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People seek novelty in everyday life, but they also enjoy viewing the same movies or reading the same novels a
second time. What changes and what stays the same when re-experiencing a narrative? In examining this
question with functional neuroimaging, we found that brain activity reorganizes in a hybrid, scale-dependent
mannerwhen individuals processed the same audiovisual narrative a second time. At themost local level, senso-
ry systems (occipital and temporal cortices) maintained a similar temporal activation profile during the two
viewings. Nonetheless, functional connectivity between these same lateral temporal regions and other brain re-
gions was stronger during the second viewing. Furthermore, at the level of whole-brain connectivity, we found a
significant rearrangement of network partition structure: lateral temporal and inferior frontal regions clustered
together during the first viewing but merged within a fronto-parietal cluster in the second. Our findings show
that repetition maintains local activity profiles. However, at the same time, it is associated with multiple
network-level connectivity changes on larger scales, with these changes strongly involving regions considered
core to language processing.

© 2016 Elsevier Inc. All rights reserved.
Introduction

The study of novelty remains a continuous interest in psychology
and cognitive neuroscience. Inmodern cognitive psychology, an impor-
tant early findingwas that people show high sensitivity to novelty in an
input series (Antrobus, 1968; Vitz, 1964). In neuroimaging, many stud-
ies have identified brain regions sensitive to novelty. Beyond those
linked with memory systems per se (Ranganath and Rainer, 2003),
fronto-parietal regions (Strange et al., 2005) and sensory systems
(Brázdil et al., 2007; Liebenthal et al., 2003; Marois et al., 2000; Opitz
et al., 2002) have also been shown as sensitive to the degree of novelty
in an input. Novel stimuli can also induce network-level reorganization
(den Ouden et al., 2010; Garrido et al., 2009; Kafkas and Montaldi,
2015). For example, unexpected changes in input predictability modu-
late changes in response coupling between specific sets of regions,
suggesting reconfiguration in particular neural circuits (den Ouden
et al., 2010). The degree of redundancy in an input has also been
shown to impact whole-brain connectivity (Andric and Hasson, 2015).
ces, Via delle Regole, 101, 38123

).
The opposite of novelty is repetition. While there are clear indica-
tions that novelty brings on many changes, much less is understood
about thepotential impacts of repetition. Theparadigmatic neurobiolog-
ical model for studying repetition has been the repetition suppression
paradigm (for initial review, see Grill-Spector et al., 2006). Such studies
have shown that repeated processing of a stimulus results in reduced ac-
tivity in brain regions involved in its initial processing. As already noted
by Grill-Spector et al., repetition effects are “local” in nature: they are
maximal in neuronsmost strongly responsive to the initial presentation,
and they have a very rapid latency, consistent with an absence of top-
downmodulation. Neural-levelmodels of repetition effects also empha-
size local effects, assuming that repetition produces a reduction in the
number of neurons involved (Brunet et al., 2014), reduced firing rates,
or faster processing (Hawco and Lepage, 2014). In sum, many results
document local effects of repeated processing.

Beyond local effects, however, whether repeated processing in-
volves macro-scale, or network-level, changes is unclear. Ewbank et al.
(2013, 2011) found that repeated viewing of body parts modulates ac-
tivity between regions involved in processing such stimuli, and sug-
gested that repeated processing induces different interactions
between regions. But, beyond their work, there is limited documenta-
tion of how repeated exposure to a stimulus impacts network-level
brain activity. Importantly, no prior work has examined this question
with respect to naturalistic stimuli.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2016.07.061&domain=pdf
http://dx.doi.org/10.1016/j.neuroimage.2016.07.061
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At the neurobiological level, the issue of whether (andwhere) there
are network-level changes to repeated exposures carries many possible
implications. For example, clarifying this issue could help differentiate
between networks whose organization is driven by stimulus character-
istics and those whose organization is sensitive to prior experience. At
the cognitive level, data of this sort could inform cognitive theories of
repeated processing, which have long noted that re-experiencing does
not necessarily produce a lack of interest. For instance, people can re-
experience ‘anomalous suspense’ when re-watching a thriller they
had already seen and whose outcome is known to them (Gerrig,
1989). The fact that long-term knowledge of narrative outcomes does
not necessarily interfere with the experience of suspense or enjoyment
of narrative information suggests some independence, or even active
disconnection, between the online processing of familiar information
and long-term prior knowledge.

Our aim in the current study was to examine whole brain network-
level reorganization during repeated viewing of naturalistic narratives.
Neurobiological studies have not examined the neural correlates of re-
experiencing narratives per se. However, there is work showing that,
in certain brain regions, repeated viewing of a movie produces similar
activity profiles across the two viewings on the local level – that of the
single voxel. In a pivotal functional MRI (fMRI) study, Golland et al.
(2007) presented participants with the samemovie on two separate oc-
casions. They found that occipital and lateral temporal regions (strongly
linked to visual and language processing) showed similar activity pat-
terns across the two sessions. In addition, that study identified a com-
plementary set of regions with low correlation across the two
viewings but strong correlations among each other. In other words,
these complementary regions dissociated according to an intrinsic orga-
nization that was not driven by features of the external input. The au-
thors thus suggested there exists an extrinsic brain network that
strongly tracks external stimuli, as well as an intrinsic brain network
whose activity is relatively input-independent. Further work using
ECoG corroborated these findings by showing that electrode recordings
from auditory and visual cortices tended to show similar gamma-band
modulation profiles for initial and repeated movie viewing (Meshulam
et al., 2013). The findings of these studies have particular importance
for neurobiological theories of language and semantics. They suggest
that activity in lateral temporal regions exhibits little, if any, impact of
prior experience on activation patterns during stimulus processing.

Yet, external stimuli can impact brain activity during narrative com-
prehension not by altering activity patterns but by altering connectivity
between brain regions. Chow et al. (2014) presented auditory stories to
participants and found that connectivity of left inferior frontal gyrus
(IFG) and left posterior middle temporal gyrus (MTG) with other
brain regions varied depending onwhether the story featured emotion-
al, action, or perceptually vivid content. Wilkins et al. (2014) asked par-
ticipants to listen to their favorite music, or other music they liked or
disliked. They found that the global efficiency of connectivity of auditory
cortex varied across conditions. In addition, the auditory cortex and hip-
pocampus clustered together (i.e., were in the same “community”) in
the “like” and “dislike” conditions, but not in the “favorite” condition,
in which the hippocampus appeared as an isolated community. Work
byMüller et al. (2013) further suggests that familiarity impacts connec-
tivity of auditory andmedial temporal regions. In that study, the authors
inserted periods of noise within familiar and non-familiar musical
pieces. When noise was inserted within familiar music, participants
were more likely to report the illusion of hearing music through the
noise, and this was accompanied by stronger theta-band synchroniza-
tion between right auditory cortex and right medial temporal lobe as
measured via MEG and ECoG data.

Finally, in our own previous work, we presented participants with
tonal series composed of four different tones that differed only in
the regularity of the input series (Andric andHasson, 2015). Thismanip-
ulation induced different organization of whole-brain functional con-
nectivity networks, impacting their modularity, the number of
modules, node degree distributions, and partition structure. In addition,
we observed a strong impact on the connectivity of lateral temporal re-
gions involved in auditory and language comprehension. Specifically,
we quantified the proportion of within-module functional connections
maintained across listening to regular and random series and found
that b30% of the connections in lateral temporal regions were main-
tained across the two conditions.

Taken together, these prior results formaintenance of activation pat-
terns across repeated viewings (Golland et al., 2007) and context-
dependent connectivity (e.g., Chow et al., 2014) suggest that lateral
temporal cortices may exhibit two complementary features: i) on the
local, micro-scale (that of single voxels), they would exhibit a relatively
strong similarity between activation patterns during an initial and re-
peated viewing, whereas ii) on the larger macro-scale they would
show a systematic shift in their network-level organization across view-
ings. In other words, we hypothesized that repeated exposure to a nar-
rative produces “hybrid” reorganization, evident in a highly replicable
response pattern on the scale of small brain regions, but accompanied
by a significant level of reorganization at the network level. While
these two featuresmay appear, prima facie, incompatible, they are com-
plementary. To illustrate, this would hold if a certain region (region
A) responded identically to an initial and repeated presentation of a
stimulus, but its activity might correlate with region B in the first expo-
sure, whereas it would correlate with a different region (region
C) during the second exposure.

To evaluate this question, we presented participants with identical
audiovisual narratives produced by a single speaker in two viewings
separated by a few minutes. To quantify the reliability of the response
across viewings in different brain regions, we used an intra-subject cor-
relation procedure (Golland et al., 2007; Levin and Uftring, 2001;
Uftring and Levin, 2002) for identifying regions that responded similarly
across the viewings. To quantify the reliability of the response across
viewings in functional connectivity or network configuration, we treat-
ed each fMRI voxel as a node in a whole-brain network and established
its connectivity to all other voxels in the brain (we generated these data
for the first and second viewings). This derived a whole-brain network
structure per participant per viewing, which allowed us to then
compare functional connectivity metrics and network-level metrics
across the viewings. We note that both types of analyses are within-
participant analyses, only that the first examines the single-voxel
level, whereas the second examines network-level features. Further-
more, we could evaluate whether individual differences in functional
connectivity metrics correlated with differences in intra-subject corre-
lations across viewings.

