PRIMER NOTE

Dominant (AFLP) and co-dominant (microsatellite) markers for the kelp Postelsia palmaeformis (Laminariales)

HANDOJO T. KUSUMO, CATHERINE A. PFISTER and J. TIMOTHY WOOTTON
Department of Ecology and Evolution, The University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA

Abstract

To aid in understanding the structure, dispersal and genetic dynamics of their populations, we developed microsatellite and amplified fragment length polymorphism (AFLP) markers for the sea palm, Postelsia palmaeformis (Laminariales) for samples taken from nine sites in the area of Cape Flattery, Washington State, USA. We identified two AFLP primers that yielded 798 variable fragments and five microsatellite markers with three to seven alleles each. We also report patterns of allelic variation for four previously identified microsatellite markers in this species and several new alleles.

Keywords: AFLP, algae, kelp, microsatellite, Postelsia palmaeformis, seaweed

Received 29 December 2003; revision received 28 January 2003; accepted 2 March 2004

The sea palm, Postelsia palmaeformis (Laminariales), occurs widely on rocky wave-swept shores of the northeast Pacific Ocean from Monterey Bay, California to the northern end of Vancouver Island, British Columbia (Abbott & Hollenberg 1976). In areas where it occurs, it is an extremely productive annual plant (Leigh et al. 1987), and it is also harvested in parts of its range, making it an important species to understand ecologically. Furthermore, natural history observations suggest a dual dispersal syndrome, with intact adults apparently releasing spores over very short distances (< 3 m), and detached, reproductive adults rafting for potentially very long distances (Paine 1988, 1979; R. T. Paine personal communication, J.T.W. and C.A.P. unpublished data), which may produce an interesting population structure. Consequently, the development of genetic markers for this species is of interest.

Using minisatellite markers Coyer et al. (1997) found extremely high genetic similarity between discrete patches of plants at small scales. Therefore, we were interested in developing finer scale genetic markers to understand the potentially extreme short-distance dispersal in this species. One approach is to use amplified fragment length polymorphism (AFLP; Kusumo & Druehl 2000; see review by Mueller & Wolfenbarger 1999), because it can potentially generate numerous polymorphic markers without prior knowledge of the genome, a common situation for ecologically important non-model organisms. However, as a dominant marker system, AFLP suffers from problems in identifying homologous alleles, which is essential for some analytical studies (e.g. heterozygosities analyses; Mueller & Wolfenbarger 1999). Therefore, microsatellite markers were also developed as a potential supplement and methodological check for the AFLP approaches. These markers supplement a set of microsatellite markers developed independently by Whitmer (2002).

DNA was extracted from P. palmaeformis tissues collected from nine different sites located 0.4–11 km apart in the vicinity of Cape Flattery, the northwestern tip of the Olympic Peninsula, Washington State USA. At eight of the nine sites we sampled between 18 and 41 individuals while the ninth site was represented by only seven individuals. Fronds from individual live plants were clipped, air-dried, and stored in individual aluminium foil packets and expresshipped to the University of Chicago for analysis. As with other kelps, extracting and purifying the DNA of P. palmaeformis tissue samples is difficult because of its high mucopolysaccharide content. Several DNA extraction and purification methods were tried; the following three gave consistent results: scaled-down CsCl (Fain et al. 1988), CTAB (modified from a protocol of Dr R. Grosberg, University of California, Davis), or REDExtract-N-Amp Plant polymerase chain reaction (PCR) kits (Sigma, catalogue no. XNA-PE). In the modified CTAB protocol, liquid nitrogen-frozen ground tissue was put into a 1.5 mL microtube. We added 600 µL of 2× CTAB solution (0.1 M Tris–HCl pH 8.0, 1.4 M...
NaCl, 0.02 M ethylene diaminetetraacetic acid pH 8.0, 2% CTAB, 0.2% β-mercaptoethanol), and incubated the sample at 55 °C for 30 min. Ice-cold chloroform (600 µL) was added and the solution was microcentrifuged for 15 min at 16 110 g. The upper layer was transferred to a new microtube. This chloroform purification step was repeated until the interface between the layers was clean. The clean upper layer was then transferred to a new microtube and 600 µL 100% ice-cold isopropanol was added. The tube was gently inverted several times to mix the layers. DNA pellets were obtained by spinning the tube for 10 min at 16 110 g and then gently removing the supernatant liquid. The pellet was washed in 70% ethanol, then dried and resuspended in 1× TE. Although the scaled-down CsCl and modified CTAB methods worked consistently, we recommend using the REDExtract-N-Amp Plant PCR kit because of its relative simplicity.

