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Summary

Although the linguistic structure of speech provides valu-
able communicative information, nonverbal behaviors can
offer additional, often disambiguating cues. In particular,
being able to see the face and hand movements of a speaker
facilitates language comprehension [1]. But how does the
brain derive meaningful information from these movements?
Mouth movements provide information about phonological
aspects of speech [2-3]. In contrast, cospeech gestures
display semantic information relevant to the intended
message [4-6]. We show that when language comprehension
is accompanied by observable face movements, there is
strong functional connectivity between areas of cortex
involved in motor planning and production and posterior
areas thought to mediate phonological aspects of speech
perception. In contrast, language comprehension accompa-
nied by cospeech gestures is associated with tuning of and
strong functional connectivity between motor planning and
production areas and anterior areas thought to mediate
semantic aspects of language comprehension. These areas
are not tuned to hand and arm movements that are not mean-
ingful. Results suggest that when gestures accompany
speech, the motor system works with language comprehen-
sion areas to determine the meaning of those gestures.
Results also suggest that the cortical networks underlying
language comprehension, rather than being fixed, are
dynamically organized by the type of contextual information
available to listeners during face-to-face communication.

Results and Discussion

What brain mechanisms account for how the brain extracts
phonological information from observed mouth movements
and semantic information from cospeech gestures? In prior
research, we have shown that brain areas involved in the
production of speech sounds are active when listeners
observe the mouth movements used to produce those speech
sounds [7, 8]. The pattern of activity between these areas,
involved in the preparation for and production of speech,
and posterior superior temporal areas, involved in phonolog-
ical aspects of speech perception, led us to suggest that
when listening to speech, we actively use our knowledge
about how to produce speech to extract phonemic information
from the face [1, 8]. Here we extrapolate from these findings to
cospeech gestures. Specifically, we hypothesize that when
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listening to speech accompanied by gestures, we use our
knowledge about how to produce hand and arm movements
to extract semantic information from the hands. Thus, we
hypothesize that, just as motor plans for observed mouth
movements have an impact on areas involved in speech
perception, motor plans for cospeech gestures should have
an impact on areas involved in semantic aspects of language
comprehension.

During functional magnetic resonance imaging (fMRI),
participants listened to spoken stories without visual input
(“No Visual Input” condition) or with a video of the storyteller
whose face and arms were visible. In the “Face” condition,
the storyteller kept her arms in her lap and produced no
hand movements. In the “Gesture” condition, she produced
normal communicative deictic, metaphoric, and iconic
cospeech gestures known to have a semantic relation to the
speech they accompany [5]. These gestures were not codified
emblems (e.g., “thumbs-up”), pantomime, or sign language
[5, 9]. Finally, in the “Self-Adaptor” condition, the actress
produced self-grooming movements (e.g., touching hair,
adjusting glasses) with no clear semantic relation to the story.
The self-adaptive movements had a similar temporal relation
to the stories as the meaningful cospeech gestures and were
matched to gestures for overall amount of movement (Movies
S1 and S2 available online).

We focused analysis on five regions of interest (ROIs) based
on prior research (Figure S1): (1) the superior temporal cortex
posterior to primary auditory cortex (STp); (2) the supramargi-
nal gyrus of the inferior parietal lobule (SMG); (3) ventral pre-
motor and primary motor cortex (PMv); (4) dorsal pre- and
primary motor cortex (PMd); and (5) superior temporal cortex
anterior to primary auditory cortex, extending to the temporal
pole (STa) [1, 10]. The first four of these areas have been found
to be active not only during action production, but also during
action perception [11]. With respect to spoken language, STp
and PMv form a “dorsal stream” involved in phonological
perception/production and mapping heard and seen mouth
movements to articulatory based representations (see above)
[1,7, 8, 12]. Whereas STp is involved in perceiving face move-
ments, SMG is involved in perceiving hand and arm move-
ments [13] and, along with PMv and PMd [11, 14], forms a
(another) “dorsal stream” involved in the perception/produc-
tion of hand and arm movements [15]. In contrast, STa is
part of a “ventral stream” involved in mapping sounds to
conceptual representations ([1], see [12] for more discussion)
during spoken language comprehension; that is, STa is
involved in comprehending the meaning of spoken words,
sentences, and discourse [16-18]. To confirm that STa was
involved in spoken word, sentence, and discourse compre-
hension in our data, we intersected the activity from all four
conditions for each participant. Our rationale was that speech
perception and language comprehension are common to all
four conditions; activation shared across the conditions
should therefore reflect these processes. We found that a large
segment of STa and a small segment of STp were bilaterally
active for at least 9 of 12 participants (Figure S2).