Materials and methods

Participants

Eighteen volunteers (11 women, M=23.1 y.o.a, SD=3.0) from the
Purdue University community (West Lafayette, IN) participated in the
study. All were right handed (Oldfield, 1971), native speakers of
American English, with normal hearing and vision, and without history
of neurological or psychological disturbance. The Institutional Review
Board of The University of Chicago approved the study. All participants
gave written informed consent.

Stimuli

Participants were presented with seven video segments while
undergoing fMRI (Fig. 1). The videos presented a woman sitting on a
chair and talking about various topics while being filmed in frontal
view. These topics included (1) how to drive a car, (2) how to skate,
(3) how to ride a bike, (4) how to use a pen, (5) the difference between
a walk and a stroll and a shuffle, (6) how to swing a baseball bat versus
swing a golf club, and (7) descriptions of string instruments (see



Fig. 1. Sample frames from videos. In all videos, the narrator explained simple concepts and gestured spontaneouslywithout being instructed to do so. The narratorwas the only person in
the frame and the camera did not move.
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Supplementary materials Table 1 for segment lengths). Though not
instructed to do so, in all videos, the woman spontaneously produced
co-speech gestures that accompanied her discourse. She did not receive
prompting or instruction to make any gestures. The seven videos were
each between 57 s and 166 s long (M= 126 s, SD = 39 s).
Procedure

Participants in the MRI scanner were presented with audio through
ear buds and videos through goggles (NordicNeuroLab Audio/Visual
system). The goggles were individually adjusted for each person. To
make sure that participants could see and hear the video clips during
the imaging session,we played a practice clipwhile the scanner emitted
sounds heard during a mock functional scan and calibrated the audio
level during this period. We told participants that they would be seeing
a series of movies that show a woman discussing everyday topics. We
instructed them to pay attention to the content and quality of the
videos,while remaining as still as they comfortably could in the scanner.
They were not told they would be seeing the same three runs twice in a
row. We presented the seven videos over three functional runs, with
each run lasting 369 s. This was repeated a second time, for a total of
six functional runs. Since the seven video clips were of different dura-
tions, we displayed black screen segments in between individual
video clips to balance the total run times (Mean length = 28 s,
range = 11 to 47 s). We presented two of the seven videos in each of
the first two runs, and the other three videos in the third run. Then
we immediately repeated these three runs in the same order a second
time. Thus, every participant saw each video twice. To avoid extra task
demands, behavioral responses were not required from the participants
while they were in the scanner.

To evaluate whether the participants were attentive during the im-
aging session, we administered a surprise 20-item multiple-choice
questionnaire after participants exited the scanner. The questions re-
quired participants to recall specifics from the videos that would not
have been answerable if they had not been engaged (for example,
“Who tried to get Maggie to use figure skates?” “What kind of bike
does Maggie say she has?”).

Image acquisition

We acquired scans using echo planar gradient echo T2* (blood oxy-
gen level dependent; BOLD) imaging on aGE Signa Excite 3.0 Tesla scan-
ner at Purdue University. We collected functional images across the
whole brain, in the axial plane, using a 16 channel coil array under
ASSET parallel acquisition with an acceleration factor = 2, TR =
1500 ms, TE = 26 ms, FOV = 20 cm, FA = 73°, in 34 slices with thick-
ness of 3.6 mm (no gap), and in-plane resolution of 3.125 × 3.125. We
also collected a single high-resolution T1-weighted structural image
per participant, using a TR = 5 ms, TE = 2.036 ms, FOV = 24 cm,
FA = 12°, in-plane resolution 256 × 224, for 166 sagittal slices of
1 mm thickness.

Data analyses

Preprocessing
We processed participants' functional time series for subsequent

analyses in the followingway. First, we discarded the initial four images
of the time series, keeping data for which the BOLD response stabilized.
We then removed respiration and cardiac pulse induced noise effects
based on the RETROICOR method (Glover et al., 2000), implemented
in AFNI (Cox, 1996). We applied this to the cardiac and respiration
data collected during the imaging session. This method accounts for
13 respiration and cardiac related effects, on a slice-wise basis (includ-
ing 4 regressors each for the cardiac and respiratory series and their
harmonics, and 5 for the respiration variation of time and its har-
monics). To account for motion during the scan, we registered time se-
ries images to the last image of the series. These registered images were
then de-spiked, mean normalized to reflect percent signal change
values, and de-trended to remove linear, quadratic, and cubic trends.
We removed additional nuisance sources of variance from the time se-
ries by linear regression. This regression included predictors for scanner
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drift (linear, quadratic, and cubic) and motion parameters estimated
during headmotion correction.We also included predictors for high in-
tensity white matter and low intensity ventricle signals. The white
matter signal was obtained from an average of the upper quartile values
in white matter voxels, and the low intensity ventricle signal from an
average of the lower quartile values in ventricle voxels. To increase
the temporal signal-to-noise in each voxel's time series we applied
4mmspatial smoothing. In addition, to accommodate the computation-
al demands of our analyses, we resampled each participant's functional
data to 4× 4× 4mm. This resampling effectively reduced the number of
voxels with functional data by about 45% as compared to the original
resolution (3.125 × 3.125 × 3.6).

In this study, we were interested in cognitive processes taking place
while participants were observing the movies; that is, the relatively
high-frequency components associated with the phasic phase of
movie viewing. To this end, we spliced together portions of the time
series collected while participants observed the video clips and exclud-
ed those sections where there were intermediary blank-screen presen-
tations between clips (1 blank screen in run1, 1 in run2, and 2 in run3).
We also discarded data collected during the initial 6 s of eachmovie clip
to mitigate onset-related effects associated with a shift from blank
screen to movie presentation. This yielded 2 functional time series
(“View1” and “View2”) per participant, each with 547 functional im-
ages. Given the small number of splice points it is unlikely these intro-
duced artificial correlations, but this procedure could have slightly
reduced correlations driven by low-frequency fluctuations. Prior work
has shown this procedure produces highly similar resting-state maps
(Fair et al., 2007) under continuous acquisition, and we used it previ-
ously to document subtle contextual effects on connectivity during
language comprehension (Hasson et al., 2009).

To limit the voxels analyzed to gray matter voxels, we created gray
matter masks for each participant using FSL's bet for brain extraction
(Smith, 2002) and first for segmentation (Patenaude et al., 2011). The
gray matter mask was set to allow only voxels whose probability of
being gray matter exceeded 33%. This mask was defined after we had
down-sampled the resolution of the data to 4 × 4 × 4 mm. We only
analyzed voxels in these masks. We aligned individual data to common
MNI space using FSL's flirt (Jenkinson and Smith, 2001; Jenkinson et al.,
2002) for registration of functional images to the high-resolution T1 im-
ages and then fnirt for non-linear alignment to MNI space (Andersson
et al., 2007).

We created cortical surface representations of each participant's
anatomy using FreeSurfer (Dale et al., 1999; Fischl et al., 2004, 2002,
2001, 1999a, 1999b). This inflated each hemisphere of the anatomical
volumes to a surface representation that was aligned to a template of
average curvature. We checked each participant's surface representa-
tions for any errors in the parcellation of white and graymatter surfaces
after a first pass of FreeSurfer's recon-all program and corrected any
errors on the surface. We used the 2-D surface space because it allows
more accurate reflection of the individual data at the group level than
the 3-D volume space (Argall et al., 2006). We thus conducted our
voxel-wise similarity analysis (see Voxel-wise similarity below) in the
surface domain. In this analysis, we projected each individual's commu-
nity partitions to surface representations using SUMA (Saad et al., 2004)
and then calculated partition similarity for each node. Due to computa-
tional demands, however, we could not conduct most of our analyses in
this surface domain. For perspective, our individualmasked graymatter
volumes include 15,232 voxels on average, whereas a common group-
level surface brain includes 392,004 nodes.

Intra-subject connectivity strength
To identify voxels that reliably tracked the movie features, we

determined which voxels' time series showed significant correlations
across the repeated viewings. We calculated intra-subject correlations
(Pearson correlation coefficients) between the View1 and View2 time
series for each participant (for the basis of this approach, see Golland
et al., 2007; Levin and Uftring, 2001; Uftring and Levin, 2002). We
applied Fisher's z-transformation to the correlations, which returned
one value per participant per voxel. At the group level, we evaluated
these correlation values by aligning them to a common MNI template
using the transformations described in the section above, and then we
performed a voxel-wise t-test against zero (the chance value). We
identified significant clusters with a cluster-based control for family-
wise error rate (FWE). We set the single voxel threshold at p b 0.01,
with a volume of at least 1872 mm3 to control for FWE of p b 0.05.
This value was determined using simulations, via AFNI's 3dClustSim,
that took into account the data's estimated internal smoothing
(~8 mm3).

