, /2) e_iT[\u(“)hc ALY e b7 |

Wy oy + Wy by + l[hu’.au' - lrhU.bv’ - wpu + IYpu - I’Yb/z
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1 1 _e*iTW(wm.bﬂ*ifb,.h,"in)

Wpyaw lrhU.au' - wpu - 1’ypu - lﬁyb/2 @pypo lIﬂbu by 'Y},

eiTpu(wﬂu' bt @ iy tiy, /2) e*iTpu(wm b =il b= iye)

- : : . , ). (al)
Dpy au + Dy pv + lrbv.au' - 1Fbu,bu’ + wpu + 1’ypu - l'Yh/2
In a similar manner, F,, ,,(w, ) is given by [22.31,32]
F )= ¥ (boian)aulbw) ‘
W = vlau aulbv
ot ( " au=10 Wy ay + Wy by + irbu',au - irbv‘bv’ - wpu + i’)’pu - l‘)’[7/2

1 — e-irw(wm_,,,wi]‘h,_,,,.—.yh) [ — eiTPr((u,,,ru,,+ir,,lr_(,,,——wpu+i‘yw+iy,,/2)

X

+ . . .
Wpppe — ]rbu 2% ‘Yh Dpy au + lrbu’.au - wpr + I')/pu + 17[)/2

1

@py au + @py py lIwhu au Fbv b’ pu - l’ypu + 1’)/b/z

1 — e I Tmlws bt = hy = iYs) 1 — elfmles wetilh g @ iy iy, /2)

X + - - - , (a2)
whv,[n 1Iwbu bu' ’Yb whv.au + lrbv,au - wpr + lyPu + lyb/z

where w,, (T, and v,,) and w, (T, and v, ) represent the central frequency of the pumping laser (its time
duration and coherency) and that of the probing laser (its time duration and coherency), respectively.
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