Just as research using single-cell electrophysiology in visual
cortex examines which neurons prefer or are “tuned” to
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(i.e., show a maximal firing rate) particular stimulus properties
over others [19], we investigated hemodynamic “tuning” to the
meaningfulness of hand and arm movements with respect to
the spoken stories by using a peak and valley analysis method
([20, 21], [22] for a similar method). In each ROI for each condi-
tion, we averaged the entire time course of the hemodynamic
response (henceforth signal) for all voxels that were active in at
least one of the four conditions, both within and across partic-
ipants. We delayed the response by 4 s to align the brain’s
hemodynamic response over each entire story to the coded
features of that story (i.e., the cospeech gestures in the
Gesture condition and the self-adaptive movements in the
Self-Adaptor condition). Next, we found peaks in the resulting
averaged signal for each condition by using the second deriv-
ative of that signal. Gamma functions (with similarity to the
hemodynamic response) of variable centers, widths, and
amplitudes were placed at each peak and allowed to vary so
that the best fit between the actual signal and the summation
of the gamma functions was achieved (R*%s > .97). Half of
the full width half maximum (FWHM/2) of a resulting gamma
function at a peak determined the search region used to
decide whether, for example, an aligned cospeech gesture
elicited that peak. Specifically, a particular hand and arm
movement (i.e., either a cospeech gesture or self-adaptor
movement) was counted as evoking a peak if 2/3rds of that
peak contained a hand and arm movement, and was counted
as not evoking a peak if less than 1/3rd of that peak contained
a hand and arm movement. The distance between the FWHM/
2 of two temporally adjacent gamma functions determined
which aspects of the stimuli caused a decay or valley in the
response. Specifically, a particular hand and arm movement
was counted as resulting in a valley if 2/3rds of that valley con-
tained a hand and arm movement, and was counted as not
resulting in a valley if less than 1/3rd of that valley contained
a hand and arm movement. Regions were considered tuned
to cospeech gestures or self-adaptor movements that were
represented in peaks but not valleys. Significance was deter-
mined by two-way chi-square contingency tables (e.g.,
gestures versus no-gestures at peaks; gestures versus no-
gestures at valleys).

Figure 1 illustrates the peak and valley analysis. Frames from
the stories associated with peaks are on the top; frames asso-
ciated with valleys on the bottom. Note that the speaker’s
cospeech gestures are found only on top and thus are associ-
ated with peaks, not valleys (Figure 1A); in contrast, her self-
adaptor movements are found on top and bottom and thus
are associated with both peaks and valleys (Figure 1B). For
the Gesture condition, this pattern held in regions PMv, PMd,
SMG, and STa where peaks in the response corresponded
to gesture movements and valleys corresponded to times
when the hands were not moving (Figure 2, gray bars; PMv
¥2=11.1, p <.001, ® = .51; PMd %2 = 8.9, p < .003, ® = .40;
SMG 2 = 4.46, p < .035, & = .28; STa 32 = 19.5, p < .0001,
® = .62). Peaks in these regions’ responses were not simply
due to movement of the hands—the meaningless hand move-
ments in the Self-Adaptor condition were as likely to result in
valleys as in peaks in the PMv, PMd, SMG, and STa response
(Figure 2, striped bars; PMv X2 = 0.06, p = .81, ® = .04; PMd
v2=0.0, p =.96, ® =.01; SMG %2 = .42, p < .52, ® = .10; STa
¥2 = 0.56, p = .45, ® = .12). STp showed no preference for
hand movements, either meaningful cospeech gestures or
meaningless self-adaptor movements.

To understand how PMv, PMd, SMG, and STa work to-
gether in language comprehension, we analyzed the network

interactions among all five regions. The fMRI signals corre-
sponding to the brain’s response to each condition from
each of the five regions were used in structural equation
modeling (SEM) to find the functional connectivity between
regions. The output of these models reflects between-area
connection weights that represent the statistically significant
influence of one area on another, controlling for the influence
of other areas in the network [10, 23]. SEMs are subject to
uncertainty because a large number of models could poten-
tially fit the data well, and there is no a priori reason to choose
one model over another. To address this concern, we solved
all of the possible models for each condition [24] and averaged
the best-fitting models (i.e., models with a nonsignificant
chi-square) by using a Bayesian model averaging approach
[10, 25, 26]. Bayesian model averaging has been shown to
produce more reliable and stable results and provide better
predictive ability than choosing any single model [27].