Average connectivity strength changes

Generating weighted-connectivity maps and differences across viewings.
To examine voxel-level changes in connectivity strength, we used a
voxel-wise connectivity measure (Cole et al., 2010). This measure
(whole brain weighted global brain connectivity, or WGC) is the mean
functional connectivity (as Pearson's R values, whichwere then Fisher's
z-transformed) between each voxel and every other gray matter voxel.
We create single-voxel WGC maps for the View1 and View2 data sets,
yielding two whole brain (gray matter) maps per participant. To
identifywhich voxels showed differences inmean functional connectiv-
ity across the two viewings, we compared thesemaps at the group level
by paired-samples t-tests.We again used cluster-based control for FWE.
We set the single voxel threshold at p b 0.01, again with a volume of at
least 1872 mm3 controlling for a FWE of p b 0.05. Given a recent report
of lack of control over FWE in these types of simulations (Eklund et al.,
2016) we also repeated this analysis with a permutation-basedmethod
using FSL's randomise routine (Winkler et al., 2014), again using a
cluster-forming voxel threshold of p b 0.01 and controlling for FWE of
p b 0.05. The latter yielded a more conservative result, and we use
that in the paper.

Quantifying whole-brain connectivity changes in voxels whose weighted-
connectivity differed across viewings. As we detail in the Results, we
identified a large perisylvian cluster in the left hemisphere, where
voxels' whole brain WGC during the second viewing was stronger
than the first. As a post hoc assessment, we wanted to understand
which brain regions changed their connectivity with voxels in this clus-
ter. However, given the functional heterogeneity of regions within this
large cluster, we first evaluated to what extent this large perisylvian
cluster could be partitioned into sub-clusters with different whole
brain connectivity profiles during View2. Then, for each of these sub-
clusters, we established its whole brain connectivity during View1 and
View2 to identify areas showing significant differences at the group
level.

We determined sub-clusters within the large perisylvian cluster as
follows. For each participant, we performed agglomerative clustering
using Ward's criterion (Ward, 1963) on the View2 time series within
the perisylvian cluster to obtain 4 sub-clusters. This clustering was
based on the whole-brain correlation of each gray-matter voxel in that
cluster. We chose 4 based on prior work arguing for separation of
SMG, posterior STG, middle STG, and anterior STG functions (Boldt
et al., 2013). This returned 4 clusters per participant. Then, to generate
a group-level sub-cluster solution, we used the logic of a procedure
introduced by Bassett et al. (2013). We aggregated individual sub-
clustering solutions across participants by constructing an “agreement
matrix.” This agreement matrix marked, for each pair of nodes (voxels)
in MNI (group) space, the number of participants for which a pair of
nodes belonged to the same sub-cluster. We treated the agreement
matrix as weighted by proportion of participants in agreement at any
one element and thresholded weaker elements as those with b30%, or
6/18 participants, following suggestions by Lancichinetti and Fortunato
(Lancichinetti and Fortunato, 2012). From this agreement matrix, we
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then sought a consensus partition of the sub-clustering. We used the
Louvain algorithm (Blondel et al., 2008) to determine an optimal
partition from 50 runs of the algorithm (still following Lancichinetti
and Fortunato, 2012). This yielded a consensus partition with 3 non-
overlapping sub-clusters.

We transformed the locations of these 3 sub-clusters (roughly
premotor cortex, posterior STG, mid-anterior STG) back into each
participant's original space and derived a mean time series for each
sub-cluster for the View1 and View2 time series.We treated these aver-
age time series as seeds and used them to construct whole brain
connectivity maps. Note that the procedure for determining brain
regions that show differences in whole brain connectivity between
View1 and View2 is independent of the procedure used to define
the clusters from which the time series were created (the latter were
based on time series in View2 alone). On the group level, we then
used paired-sample t-tests to identify areas whose connectivity
with each seed region significantly differed for the View1 and View2
(p b 0.001 single voxel uncorrected threshold, p b 0.05 FWE
controlled-for using cluster correction using permutation methods via
FSL's randomise routine).
Topological connectivity measures

Generating connectivity matrices. We created a complete cross-
correlation matrix from all voxels within a participant's gray matter
for each participant. Across participants, the number of voxels in the
masks ranged from 12,873 to 16,856 (M = 15,232, SD = 1131). We
binarized the connectivity matrices with an edge-density criterion
(Alexander-Bloch et al., 2010; Ginestet et al., 2011) to maintain the
same edge density (links) for all networks (i.e., networks for the 1st
and 2nd Viewings for all participants). Thismakes the networks compa-
rable in terms of size across conditions; a factor that needs to be con-
trolled as it can impact network features in and of itself. We used
edge density values of 5%, 10%, 15%, and 20%. We created these maps
and performed subsequent analyses using a combination of Python, R,
and functions from the brain connectivity toolbox (Rubinov and
Sporns, 2010) in Matlab.
Node degree distributions. The degree of a node is defined as the number
of edges (connections) in which it participates. We examined whether
distributions of node degree values differed between View1 and
View2 at each edge density level. Following previous studies (Achard
et al., 2006; Andric and Hasson, 2015; Bassett et al., 2006; Fornito
et al., 2010; Hayasaka and Laurienti, 2010), for each person's data in
each of the two viewings, we fit the distribution of node degrees by a
power law with exponential truncation, P(k)~Akα−1ek/kc. We then
extracted values for the power law exponent (α), exponential cutoff
point (kc) and coefficient (A), and evaluated these parameters at the
group level using non-parametric tests for within-participant compari-
sons (Wilcoxon signed-rank test; due to non-normal distribution of the
values tested).
Modularity.Modularity is a graph theoretic measure that can be used to
evaluate the quality of a network partition. We applied this measure to
determine an optimal partitioning of the networks for each participant's
View1 and View2 connectivity matrices. The coefficient of modularity
(Q) is higher the more partitioned a network is into modules. These
modules can be recognized as densely intra-connected sub-networks.
In other words, their connection densities are greater within modules
than between them.

We applied this measure to the connectivity matrices with a fast
unfolding community detection method (Blondel et al., 2008) that
seeks to optimize modularity.
The modularity measure (Q) is given in Eq. (1):

Q ¼ 1
2m

∑
C ∈P

∑
i; j ∈C

Aij−
kik j

2m

� �
ð1Þ

The indices i and j run over N nodes in the graph. A is the network
adjacency matrix; m is the sum total number of edges; the degree of
node i is k= ∑jAij; and the index C runs over the modules of partition
P. This community detection algorithm seeks to maximize Q for a given
network, with its optimized partition captured by the Q value.

We applied this algorithm to the binary connectivity matrices for
each participant's View1 and View2 data. Given that this partition-
finding algorithm is non-deterministic, we applied it 100 times to
each network and chose the maximum Q value as representative of
that View (i.e., condition) per participant at each level of edge density
(Andric and Hasson, 2015; Stanley et al., 2014). In summary, this proce-
dure provided a single Q value per network per participant, as well as a
number reflecting the number ofmodules in the network.We then test-
ed these values – modularity and module number – on the group level
using a non-parametric test for within-participant comparisons
(Wilcoxon signed-rank test).

As a validity check for theQ values we observed in the experimental
data we also derived Q values from random networks. These random
networks were created to match the number of nodes and degree-
distribution in the experimental data, but with randomly assigned
edges. We generated 100 random networks for each of the View1 and
View2 data (per participant and edge density; i.e., n = 14,400 random
networks in total across viewings, participants, and edge densities).
We performed this analysis on binarized networks at each of thedensity
thresholds (5%, 10%, 15% and 20%).

Group-level modularity representation. To obtain a group-level partition
structure reflecting the optimal modularity solutions of single partici-
pants, we again used the agreement matrix approach, following a
similar procedure as outlined by Bassett et al. (2013). We constructed
an agreement matrix across participants that marked, for each pair of
nodes (voxels), the number of participants for which this node-pair
was in the same module after network partitioning. In our case, this
meant that the minimum value for any one voxel-pair could be 0, and
the maximum value could reach 18 (the number of participants). We
applied this procedure to the partitions generated for View1 and
View2. Note that we applied this procedure in common MNI space
after transforming each participant's two partitions (View1 and
View2) from original space to common space.

As shown by Bassett et al., these ‘agreement’ matrices can then be
partitioned using usual partition findingmethods.We therefore applied
the modularity optimization to the un-thresholded agreement matrix.
We performed this process 100 times and retained the solution at
which Q was maximal. Thus, from this procedure, we derived two
group-level partitions, reflecting the whole-brain organization for
each viewing.

