Toward a More Tactile Future: Learning from Protactile DeafBlind Communities*

- Diane Brentari, Department of Linguistics, University of Chicago
- Terra Edwards, Department of Sociology & Anthropology, Saint Louis University
- Jenna Gorlewicz, College of Engineering & Aviation Technology, Saint Louis University
- Moderator: Richard Ladner, School of Computer Science & Engineering, University of Washington

*This presentation reports findings of a pilot study, which has since been funded by the National Science Foundation

*Photo credit: Windell “Wink” Smith and Gallaudet Department of Linguistics
John Lee Clark
Award-winning author and leader of the protactile movement

Jelica B. Nuccio
Founder of “Tactile Communications” and leader of the protactile movement

aj granda
Artist, educator, and leader of the protactile movement
Feeling Phonology:
Proprioceptive Constructions in Protactile Sign Language

Diane Brentari
Mary K. Werkman Professor of Linguistics
Director, Center for Gesture, Sign & Language
Linguistics Department
University of Chicago

Terra Edwards
Assistant Professor
St. Louis University

*This presentation reports findings of a pilot study, which has since been funded by the National Science Foundation

*Photo credit: Windell “Wink” Smith and Gallaudet Department of Linguistics
“Tactile Sign Languages”

Tactile Reception of Visual Language

Tactile [name of visual SL] (Willoughby et al. 2018)

Tactile ASL

Language that maximizes the tactile modality

Protactile Language
Affordances of proprioception in language?

Phonology
- The physical dimension of structure
- Consonants
- Vowels
- Handshapes
- Movements

Syntax-semantics
- Order
 - *this book* or *book this*
- Meanings
 - Substantive meaning
 - House, book
 - Functional meaning
 - Tense, aspect
How Can Language Maximize the Tactile Modality?
“Air Space”

(Granda & Nuccio 2018)
“Contact Space”
(Granda & Nuccio 2018)
Adding Sensory Channels

- Tactile signing
- Protactile Language

touch

proprioception
Consequences of adding sensory channels

- **4 hands + 2 bodies**: There is more material from which phonological principles can be initiated

- **Two people are needed**: One person cannot produce PT signs alone. There must be effective and efficient ways of requesting Signer 2’s participation & coordinating with Signer 1 in articulation of signs

- **Vision is backgrounded; Proprioception/Tactile senses are foregrounded**: Units for constructing signs must be distinguishable from one another (a) against a proprioceptive backdrop, and (b) according to tactile/proprioceptive criteria for distinctiveness
Hypothesis

• The structures and functions align in grammatical ways that are different from ASL.

• In other words, PT signers know what to do with their hands and arms, and when.
Stimuli
Methods

Pilot Study: Data collected in 2016

Participants:

Protactile (PT) DeafBlind signers: 3 males and 3 females, ages 32-47

Procedure:

Asked PT signers to explore tactile stimuli and “describe what they feel”

Transcription:

Created a tier for each articulator, identified tasks performed by each one
Articulators

H1: Dominant hand of Signer 1
H2: Dominant hand of Signer 2
H3: Non-dominant hand of Signer 1
H4: Non-dominant hand of Signer 2
The temporal periods of the PC:

1. INITIATE (I)
2. Proprioceptive Object (PO)
3. PROMPT TO CONTINUE (PtC)
4. MOVEMENT CONTACT (MC)
PC: Cylinder

Initiate

Touch

Grasp

Prompt

TAP

PO

Proprioceptive

Object

→

Plane

Incline

Sphere

Cylinder

→

Prompt

To continue

Hold

→

Movement/Contact

Type

Trace

Grip

Twist

Wiggle

Slide

Penetration

Tap

Slap

Press

Scratch

Move

H1 (H3)

H2 (H4)

H3 (H1)

H3, H1

H1 (H3)

Individuated Objects
Penetrable Surface
INITIATE-PROMPT-PO [H1]

PO-SHHERE [H2]

PROMPT TO CONTINUE- HOLD [H3]

MOVEMENT CONTACT-GRIP [H1]
PC: Sphere

Initiate

Touch

Grasp

Prompt

PO

TAP

H3, H1

Proprioceptive Object

Plane

Incline

Sphere

Cylinder

Individuated Objects

Penetrable Surface

Prompt

To continue

Hold

H2 (H4)

H3 (H1)

Movement/Contact Type

Trace

Grip

Twist

Wiggle

Slide

Slide

Penetration

Tap

Slap

Press

Scratch

Press

Move

H1 (H3)
Lexico-Grammatical Units Assigned to Articulatory Structures

- **Initiate**
 - H1: 61%
 - H3: 39%

- **PO**
 - H2: 88%
 - H4: 12%

- **PTC**
 - H1: 78%
 - H3: 22%

- **MC**
 - H1: 80%
 - H3: 20%
DeafBlind Tactile ASL Signer
Findings

• PT assigns meaningful roles to 4 articulatory structures in a conventional, rule-governed way.

• The order and form of units in a proprioceptive construction are subject to well-formedness constraints:
 • Constraint on order
 • Redundancy rule

• The functions, articulators, and their associations are different from those of ASL.
Conclusions

• In approximately 10 years, principles of constituent order, redundancy and overall well-formedness in PT have been established that maximize the tactile modality in ways that Tactile ASL does not.

• This provides new insights into how new phonological systems in the tactile modality can conventionalize.

• These are some of the first grammatical rules that have been documented for PT.