Bayesian averaging of SEMs resulted in one model for each
condition with nine physiologically plausible connections.
Results show that the brain dynamically organizes activity
patterns in response to the demands and available information
of the immediate language task (Figure S3). Specifically,
during the Gesture condition, connection weights were
stronger between SMG and PMd (bidirectionally), from SMG
to STp, from STa to PMv, and from PMd to STa than in any
other condition. In contrast, in the Face condition, connection
weights were stronger between STp and PMv (bidirectionally)
and from PMv to STa. In the Self-Adaptor condition, connec-
tion weights were stronger only from STa to PMd, and, in the
No Visual Input condition, no connection weights were
stronger than any others. Although this is a complex set of
results, a pattern emerges that can be more easily understood
by considering the mean of the connection weights between
STa and pre- and primary motor cortex (i.e., PMv and PMd)
and between STp and pre- and primary motor cortex (Figure 3).
This representation of the results shows that the statistically
strongest connection weights associated with STa and pre-
and primary motor cortex correspond to the Gesture condi-
tion. In contrast, the statistically strongest connection weights
associated with STp and pre- and primary motor cortex corre-
spond to the Face condition. This result is consistent with the
peak and valley analysis showing that STp does not respond
to hand movements (see Figure 2). Thus, when cospeech
gestures are visible, PMd, STa, and SMG work together
more strongly to interpret the meanings conveyed by the
hand movements, which could enhance interpretation of the
speech accompanying the gestures. In contrast, when only
facial movements are visible, PMv and STp work together
more strongly to simulate face movements relevant to speech
production, a simulation that could aid phonological interpre-
tation; this finding is consistent with previous work in our lab
showing that PMv and STp are sensitive to the correlation
between observable mouth movements and speech sounds
[7, 8].

Results suggest that cospeech manual gestures provide
information germane to the semantic goal of communication,
whereas oral gestures support phonemic disambiguation.
This interpretation is supported by two additional pieces of
evidence. First, percent of items recalled correctly was
100%, 94%, 88%, and 84% for Gesture, Self-Adaptor, Face,
and No Visual Input conditions, respectively, as probed by
three true/false questions 20 min after scanning. Participants
were significantly more accurate at recalling information in
the Gesture condition, which displayed face movements and



Gestures Orchestrate Networks
663

Story onset -

i
@
@
i
&>

I\

FENTOOONTOUROANTODONTORONTVXONTODOONT VRO EZEEE

FUSATol T TNNQGNAAQANQARATTTTTRLOLDOVOOON 000wy

= DONTOVOVONTOBDONTOWDONTVODOANTOWONT W® - = ===
AH A A AN NANNNONOONTIITTTONMINBIAND OO OO

B H N T O OO NT 00O NTOOONTY®RONT 00O R R
D0 L L sy s N NN TSSO GOS0 D
$V9onwNvo o SRy Yy Yy VY Y e
® O N T O OONT VOO NT VOO NT OO
— - A A AN NN NN MM S S S T

Time (seconds)

Figure 1. Peak and Valley Analysis of the Gesture or Self-Adaptor Conditions

Peaks and valleys associated with the brain’s response to the (A) Gesture and (B) Self-Adaptor conditions in ventral pre- and primary motor cortex (PMv; see
Figure S2). Frames from the movies associated with peaks are on the top row, and frames associated with valleys are on the bottom. The orange line is the
brain’s response. Gray lines are the gamma functions fit at each peak in the response that were used to determine which aspects of the stimulus resulted in
peaks and valleys (see text). Note that in the Gesture condition (A), cospeech gestures are associated with peaks and hands-at-rest are associated with
valleys. In contrast, in the Self-Adaptor condition (B), self-adaptor movements are associated with both peaks and valleys.
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Figure 2. Percentage of All Peaks or Valleys in Regions of Interest in which a Hand Movement Occurred or Did Not Occur in the Gesture or Self-Adaptor