After obtaining these group-level partitions at each of the four differ-
ent density levelswe compared them across densities to assesswhich of
the density thresholds was most representative (see Supplementary
materials – Group-level modularity representation at different density
thresholds). We determined that the 15% density threshold was most
representative in terms of its partition structure, and we present results
corresponding to this density threshold in further analyses.

Voxel-wise similarity.After obtaining each participant's optimal partition
(as described in theModularity section), for each View1 and View2, we
could determine for each voxel the extent to which its within-module
connectivity cohort remained stable. Note that while this is a single-
voxel (node)measure, it is still based on data obtained after partitioning
the connectivity matrix into modules.
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We used the Jaccard similarity coefficient (Jaccard, 1901) to assess
the similarity of within-module connectivity sets in these two condi-
tions, on a single voxel level. The Jaccard similarity coefficient is defined
as the intersection of the two sets divided by their union, and yields a
value between 0 and 1 at each voxel. Nodes that retained their within-
module connectivity cohort across the two viewings obtain a higher
value. We generated these voxel-wise maps for each participant. To
generate a group map, we calculated the median value at each voxel
across the individual-participant maps.

Aggregate dissimilarity tests. To obtain formal indicators for whether
the group-level partition structures differed for View1 and View2, we
used two tests, both using permutations. In the first, we built an
expected similarity distribution (a sampling distribution), using a
graph kernel based on the Weisfeiler-Lehman test of graph isomor-
phism (Shervashidze et al., 2011; see Vega-Pons et al., 2014 for previous
application of this graph kernel with fMRI data;Weisfeiler and Lehman,
1968). This test iterates through the graphs andmatches neighborhoods
of nodes as subtree-like patterns. We first evaluated the degree of
isomorphism that existed between the group-level View1 connectivity
network and View2 connectivity network (generated as described in
the Group-level modularity representation section). We treated these
agreement matrices as graphs, keeping “strong” edges where at least 9
participants maintained a connection between nodes. This generated
two ‘binarized’ group level adjacency matrices. We then applied the
graph kernel to the adjacency matrices. We used the graph kernel
over 2 iterations to derive a kernelmatrix for the graphs.Wenormalized
the kernel matrix by Kðx; yÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kðx; xÞ � Kðy; yÞp
to yield similarity

values between 1 and 0, corresponding to more and less similar. We
refer to this measure as “W-L similarity.”

We then implemented a permutation procedure to generate ‘proxy’
group-level View1 and View2 maps, and in each permutation we
evaluated the similarity of the two group-level maps. This formed a
sampling distribution against which to evaluate the value obtained for
the real data. Each permutation proceeded as follows: we randomly
selected a number of participants (1 b n b 18) only changing the label
assignment of which partition solution was assigned to View1 and
which to View2 on the single participant level. This reflected the null
assumption that the group level agreement matrices for View1 and
View2 are interchangeable across viewing condition. As above
(Group-level modularity representation section), we constructed
group-level agreement matrices for each of these permuted sets,
generating a proxy for the View1 group-level map and a proxy for the
View2 group-level map. AW-L similarity score was derived for the per-
mutation. We conducted 1000 permutations to construct a sampling
distribution against which the real value could be compared.

We based the second test on a framework described by Zalesky et al.
(2010) for determining whether two connectivity matrices are signifi-
cantly different. This test returns any connected graph component
(whose extent exceeds chance) where the edges are more connected
in one condition than another. We again implemented this procedure
on the group-level ‘agreement’ matrices generated for View1 and
View2. Recall that thesematrices counted, for each voxel pair, the num-
ber of participants for which a given pair of nodes associated with the
same module. We defined a ‘significant difference’ as one where this
agreement score was equal to or N9.

We again performed permutations to establish how many
connected edges could be found this way by chance. Our permutation
procedure followed the same approach as above to generate two agree-
ment matrices (“proxy1” and “proxy2”) per permutation. We then de-
rived a single proxy matrix by subtracting the two matrices. From this
single proxy differencematrix we computed the size of the largest com-
ponent of connected edges that exceeded the value ‘8.’ We performed
1000 such permutations. From this distribution, we determined that
to control for alpha at p b 0.05 in our data, a component would need
to be larger than 7057 voxels.
On the actual data, we performed a similar routine. We generated
agreement matrices for View1 and View2, subtracted these matrices
from each other and binarized their dissimilarity by an absolute differ-
ence of at least 9. We then determined the connected components
from this dissimilarity matrix and examined whether any exceeded
the permutation-derived threshold of 7057.

Individual differences
Weconducted several analyses targeting the correlation between ac-

curacy on the behavioral task and our dependent neural measures. First,
on the single-voxel level we tested for voxels/clusters where behavioral
performance was related to intra-subject correlations (ISC) (as more at-
tentive participants may perform better). Second, at the single-voxel
level we further testedwhether there were brain areas where behavior-
al accuracy correlated with weighted global connectivity (WGC) during
the first viewing. We tested the relation between behavior and network
modularity (Q) separately for the first and second viewing.

We also examined the relation between individual differences in ISC
andWGC on the single voxel level. We defined two anatomical regions
of interest in auditory and visual primary sensory regions (transverse
temporal gyrus [TTG] and calcarine sulcus [CS]), and two in sensory
association cortices (superior temporal sulcus and the anterior occipital
sulcus, approximating human V5/MT+). For each region, we obtained
the mean ISC in the region per participant. Because ISC profiles in the
association cortices were highly correlated (Pearson's R= 0.73), we av-
eraged those to obtain a single covariate for “higher-level” sensory
regions. We then evaluated the association between WGC values and
these three ISC covariates (TTG, CS, higher-level). Specifically, we
conducted whole brain voxel-wise analyses examining the correlation
between ISC and WGC in View1, between ISC and WGC in View2
and between ISC and the differences in WGC for View1 and View2
(deltaWGC = View1 − View2). The correlations were Fisher's z-
transformed, and all these analyseswere corrected formultiple compar-
isons using family-wise error (single-voxel cluster forming threshold,
p b 0.01, cluster-level correction, p b 0.05).

Time In Scanner effects
Because the repeated presentations were presented later in the

study we evaluated whether the experimental manipulation loaded
on Time In Scanner (TIS) effects. Since our study consisted of three
stimulus blocks both within the initial presentation and repeated pre-
sentation, we contrasted the third and first stimuli blocks (with each
subset) to define a TIS contrast that is orthogonal to the repetition
contrast (see Supplementary Fig. 1 for graphical depictions of the repe-
tition contrast and TIS contrast). We note that the interval between B3
and B1 (and between B3Rep and B1rep) was ~6.5 min, whereas the in-
terval between the repetition set and initial set was ~10 min.

Results

First, we present results identifying which brain regions responded
similarly on the single voxel level when the participants observed the
same videos twice. Second,we present results that showwhere connec-
tivity strength changed between the two viewings. Third, we describe
network-level features of the functional connectivity patterns during
View1 and View2.

Behavioral evaluation and relation to global connectivity or ISC

Tomake sure that participants paid attention to the videos they saw
in the scanner, after exiting the scanner suite, participants were
presented with a surprise 20-item, 4-choice multiple-choice question-
naire. This questionnaire asked them to recall specific details from the
videos (e.g., “What kind of bike doesMaggie say shehas?”). Participants'
mean accuracy on these questions was 87% (M = 17.39, SD = 2.09,
range=55%–100%). This differs from chance (chance= 5/20; binomial



Table 1
Clusters where intra-subject correlations were significant.

Cluster Volume CM LR CM PA CM IS Max RL Max AP Max IS

1 50,336 2.4 −47.1 15.7 42 −30 18
2 2302 −20.6 44.4 15.7 2 58 22
3 517 37.9 −2.6 −37.4 34 0 −34

Note. Cluster #1 is the largest cluster and includes most of the significant areas seen in
Fig. 2, including lateral temporal, parietal, and occipital cortices. Cluster #2 includes the
most frontal areas seen in Fig. 2, including inferior and middle frontal gyri, and anterior
medial cortices. Cluster #3 includes right anterior inferior temporal cortex. The table pro-
vides information about the clusters in Fig. 2. CM=Center ofMass. RL= Right/Left. AP=
Anterior/Posterior. IS = Inferior/Superior. MNI coordinates, order LPI. Single voxel vol-
ume: 8 μl.
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test, p b 0.0001), indicating that participants were attentive to the
videos.

As detailed in the Materials and methods section, we aimed to
identify regions where behavioral performance could relate to ISC (as
more attentive participants may perform better). We did not find any.
We also did not find brain areas where performance correlated with
WGC during the first or second viewing. We also did not find a relation
between behavior and network modularity (Q) for either the first and
second viewing. A limited range in the behavioral responses could
have narrowed our ability to identify such correlations: while the
response-accuracy range was between 11 and 20 (out of a maximal
score of 20), 84% of the participants had scores in the range of 16–19.