The AFLP Plant Genotyping Kit (PE Applied Biosystems) was used. DNA digestion/ligation, pre- and selective amplifications were performed following the manufacturer’s suggested protocols, with only a few modifications in the amount of dilutions. After experimentation with various primer pair combinations, four primer pairs were found to consistently amplify P. palmaeformis DNA fragments, with the addition of two or three nucleotides on each primer in the selective amplification step. The EcoRI primers (E-ACT and E-TG) were labelled with 5-FAM, whereas the MseI primers (M-CAT; M-CAA; M-CAG) were unlabelled. The amplified fragments were detected with an ABI 377 XL automatic sequencer (PE Applied Biosystems) and found that four out of the nine loci identified either were not polymorphic or did not amplify well, despite a variety of efforts to optimize PCR parameters. The remaining five loci were used for subsequent analyses (Table 1); each yielded three to seven alleles. Heterozygosity observed

DNA samples for library construction and microsatellite loci development were isolated by Genetic Identification Services (Chatsworth, CA; http://www.genetic-id-services.com/) following a method described by Jones et al. (2002). Primers were designed from nine microsatellite-containing sequences using the interactive web interface of PRIMER3 (Rozen & Skaltsky 1998) with the default settings. Forward primers were labelled with fluorescent dye markers NED, 6-FAM or HEX (Applied Biosystems). Reactions were amplified in a PTC-200 Peltier Thermal Cycler (MJ Research) in 10 µL reaction volumes with the following temperature profile: incubation of 94 °C for 3 min, 35 cycles of 94 °C for 45 s, 60 °C for 1 min, 72 °C for 45 s, and extension of 72 °C for 10 min. Detection and analysis of amplified DNA fragments followed the protocol for the AFLP above.

AFLP analysis from screening nine populations (a total of 201 individuals) generated an average polymorphism of 61.39% (29.90–77.14%) and 66.58% (25.50–86.00%) at each locus for ACT-CAT primer and TG-CAA primers, respectively.

In our microsatellite analysis, we screened 240 individuals and found that four out of the nine loci identified either were not polymorphic or did not amplify well, despite a variety of efforts to optimize PCR parameters. The remaining five loci were used for subsequent analyses (Table 1); each yielded three to seven alleles. Heterozygosity observed

Table 1 New microsatellite loci identified in this study, their primer sequences and characteristics based on sample-wide allele frequencies

<table>
<thead>
<tr>
<th>Locus†</th>
<th>Repeat motif</th>
<th>Size range</th>
<th>Primers (5′–3′)</th>
<th>No. of alleles</th>
<th>North Island</th>
<th>West Rocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (AY286404)</td>
<td>(TAGA)$_y$</td>
<td>190–202</td>
<td>F: CCCCCAGGACAGATTTTCACA R: ACCAAGGAGGACCTTCTACT</td>
<td>4</td>
<td>0.069 / 0.307</td>
<td>0.000* / 0.195</td>
</tr>
<tr>
<td>2 (AY286405)</td>
<td>(TAGA)$_y$</td>
<td>173–193</td>
<td>F: ATCTTTCACAGCCGCAGGTA R: TTCCCCTGAATGTGTTGAAA</td>
<td>4</td>
<td>0.231 / 0.202</td>
<td>0.000* / 0.049*</td>
</tr>
<tr>
<td>3 (AY286406)</td>
<td>(ACTC)$_y$</td>
<td>259–328</td>
<td>F: GGAGGAGTACATCCACTAACGTAC R: TGTTGTGTGCGAAGCAGAT</td>
<td>7</td>
<td>0.273 / 0.202</td>
<td>0.198 / 0.098*</td>
</tr>
<tr>
<td>4 (AY286407)</td>
<td>(ATCT)$_y$</td>
<td>217–225</td>
<td>F: CCAGTACATGACATATC</td>
<td>3</td>
<td>0.371 / 0.198</td>
<td>0.302 / 0.073*</td>
</tr>
<tr>
<td>5 (AY286408)</td>
<td>(ACTC)$_y$</td>
<td>222–230</td>
<td>F: ATAGGGGTCTCTCGTTTCTG A: R: TGCCCTTTACAGAGAAG</td>
<td>5</td>
<td>0.780 / 0.463</td>
<td>0.279* / 0.000*</td>
</tr>
</tbody>
</table>