Conditions

Asterisks indicate a significant difference between the actual occurrences of hand movements or no hand movements at peaks or valleys and the expected
value (p < .05). Abbreviations: superior temporal cortex anterior (STa) and posterior (STp) to Heschl’s gyrus; supramarginal gyrus (SMG); ventral (PMv) and
dorsal (PMd) premotor and primary motor cortex. See text and Figure S2 for further information.

meaningful hand movements, than in the other three condi-
tions, which displayed at most face movements or hand move-
ments unrelated to the speech (t = 3.7; df = 11; p < .004;
Figure S4). Second, in a prior analysis of the present data
[10], we found that the weakest connection weights between
Broca’s area and other cortical areas were associated with
the Gesture condition, whereas the strongest weights were
associated with the Self-Adaptor and Face conditions. This
pattern is consistent with research showing that Broca’s
area plays a role in semantic selection or retrieval [28-31]. In
other words, selection and retrieval demands are reduced
because cospeech gestures provide semantic information
(see [32] for supporting data).

Our findings provide evidence that brain areas involved in
preparing and producing actions are also involved in process-
ing cospeech gestures for language comprehension. The
routes through which cospeech gestures and face movements
affect comprehension differ. Mouth movements are used by

listeners during language comprehension to aid speech
perception—by covertly simulating the speaker’s mouth
movements (through activation of motor plans involved in
producing speech), listeners can make the acoustic properties
of speech less ambiguous and thereby facilitate comprehen-
sion [8]. In contrast, for hand movements to play a role in
language comprehension, listeners must not only simulate
the speaker’s hand and arm movements, they must also use
those simulations to get to the meanings conveyed by the
movements. Thus, in some real sense, we have shown that
the hands become the embodiment of the meaning they
communicate and, in this way, improve communication.
Furthermore, we show that the cortical networks supporting
language comprehension are not a static set of areas. What
constitutes language in the brain dynamically changes when
listeners have different visual information available to them.
When cospeech gestures are observed, the networks under-
lying language comprehension are differently tuned and
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Figure 3. Structural Equation Model Connection Weights

Mean of connection weights from Bayesian averaged structural equa-
tion models between STa or STp and premotor and primary motor
cortex (i.e., PMv and PMd) regions of interest. Asterisks indicate that
a condition resulted in significantly stronger connection weights
compared to all of the other conditions (p < .05). See Figure 2 for abbre-
viations.

movement, with AFNI software [37]. Signal intensities greater than 4.5
standard deviations from the mean signal intensity were considered
artifact and removed from the time series (TS), which was linearly and
quadratically detrended. The TS data were analyzed by multiple linear
regression with separate regressors for each condition. These regres-
sors were waveforms with similarity to the hemodynamic response

STa

Self-Adaptor ' Face

STp

Gesture

connected than when meaningless hand movements or face
movements alone are observed. We suggest that in real-world
settings, the brain supports communication through multiple
cooperating and competing [33] networks that are organized
and weighted by the type of contextual information available
to listeners and the behavioral relevance of that information
to the goal of achieving understanding during communication.

Experimental Procedures

Participants

Twelve right-handed [34] native English speakers (mean age = 21 = 5 years;
6 females) with normal hearing and vision, no history of neurological or
psychiatric illness, and no early exposure to a second language partici-
pated. The study was approved by the Institutional Review Board of the
Biological Science Division of The University of Chicago and participants
provided written informed consent.

Stimuli and Task

Stories were adaptations of Aesop’s Fables told by a female speaker. Each
story lasted 40-50 s. Participants were asked to listen attentively to the
stories. Each story type (i.e., Gesture, Self-Adaptor, Face, and No Visual
Input) was presented once in a randomized manner in each of the two
5 min runs. Note that, because of the dependence of gestures on speech,
a “Gesture Only” control was not included in this study because of the likeli-
hood of introducing unnatural processing strategies (see [35] for an elabo-
ration). See [10] for further details and Movies S1 and S2 for example video
clips. Participants did not hear the same story twice. Stories were matched
so that one group heard, for example, a story in the Gesture condition while
another group heard the same story in the Self-Adaptor condition. Condi-
tions were separated by a baseline period of 12-14 s. During baseline and
No Visual Input, participants saw only a fixation cross but were not explicitly
asked to fixate. Audio was delivered at a sound pressure level of 85 dB-SPL
through headphones containing MRI-compatible electromechanical trans-
ducers (Resonance Technologies, Inc., Northridge, CA). Participants
viewed video stimuli through a mirror attached to a head coil that allowed
them to clearly see the hands and face of the actress on a large screen at
the end of the scanning bed. Participants were monitored with a video
camera.