Intra-subject correlation: areas that respond similarly across the two
viewings

In this analysis, we identified brain areas by the systematicity of their
responses in the two viewings (Fig. 2). We correlated the time series of
each gray matter voxel between the two viewings (an intra-subject
correlation, Golland et al., 2007; Levin and Uftring, 2001; Uftring and
Levin, 2002) and evaluated these on the group level (see Materials
and methods).

We identified widespread brain areas that responded similarly
across the two viewings (see Table 1), and these findings matched
well with those of Golland et al. (2007). These included occipital and lat-
eral temporal areas implicated in auditory and visual processing, the
premotor cortex bilaterally (but not central sulcus) and the IFG bilater-
ally. We also found systematic responses in several main nodes of the
default mode network, including the inferior parietal lobule and poste-
rior cingulate (PCC)/precuneus bilaterally. Notable exceptions were the
mid-anterior cingulate gyrus and ventromedial prefrontal cortex.

Connectivity strength changes (global connectivity) across viewings

For each voxel, we computed its mean connectivity value to all brain
regions (weighted global brain connectivity, Cole et al., 2010), separate-
ly for the two viewings, and compared these values on the group level.
We found significant connectivity strength changes – in all cases with
stronger connectivity in View2 – in left lateral temporal cortex and ad-
jacent supramarginal gyrus (Fig. 3). No areas showed greater global
connectivity for View1.

Note that areas showing global connectivity changes were, to a large
extent, areas that also showed strong intra-subject correlations. As we
Fig. 2. Brain regions that showed similar temporal response profiles across two movie
viewings. Similarity was defined as the correlation between the each voxel's time series
in the first and second viewings.
elaborate in the Discussion, this means that these areas' connectivity
with other brain regions increased from View1 to View2, despite show-
ing similar local activity profiles across the two presentations.

Changes in functional connectivity of perisylvian regions
To better capture the nature of connectivity changes in the

perisylvian cluster where whole-brain connectivity was greater during
View2, we applied a clustering approach that partitioned this cluster
into separate sub-clusters (on the group level). This produced three
sub-regions of interest (see Fig. 4A). The first region encompassed
mainly SMG and postcentral gyrus (PoCG), the second encompassed
middle parts of the superior temporal plane (STP), mainly over the
transverse temporal gyrus (TTG), and the thirdwas centered in amiddle
section of the STS.

We generated awhole-brain connectivitymap for each of these (per
participant, per View) to identify brain areas whose connectivity with
these perisylvian sub-regions changed in View1 vs. View2. For the STS
cluster (see Fig. 4B), we found significantly stronger connectivity during
View2 than View1 in superior central sulcus, parietal operculum,
posterior and anterior STS (regions not included within the seed re-
gion), and extensive midline regions. For the STP cluster, we identified
areas including right premotor, SMA, parahippocampal gyrus, parts of
SMG bilaterally, and posterior cingulate gyrus. For the SMG/PoCG clus-
ter, no clusters survived the threshold.

Relation between global connectivity and intra-subject correlation
We obtained ISC values for each person from the transverse tempo-

ral gyrus, calcarine sulcus and higher-level sensory association areas
and evaluated whether they associated with WGC on the single-voxel
level (seeMaterials andmethods). This analysis revealed interesting re-
lations between the twometrics. As shown in Inline Supplementary Fig.
S1, higher ISC in lower level sensory regions (TTG, CS) was associated
with reduced WGC values in numerous regions, during View1 and
View2, and largely excluding sensory cortices themselves. For CS and
Fig. 3. Brain regions whose mean whole brain connectivity was higher when viewing the
movies for the second time.



Fig. 4. Changes in connectivity structure of lateral temporal cortex during second viewing.
Panel A: Areas which showed stronger connectivity during the second viewing were
partitioned to three separate sub-clusters: a superior cluster bordering SMG and PoCG
(red), a central cluster in the superior temporal plane (STP; yellow) and an inferior
cluster in STS (orange). Panel B: Brain regions that showed significantly stronger
connectivity during View2 than View1 with the STP cluster and with the STS cluster.
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the combined “associations regions” regressor, increased ISC was also
associated with delta-WGC. However, these regions did not overlap
with ones we reported as showing overall stronger WGC in View2
than View1. An examination of scatter plots for the ISC/delta-WGC cor-
relation did not link higher ISC to stronger changes in WGC.

Inline Supplementary Fig. S1 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2016.07.061.

Topological organization of functional connectivity networks

Node degree distribution parameters do not differ
On the single participant level, for both View1 and View2, we found a

good fit using an exponentially truncated power law to model the node
degree distributions. Of three possiblemodel forms (power law, an expo-
nential, and an exponentially truncated power law), we found node de-
gree distributions were best fit by the exponentially truncated model,
with minimum Akaike Information Criteria values. Also, most partici-
pants' individual model fits exceeded an R2 of 0.8 at every edge density
for both View1 and View2. None of the parameter estimates, however,
significantly differed between View1 and View2, at any edge density.

Modularity values and number of modules do not differ
Modularity did not differ significantly between View1 and View2 at

any of the edge-density levels we examined (Inline Supplementary Fig.
S2A;Wilcoxon signed-rank tests; 5%: p=0.45; 10%: p=0.25; 15%: p=
0.17; 20%: p=0.12). On the other hand, the observed Q values differed
from Q values derived from random networks, with matching numbers
of nodes and degrees (Wilcoxon signed-rank tests, all ps b 0.0005).

Inline Supplementary Fig. S2 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2016.07.061.

We also examined whether the number of modules differed
between View1 and View2 (Inline Supplementary Fig. S2B). Again, we
did not find significant differences at any edge-density level (Wilcoxon
signed-rank tests, 5%: p=0.12; 10%: p=0.11; 15%: p=0.71; 20%: p=
0.38). To summarize, node degree distributions and modularity ap-
peared to maintain across View1 and View2, but the network structure
itself was more modular than would be expected by chance.

Two large-scale organizations for two viewings
We generated group-level network partitions reflecting assignment

of voxels tomodules, across participants, for View1 and View2.We gen-
erated these group-level partitions for different density thresholds (see
Materials and methods), but we focus on results obtained at the 15%
density threshold, which best represented the data across densities
(see Group-level modularity representation in the Materials and
methods section, and see Supplemental Materials for a table of similar-
ity metrics and images across the other three density thresholds).

As shown in Fig. 5, despite some similarity in the partition solutions
during View1 and View2, there were important differences. First,
we identified four modules for each viewing, but their composition
changed in meaningful ways between viewings. For View1, we found
a large module comprised of areas commonly implicated in language
processing, including lateral-temporal cortex bilaterally, left IFG,
and anterior aspects of the fusiform gyrus (reaching into the
parahippocampal gyrus). This module's composition was absent in
View2, which instantiated this module solely with inferior temporal
areas, largely in the medial section of the parahippocampal gyrus. In
View2, this “language-related” module seen in View1 largely merged
with DMN areas, which in View1 held as amore typical DMN configura-
tion (Fig. 5, burnt orange in panels A, B).

Areas in lateral occipital cortex, notably themiddle occipital gyri and
right anterior occipital cortex (light green Panel A), including the most
adjacent part of posterior middle temporal gyrus, were present in
View1 in the aforementioned module that also contained lateral
temporal and inferior frontal regions. By contrast, in View2, these
areasmergedwith amodule of areas that included premotor, motor, so-
matosensory, inferior parietal, and primary visual cortex (Fig. 5, maroon
in panels A, B).

Indeed, this largest partition of areas inView2 encompassedmuch of
the premotor, motor, and parietal cortices, including the inferior parie-
tal lobule (except the angular gyri, which remained part of the DMN in
both viewings), intraparietal sulcus, and superior parietal lobule. It also
includes the supplementary motor areas on the medial wall. Again, this
subset included extrastriate visual areas in View2.

Network-arrangement differences
We used two separate approaches to assess divergence between

network arrangements found for View1 and View2. The first (“W-L
similarity”) used a graph kernel approach based on the Weisfeiler-
Lehman test of graph isomorphism. The second examined whether
there is a (larger than chance) connected set of edges that is more
strongly connected in one of the conditions (“difference network”;
Zalesky et al., 2010).

doi:10.1016/j.neuroimage.2016.07.061
doi:10.1016/j.neuroimage.2016.07.061
doi:10.1016/j.neuroimage.2016.07.061
doi:10.1016/j.neuroimage.2016.07.061


Fig. 5. Group-level modularity representations. Panel A: partition structure during View1. Panel B: partition structure during View2. Within each view, each module is represented by a
separate color.Wemaintained colors across views to highlight similarmodules. As can been seen, View1 includes a large module comprising lateral temporal and inferior frontal cortices.
In View2 however, this module merges with what in View1 was a module of default mode regions.
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The graph kernel test indicated that the dissimilarity of networks
structures between View1 and View2 exceeded chance (p b 0.01 see
Inline Supplementary Fig. S3).

Inline Supplementary Fig. S3 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2016.07.061.