Heterozygosity estimates are provided for two sites, North Island and West Rocks, with $n = 43$ and $n = 41$, respectively; *denotes deviation from Hardy–Weinberg equilibrium ($P < 0.05$).
†GenBank accession numbers in parentheses.

among the five loci tended to be much lower than expected based on Hardy–Weinberg equilibrium (all P < 0.001, ARLEQUIN Software).

We also tested the microsatellite markers reported by Whitmer (2002) on our samples to evaluate their performance and linkage characteristics (Table 2). Of the six loci she reported, four were polymorphic in our samples, while two were unusable because one produced results with more than two alleles in the same individual, and one did not amplify in our populations. In addition, we found that alleles for all four loci were out of the size range reported by Whitmer (2002) for her populations, and for two loci, we found more alleles than were reported by Whitmer (2002), indicating that we identified a number of new alleles for these microsatellite markers. As Whitmer (2002) found, for the four loci that we applied to our samples, all were significantly less heterozygous than expected at Hardy–Weinberg equilibrium (all P < 0.001, ARLEQUIN Software).

Table 2 Analysis of loci reported in Table 1 of Whitmer (2002) screened in samples used in this study

<table>
<thead>
<tr>
<th>Locus</th>
<th>Repeat motif</th>
<th>Size range</th>
<th>No. of alleles</th>
<th>North Island</th>
<th>West Rocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF501536(6)</td>
<td>(CA)2(CA)2(CA)2(TG)2</td>
<td>225–256</td>
<td>3</td>
<td>—</td>
<td>— (6)</td>
</tr>
<tr>
<td>AF501538(7)</td>
<td>(TG)2(CG)2(CG)2(CA)2(TG)2</td>
<td>210–300</td>
<td>8</td>
<td>0.379/0.047*</td>
<td>0.072/0.000*</td>
</tr>
<tr>
<td>AF501539(8)</td>
<td>GC(TG)2(CG)2(CG)2</td>
<td>116–223</td>
<td>4</td>
<td>0.246/0.256</td>
<td>0.528/0.195*</td>
</tr>
<tr>
<td>AF501541(9)</td>
<td>(TG)3n</td>
<td>282–313</td>
<td>13</td>
<td>0.560/0.279*</td>
<td>0.793/0.341*</td>
</tr>
</tbody>
</table>

GenBank accession numbers are given for each locus. Heterozygosity estimates are provided for two sites, North Island and West Rocks, with n = 43 and n = 41, respectively; * denotes deviation from Hardy–Weinberg equilibrium (P < 0.05). Locus 6 was monomorphic at both sites.

Our results suggest that these AFLP and microsatellite markers may be useful for evaluating population structure at small geographical scales in Postelsia, and for comparing the relative performance of these two approaches. As a result of the concerns of the repeatability of AFLP analyses, we also plan to compare AFLP and microsatellite performance. A detailed analysis of population differentiation is warranted by our findings and will be presented elsewhere.

Acknowledgements

We thank the Makah Tribal Council for access to the study sites, the Genetic Identification Services for isolating the microsatellites, and J. Salamunovitch, F. Stevens, K. Rose, B. Kordas, L. Weis, B. Scott, A. Miller, K. Edwards, J. Duke, R. Paine and K. Feldheim for the provision of essential field and laboratory assistance. This work was supported by NSF grant OCE-0117801, University of Chicago Faculty Research Fund, and by the Andrew W. Mellon Foundation.

References

(Phaeophyceae) as assessed with M13 fingerprints and RAPDs. *Journal of Phycology, 33*, 561–568.