Imaging Parameters

Functional imaging was performed at 3 Tesla (GE Medical Systems, Milwau-
kee, WI) with a gradient echo T2* spiral acquisition sequence sensitive to
BOLD contrast [36]. A volumetric T1-weighted inversion recovery spoiled
grass sequence was also used to acquire anatomical images.

Data Analysis
Functional images were spatially registered in three-dimensional space by
Fourier transformation of each of the time points and corrected for head

No-Visual-Input

 generated by convolving a gamma-variant function with onset time
and duration of the target blocks. The model also included a regressor
for the mean signal and six motion parameters for each of the two runs.
The resulting t-statistic associated with each condition was corrected
for multiple comparisons by Monte Carlo simulation [38]. The TS was
mean-corrected by the mean signal from the regression. The logical
conjunction analysis (Figure S2) was performed for each participant individ-
ually by first thresholding each of the four conditions at a corrected p value
of p <.05 by Monte Carlo simulation [38] and taking the intersection of active
voxels for all conditions.

Anatomical volumes were inflated and registered to a template of average
curvature with Freesurfer software [39-41]. Surface representations of each
hemisphere for each participant were then automatically parcellated into
ROls [42], which were manually subdivided into further ROIs (Figure S1).
The next step involved interpolating the corrected t-statistic associated
with each regression coefficient and the TS data from the volume domain
to the surface representation of each participant’s anatomical volume via
SUMA software [43]. A relational database was then created, with individual
tables for each hemisphere of each participant’s corrected t-statistic, TS,
and ROI representations [21].

By using the R statistical package [44], we queried the database to extract
from each ROI the TS of only those surface nodes that were active in at least
one of the four conditions for each hemisphere of each participant. A node
was determined to be active if any of the conditions was active above a cor-
rected threshold of p < .05. The TSs corresponding to each of the active
nodes in each of the ROIs for each hemisphere of each participant were
averaged. The resulting TS for each participant was then split into the eight
TSs corresponding to the TS for each condition from each run. The TS for
each condition from each run was then concatenated by condition. In
each of the four resulting TSs, time points with signal change values greater
than 10% were replaced with the median signal change. Finally, the result-
ing four TSs were averaged over participants, thus establishing for each ROI
one representative TS in each of the four conditions.

After this step, the second derivative of the TS was calculated for each
condition. This second derivative was used to perform peak and valley anal-
ysis (as described in the text). Statistics were based on two-by-two contin-
gency tables of the form peaks corresponding to and not corresponding to
a stimulus feature, and valleys corresponding to and not corresponding to
a stimulus feature. For contingency tables associated with Figure 2,
a peak or valley was counted as containing or not containing a hand move-
ment if that feature occupied at least 2/3 of or less than 1/3 of the total peak
or valley time, respectively. See [20] and [21] for a more detailed description
of the peak and valley analysis and [22] for a similar method.

The second derivative was also used to perform SEM because, as shown
by the peak analysis (see e.g., Figure 1), it encodes peaks in the TS at second
derivative minima that reflect events in the stories. We tested all possible
SEM s by using the resulting second derivative of the TSs from the 5 regions
for each condition for physically plausible connections, utilizing up to 150
processors on a grid computing system (see acknowledgments and [21]).
To make computation manageable, models had only forward or backward
connections between two regions. For each model, the SEM package was
provided the correlation matrix derived from the second derivate of the TS
between all regions within that model. Only models indicating a good fit,
i.e., models whose %2 was not significant (p > .05), were retained.

Resulting connection weights from each model were averaged. Averaging
was weighted by the Bayesian information criterion for each model. The
Bayesian information criterion adjusts the chi-square of each model for
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the number of parameters in the model, the number of observed variables,
and the sample size. Individual connection weights were compared for the
different models by using t tests correcting for heterogeneity of variance
and unequal sample sizes by the Games-Howell method [45]. Degrees of
freedom were calculated with Welch’s method [45] (though the number of
models for each condition were not significantly different). See [10] for
a detailed description of the Bayesian averaging SEM approach.

Supplemental Data

Supplemental Data include four figures and two movies and can be found
with this article online at http://www.current-biology.com/supplemental/
S0960-9822(09)00804-5.
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