The second, “difference network” test identified a large difference
component that consisted of 8432 voxels. Based on permutations, the
probability of finding such a large cluster by chance was well below
1%, p b 0.005. Details of the network features of this “difference net-
work” are shown in Inline Supplementary Fig. S4. The vast majority of
nodes involved in the difference network only had 1 or 2 connections,
and only about 10% of the values exceeded 10. A truncated power law
fit this degree distribution better than a power law (log likelihood
ratio 43.7, p b 0.0001). Moreover, the higher degree valued nodes
(i.e., those more connected in the difference network) dispersed in
areas throughout the brain, including lateral and inferior temporal,
frontal, and posterior medial cortices.

Inline Supplementary Fig. S4 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2016.07.061.

Similarity of within-module connectivity at single node level
After obtaining the optimal partition for each of the two viewings

per participant, we determined, for each voxel, the overlap of its
within-module connectivity cohorts in the two conditions (using the
Jaccard similarity coefficient; see Materials and methods). Because this
procedure was performed after finding an optimal partition, and given
the reliance of the latter on the density use to threshold connectivity
matrices,we computed the Jaccard coefficient for each density separate-
ly but focused on the 15% density threshold as explained above. Fig. 6
shows the resulting map for the 15% density threshold.

As can be seen in Fig. 6, voxels within the DMN tended to maintain
within-module connections across the two viewings (see Andric and
Hasson, 2015 for similar results in a different paradigm). By contrast,
values for lateral temporal cortices, bilaterally, as well as left IFG were
lower. In other words, these language-related areas were ones whose
within-module connections were more susceptible to change between
View1 and View2.

Time in scanner effects

Given that the repeated viewing occurred later in the scanning
session we evaluated a control for Time In Scanner effects that was or-
thogonal to the repetition contrast (see Time In Scanner effects). For
changes in weighted global connectivity (as reported in the
Connectivity strength changes (global connectivity) across viewings
section) we found no effects in cortical regions. For the difference net-
work analysis (as reported in the Topological organization of
functional connectivity networks section) we also found a null effect.
The actual partition structure for the networks created from Blocks 1,
4 and Blocks 3, 6 were highly similar as opposed to what was shown
in the repetition contrast (Fig. 5). However, the results of the within-
module connectivity at the single level did reveal similar results to
that seen in Fig. 6, indicatingmore consistentwithin-module connectiv-
ity in DMN regions than in perisylvian ones.

Discussion

Much recent interest surrounds the relative flexibility of brain
networks to reorganize given stimulus properties or context
(e.g., Alavash et al., 2015; Andric and Hasson, 2015; Bassett et al., 2013,
2011; Moussa et al., 2012). In this study, we examined the strength
and topology of reorganization as a consequence of simply re-watching
audiovisual narratives discussing everyday topics. On the local-level (of
voxels), our functional connectivity analyses showed stronger global
brain connectivity during the second viewing in one large cluster
encompassing several left perisylvian regions. Interestingly, these same
perisylvian regions also showed high similarity in their time series fluc-
tuations across the two viewings. This shows that organization is depen-
dent on spatial scale – during repeated processing certain brain regions
maintain their local response profile, while at the same time substantial-
ly changing their connectivity structure.

On a larger scale – that of the whole brain – we found that re-
viewing induced different clustering partitions of functional connectiv-
ity data. Notably, changes in the clustering of regions within modules
weremost salient in lateral temporal and inferior frontal regions linked
to language processing, and in regions associatedwith biologicalmotion
processing (lateral occipital to posterior temporal pathway). Changes in
connectivity in this latter pathway are likely because of extensive use of
gestures by our narrator. What is important is that those brain regions
most implicated in processing the stimulus did notmaintain their con-
nectivity structure but instead were among the regions that showed
the strongest alteration in connectivity structure. We also found that
the functional networks differed significantly, as quantified by twomea-
sures: the isomorphic dissimilarity of the networks and a voxel-level
index of partition changes across viewings. However, core topological
features, including modularity and node-degree distributions, did not

doi:10.1016/j.neuroimage.2016.07.061
doi:10.1016/j.neuroimage.2016.07.061
doi:10.1016/j.neuroimage.2016.07.061
doi:10.1016/j.neuroimage.2016.07.061


Fig. 6.Voxel-wise Jaccard similarity values. For each voxel, this analysis presents the overlap of the voxel's within-module connectivity sets. Similaritywas strongest in default mode brain
regions, but weaker in lateral temporal regions.
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vary across viewings. This suggests no fundamental reorganization in
the brain's capacity for information transfer between sub-networks.

Thus, perceiving the same content in different contexts – here, a first
and second viewing – inducedmacro-scale reorganization of functional
networks while sustaining highly similar activity patterns at the local
level. In what follows, we discuss these findings in relation to the
existing literature and their implications for future work.

The impact of context on strength of functional connectivity and reliability
of activation

We examined functional connectivity strength with two aims in
mind. First, we sought to identify brain regions whose time series
showed high similarity across the two viewings. Second, we sought to
identify whether (and if so, where) global brain connectivity (Cole
et al., 2010) differed across viewings. As we highlighted in the
Introduction, prior studies have documented similarity in local
responses between repeated stimulus exposures. But whether the
areas showing these local responses can, at the same time, reorganize
in terms of their functional connectivity was unknown.

Using an intra-subject analysis (Golland et al., 2007; Levin and
Uftring, 2001; Uftring and Levin, 2002) we identified extensive parts
of occipital, temporal and frontal cortexwith strong intra-subject corre-
lations across the two viewings on the single voxel level. The spatial
extent of these effects extended beyond low-level sensory cortices, indi-
cating sensitivity to higher-level features of the input across viewings.

At the same time, some of these same regions, particularly within a
large cluster of left perisylvian regions (SMG, STG, mid-STS), showed
higher WGC in the second viewing than in the first. To understand
this increase in correlation strength, we partitioned this large cluster
into sub-regions. We determined three sub-clusters: 1) an STS cluster,
2) a superior temporal plane (STP) cluster, around TTG/TTS, and 3) a
cluster that was predominantly superior to these, in the PoCG and
parietal operculum. This functional subdivision is consistent with that
found in prior work on naturalistic language comprehension (Boldt
et al., 2013).

For each of these sub-clusters we then determined which brain
regions correlated more with it during the second viewing than during
the first. For the STS cluster, in the left hemisphere we found stronger
connectivitywithmotor regions in the central sulcus, amiddle cingulate
region, the PCC, precuneus, the posterior part of the sylvian fissure, the
parietal operculum, and left temporal pole. On the right, stronger
connectivity extended even more, including SMA, precuneus, PCC, the
parahippocampal gyrus, STG, and a large section of STS, while also
including the temporal pole. For the STP clusterwe found fewer regions.
On the left, we identified the middle cingulate cortex. On the right,
stronger connectivity included the precentral gyrus, SMA, and
parahippocampal gyrus. Thus, lateral temporal regions generally
showed greater connectivity to posterior association cortices during
the second viewing.

The stronger connectivity of the left STS regionwith SMG bilaterally,
extensive parts of right STS as well as the temporal poles bilaterally
shows that a repeated viewing produces stronger connectivity between
left STS and core regions linked to language processing. In addition,
stronger connectivity with the right parahippocampal gyrus accompa-
nied this. Taken together, these areas' increased connectivity makes
plausible that prior knowledge of the communicated content allowed
greater synchronization within these language-associated areas. This
could be due to reduced low-level processing related to interpretation
of the speech signal itself.

The STP region also showed stronger connectivity during repeated
viewing but with many regions whose function in language typically
associates with sensory-motor aspects of (sub-lexical) speech process-
ing at the phonetic level. These regions included right precentral
gyrus, left post-central gyrus, right parietal operculum, and primary
and supplementary motor areas in the midline aspect of the brain (see
Skipper et al., 2007 for related findings). Interestingly, prior work
documented stronger connectivity within a similar network, involving
posterior superior temporal, premotor, and M1-S1 areas during imita-
tion than observation of audiovisual syllables in healthy adults
(Mashal et al., 2012). It may be that prior knowledge of the spoken ma-
terials also leads to better coordination between the ‘motor’ (dorsal
stream of speech perception; Hickok and Poeppel, 2007) and ‘auditory’
regions mediating sub-lexical speech perception. This finding is impor-
tant because much of the work on the motor system's involvement in
speech perception derives from assessments of activation magnitude
in different conditions. By contrast, our paradigm relied on temporally
extended observation (listening) conditions, and provides insight
about superior temporal plane connectivity from a unique perspective.

We did not anticipate increased connectivity with the cingulate
cortex, since this region is not typically implicated in language compre-
hension. The section of this region that showed increased connectivity
matches a well-defined anatomical subsection of the cingulate gyrus,
identified via resting state (Yu et al., 2011), DTI and cytoarchitectonic
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studies (Brodmann areas p24a′, p24b′, 24dv, 24dd). Focal activations of
this cingulate sub-region have been linked with processing language
and action information (Torta and Cauda, 2011). Indeed, our stimuli
presented conversational narratives, including the speaker's ongoing
use of co-speech gestures. It may then be that this region plays an im-
portant role in narrative comprehension (Ferstl et al., 2008), perceiving
actions that co-occur in social communication (Mainieri et al., 2013) or
interpersonal communication (Stephens et al., 2010), more generally.
Nonetheless, this region's role in such contexts requires further study.

Finally, we identified several areas where individual differences in
the strength of ISC correlated with WGC during View1 and View2. For
the TTG seed region, increased ISC was associated with decreased
WGC in PCC/Precuneus bilaterally, left MTG and the calcarine sulcus
during View2. For the calcarine seed, we found negative correlations
during View1 in precentral/postcentral gyri bilaterally, and in the
calcarine sulcus itself, meaning that greater calcarine ISC was linked to
reduced connectivity of the region itself. In View2, we also found nega-
tive correlations for PCC/Precuneus.

This link between ISC andWGC in PCC/Precuneus suggests there is a
relationship between externally-oriented (“extrinsic”) computations
and the connectivity of a core node in what has been termed an “Intrin-
sic” system. Taking ISC as an indicator of (passive) monitoring of the
external environment, our finding constitutes a strong, ecologically
valid, indicator that connectivity within the DMN does relate to engage-
ment with external stimuli. This has been shown in prior work by
linking connectivity of the network to task performance demanding
executive function (Hampson et al., 2006; Weissman et al., 2006) or to
correlations with the task-positive network (Kelly et al., 2008). Other
work has linked performance on tasks that demand executive function
to task-induced network reconfiguration (e.g., Alavash et al., 2015;
Bassett et al., 2011). Our manipulation is clearly of a different type, as
participants were not engaged in any overt task that demanded
executive function. We found that parietal regions (both superior and
inferior) showed a relationship between ISC and delta-WGC, with the
modal pattern being higher WGC in View2 for participants with higher
ISC. In fact, this pattern was evident as a trend when observing the
entire-group data (as opposed to a few outlying participants). We
found that participants with highest ISC showed greater WGC in
View2 than in View1 and participants with lowest ISC showed lower
WGC in View2 than in View1. This suggests that individual differences
in how people monitor external stimuli might express themselves as
weighted shifts among connectivity relations rather than outright
differences in the magnitude of change.

The impact of context on network modularity and partition structure

Our analysis of weighted global connectivity and the follow-up
analyses examining differences in correlation strengths (The impact of
context on strength of functional connectivity and reliability of
activation section) are methods for analyzing functional connectivity
that operate at a different scale than analyses based on network
partitioning, and that assess a different aspect of connectivity. For in-
stance, two networks may differ by functional connectivity strength
yet have the exact same partition structure. This could be the case if a
similarity measure (e.g., a correlation coefficient) between each pair of
regions increased by a constant. We thus examined connectivity not
only by its strength of similarity across viewings, but also by its
macro-scale organization via characteristic network partitions.

By considering each voxel as a node in a functional connectivity
network (Andric and Hasson, 2015; Hayasaka and Laurienti, 2010;
Moussa et al., 2012) we derived functional connectivity maps with
high spatial resolution and evaluated their network features using
graph kernel and network difference methods. The graph kernel-
based analysis (Shervashidze et al., 2011) showed above-chance
dissimilarity in a test of the isomorphism between networks, represent-
ed as graphs. Given that the graph kernelwe used quantifies each node's
neighborhood connectivity, this difference means there are systematic
differences in nodes' ‘local’ organizations across viewings. The network
difference analysis (Zalesky et al., 2010) determined a large component
within the difference network between the two viewings, with diffuse
distribution of nodes over the entire cortex. Thus, on these metrics,
the two whole-brain networks were found to differ substantially.

In prior work, we found that contextual manipulations can impact
core topological features of whole brain networks, such as their modu-
larity or node-degree distributions (Andric and Hasson, 2015). But this
was not the case here. Instead, these core metrics held between
viewings. Thus, at least at the level of their abstract topology, the net-
works were comparable. While it is difficult to argue from a null result,
due to the within-subject design, the variance of these parameters
(error bars in Inline Supplementary Fig. S2) was extremely small,
allowing ample power to identify differences in these metrics if they
existed.

At the same time, the spatial organization of the partition structure
differed across viewings. From the perspective of language comprehen-
sion and processing of meaningful biological motion, two notable
differences emerged. First, perisylvian regions associated with language
comprehension (lateral temporal cortex bilaterally and IFG bilaterally)
comprised a distinct module during the first viewing (green, Fig. 5)
but not the second, where they merged into a larger module containing
many association cortices. Furthermore, during the first viewing
this “language” module also included regions associated with a func-
tional pathway through middle occipital, lateral occipito-temporal
(and MT/V5) and adjacent posterior middle temporal cortex. These
latter regions are very often implicated in processing biological motion
and audiovisual speech comprehension (Andric and Small, 2012; Andric
et al., 2013; Bernstein and Liebenthal, 2014; Peigneux et al., 2000). In
the second viewing, however, these regions also diverged into different
modules. Notably, rightmiddle occipital gyrus and anterior occipital sul-
cus shifted from clustering with “language” regions into a cluster with
primary occipital cortex, inclusive also with motor, somatosensory,
and parietal cortices (maroon, Fig. 5). To summarize, higher-level audi-
tory and association cortices linked to biological motion processing did
not maintain their modular structure, merging into larger modules on
the second viewing.

Such shifts in the grouping of regions within modules were not the
rule. For instance, large parts of cortex recognized as part of the default
mode network (DMN; IPL, SGF, PCC/Precuneus, ACC and inferior tempo-
ral cortices) were assigned to a single module in both viewings (burnt
orange, Fig. 5). Likewise, most of motor and somatosensory cortices
(both laterally and medially), as well as medial occipital cortices,
maintained a module identity across viewings.

We also examined the impact of module partition reorganization
(across viewings) at a voxel-level resolution. For each voxel, we quanti-
fied the similarity of its within-module cohort across the two viewings.
The group-level result showed that voxels in the DMN, as a whole,
maintained the highest proportion of their within-module cohort,
whereas lateral temporal regions exhibited much lower values (Fig. 6;
see Andric and Hasson, 2015 for similar findings). This sort of heteroge-
neity in stability of functional connectivity with context corroborates
prior work (Mennes et al., 2013) that found that DMN regions tended
to maintain their connectivity patterns under different tasks, and that
sensory cortices were more likely to change these patterns. Changes in
within-module connectivity were also found for lateral occipital-
temporal areas, as well as the medial occipital cortex (Fig. 6). The latter
result is notable because it provides a point of possible differentiation
from the group-level modularity solutions. Recall that medial occipital
cortex, including V1, showed a common clustering across the two
viewings (Fig. 5). However, the results of this voxel-level analysis indi-
cate, even within that region, voxels tended to substantially shift their
within-module connectivity pattern. We note that similar progressions
of shifts in connectivitywere also identified in the Time in Scanner anal-
ysis, though the latter analysis revealed null effects for the other tests
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used in this study. This may suggest that the result of consistency at the
single-node level reflects a mixture of time-in-scanner and repetition
effects.

It is interesting that all these changes occurred with no observable
changes to the actual topological features of the network (modularity,
module number, parameters of node degree distributions). This demon-
strates that even though the latter indicate information transfer
capacity in a given network (Rubinov and Sporns, 2010), it is possible
that they can maintain their values across conditions in tandem with
large-scale changes in partition structure (of the sort documented
here). In this respect, our findings are consistent with prior work by
Moussa et al. (2011) that comparedmodular arrangement of functional
networks during viewing of audiovisual movies and during rest. They
reported thatmovie viewing did not significantly impact themagnitude
of any whole brain topological network metric as compared to rest. Yet
it did impact the structure of modules that contained primary auditory
cortex proper (TTG, TTS): during the resting state, auditory cortex re-
gions clustered in a module that contained somatosensory cortices
bilaterally, whereas during multisensory stimulation auditory regions
clustered in a module confined to bilateral lateral temporal cortices.
The manipulation we used here is different, as it did not manipulate
stimulus features, presenting the exact same sensory information. This
shows that sensory features are not the only potential mediator of
such organizational effects. Macro-scale network flexibility can also de-
rive from higher-level manipulations (Spreng et al., 2010; Vatansever
et al., 2015).

Overall, the network-partitioning procedures showed that
reviewing an audiovisual narrative introduces macro-scale changes
in the structure of network partitions. At the same time, the distribu-
tion of these changes was far from uniform across the brain. Bilateral
temporal and inferior frontal regions showed relative inconsistency
in their within-module connectivity. By contrast, DMN regions
showed a much higher consistency. This dissociation between rela-
tively stable DMN connectivity on the one hand and relatively insta-
ble lateral temporal and inferior frontal regions on the other is
similar to what we previously found in examining connectivity dur-
ing listening to auditory tonal series that differ in regularity (Andric
and Hasson, 2015). It suggests a general capacity for reorganization
of connectivity in perisylvian regions. The relative stability (lower
instability) of DMN connectivity here, however, does not mean it is
unperturbed by task or executive demands. For instance, Alavash
et al. (2016) identified differing PCC modular-connectivity to other
brain areas under visuo-spatial and speech identification dual-
tasks, whereas Lin et al. (2016) found this area's degree during rest
associated with later visual task performance. But in the current pas-
sive perception task, nodes within this network showed more sys-
tematic connectivity profiles.

Implications for context-dependent connectivity of lateral temporal and
inferior frontal regions

The relative flexibility of functional (and structural) connectivity in
the human brain is a matter of ongoing research and emerging debate
(see Andric and Hasson, 2015; Hasson et al., 2016 for detailed discus-
sion). Our results highlight the relative flexibility for network-level
reorganization in lateral temporal and inferior frontal regions, in the
context of language comprehension. This flexibility is likely because
these regions are involved in much more than simply coding for
phonetic, syllabic or semantic information communicated by language.
Language relies on diverse cognitive processes. These include control
(Fedorenko, 2014), mentalizing about the beliefs of others (Gallagher
and Frith, 2003; Gallagher et al., 2000; Mar, 2011), interfaces with sen-
sorimotor systems (Arbib, 2005; Pulvermüller, 2005; Rizzolatti and
Arbib, 1998) as well as memory retrieval (Gerrig and McKoon, 2001)
and memory encoding (Hasson et al., 2007). There have also been
multiple demonstrations of co-activation between lateral temporal
and inferior frontal regions with other functional networks (see
Hasson and Egidi, 2015 for discussion). Thus, our findings support that
notion that even though frontal and lateral-temporal regions form a
neuroanatomical network (Dick and Tremblay, 2012; Friederici, 2009),
these anatomical connectionsdonot constrain substantial functional re-
organization of these regions' connectivity.

As mentioned in the Introduction, areas implicated in language
comprehension can modulate their connectivity with other brain re-
gions based on input familiarity (Müller et al., 2013; Wilkins et al.,
2014), input regularity (Andric and Hasson, 2015) or a story's content
(Chow et al., 2014). Our study highlights that such reorganization of
lateral-temporal regions is scale dependent, showing three comple-
mentary features: i) maintenance of nodal (single-voxel) time series
features, ii) while accompanied by local connectivity changes in
perisylvian regions (of the left hemisphere) and iii) macro-scale modu-
lar reorganization at the whole brain level.

With respect to the notion of a fixed language network, the organi-
zational flexibility we identified for lateral temporal and inferior frontal
regions raises a question about the extent towhich the neuroanatomical
connections between these regions actually constrain functional
connectivity patterns during online processing. Put differently: how
useful is it to talk about “a language network” in a functional sense, if
the regions that comprise that network show transient organization
during language comprehension? Certainly, these regions exhibit a
strong tendency for co-activation and clustering (as we showed in the
first viewing). But their connectivity with the rest of the brain is none-
theless strongly context dependent, as evident in our network-level
analyses: they change their mean connectivity strength vs. other brain
regions, as well as their clustering within specific modules.

Finally, our findings highlight the strong manner in which different
analytic methods can shed different sorts of light on language process-
ing. Methods such as intra-subject correlation capture a “local,” univar-
iate, similarity metric, and given that it is aimed at capturing significant
similarity in activity for an external input (across viewings) it is a short
step to speak about these brain regions as involved in bottom-up
processing of an input. However, multivariate analyses, based on
pairwise connectivity or network partitioning, address network organi-
zations that can still differ across contexts/conditions, even when the
local activity in some nodes does not change with context or repetition.
This could indicate, e.g., different organization of efferent or afferent
connectivity of these nodes. The network-level changes we described
in the current study might be due to memory recall processes
and top-down interventions. By any means, these changes in network
organization found for lateral-temporal regions and low-level sensory
regions indicate that these are not operating under a strict, “informa-
tionally encapsulated” regime. This suggests that future work quantify-
ing context-dependent responses may gain much insight from the use
of complex network measures, in addition to more typical univariate
approaches.

The role of prior knowledge in organizing brain activity

In the current study, we found a relativelyweak role for systems that
have been previously implicated in bridging online language compre-
hension and long-term knowledge. In View2, participants again
watched narratives they had just seen. The narrative content was thus
already familiar, so systems implicated in integration of long-term
knowledge in the context of language comprehension could have
been expected to play a larger role. For instance, prior knowledge of a
content domain has been linked with weaker connectivity between
vmPFC and the hippocampus during encoding (van Kesteren et al.,
2010), and more generally, vmPFC has been linked to application of
schema-based information (Ghosh and Gilboa, 2014). In addition,
several paradigms have examined the integration of sentence-level in-
formation given thepresence or absence of disambiguating information.
Interestingly, these studies have typically implicated the DMN as being
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involved in more fluent information integration, seen in higher activity
or connectivity when sentences are presented in a disambiguated
context (Ames et al., 2015; Martín-Loeches et al., 2008; Smirnov et al.,
2014). But our effects here differ from those. We found stronger evi-
dence for mean connectivity change (and within module connectiv-
ity arrangement) for lateral temporal regions than for the DMN or
vmPFV.

One possibility is that complete stimulus repetition of the sort we
used, especially within a short temporal interval such as the one
implemented here, simply does not necessitate reliance on long-term
memory systems to aid comprehension. As opposed to the manipula-
tions used in the aforementioned studies, our stimuli were simple and
easily understood from the outset. They did not rely on details already
established during the first viewing. Furthermore, cognitive psycholo-
gists have long noted that the relative impact of long-term knowledge
on re-experiencing a narrative is more limited than one might expect,
leading to phenomenon such as anomalous suspense (where individ-
uals enjoy watching suspenseful movies whose ending they already
know). Gerrig (1997) suggested that this anomaly “does not rely on
accidental retrieval failure. Rather, it reflects a systematic failure of
memory processes to produce relevant knowledge as a narrative
unfolds”. This cognitive account still requires investigation at a neurobi-
ological level. But it suggests circumstances, be they due to an enjoy-
ment of suspense or other reasons, in which there is a disconnect
between systems involved in ‘local’ textual parsing, e.g., of a single
sentence, and those of long-term memory.
Limitations and future directions

A limitation of the current work was the relative sparseness of the
behavioral data, which due to a relatively limited range may have
limited our ability to link changes in connectivity to a direct measure
of comprehension. Nonetheless, ISC, due to its definition, may be an
alternative, implicit measure of a person's monitoring of exogenous
stimuli, and future work may be able to directly link ISC to indices of
explicit behavior. In addition, our current study only touched on the
multitude of approaches for characterizing contextual effects on
network reconfiguration. The degree to which specific nodes maintain
allegiance within the same module (flexibility; e.g., Bassett et al.,
2011) could be used to characterize change, as could methods for char-
acterizing reorganization at the “mid-level” of modules, for instance,
characterizing similarity in nodal composition of modules across
contexts (e.g., Alavash et al., 2015). An additional single-voxel metric
that could be evaluated in futurework is characterizing the connectivity
change of each node in terms of movement within the 2-Dimensional
space defined by Guimera and Amaral (2005), based on inter- and
intra-module connections and movement within this space across
tasks or in relation to individual differences.

We studied functional connectivity patterns that reflect three types
of processes. First, some synchronization, such as that between bilateral
auditory cortices, may reflect a relatively direct result of sensitivity to
sensory-driven features. A second form of synchronicity may reflect
higher level processing of the stimulus features that does not track
any specific low-level feature, and may be relatively weakly time-
locked. (These two types define ‘externally oriented’ systems; cf.
Golland et al., 2007.) Finally, some synchronization may reflect connec-
tivity in systems that are completely stimulus-independent (“intrin-
sic”). Because we did not use a task-based design we did not attempt
to partial-out from the signal the impact of the external sensory driver.
In this sense, our work differs from prior studies that used task-based
design and sought to remove the direct impact of task on connectivity
prior to such analyses (e.g., Alavash et al., 2015). Future work with
naturalistic stimuli could consider including as regressors time-series
sampled from low-level sensory regions (as a proxy for the timeline of
external stimulation),
Summary

We find that brain activity reorganizes when people process the
same audiovisual narratives a second time. This reorganization exhibits
complexity, evident at multiple spatial scales. At the most local level,
occipital and temporal brain systems involved in sensory processing
maintain a similar temporal activation profile. Pairwise interactions at
this level, however, already show connectivity strength changes in left
temporal areas. At the level of the whole brain, there is rearrangement
of modular structure, with lateral temporal and inferior frontal regions
showing strong shifts in their within-module connectivity. In this way,
our findings show that repetition associates with diverse network-
level connectivity changes on multiple scales, including those regions
considered core to language processing.
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