Game Theory I
A Strategic Situation
(due to Ben Polak)

<table>
<thead>
<tr>
<th></th>
<th>(\alpha)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>B-, B-</td>
<td>A, C</td>
</tr>
<tr>
<td>(\beta)</td>
<td>C, A</td>
<td>A-, A-</td>
</tr>
</tbody>
</table>

Player 1

Player 2
Selfish Students

No matter what Selfish 2 does, Selfish 1 wants to choose α (and vice versa).

(α, α) is a sensible prediction for what will happen.

<table>
<thead>
<tr>
<th></th>
<th>Selfish 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1, 1</td>
<td>3, 0</td>
</tr>
<tr>
<td>β</td>
<td>0, 3</td>
<td>2, 2</td>
</tr>
</tbody>
</table>
No matter what Selfish 2 does, Selfish 1 wants to choose α (and vice versa)
SELFISH STUDENTS

<table>
<thead>
<tr>
<th></th>
<th>Selfish 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>β</td>
</tr>
<tr>
<td>α</td>
<td>1, 1</td>
</tr>
<tr>
<td>β</td>
<td>0, 3</td>
</tr>
</tbody>
</table>

- No matter what Selfish 2 does, Selfish 1 wants to choose α (and vice versa).
- (α, α) is a sensible prediction for what will happen.
Nice Students

Each nice student wants to match the behavior of the other nice student: (α, α) or (β, β) seem sensible.

We need to know what people think about each other’s behavior to have a prediction.
Each nice student wants to match the behavior of the other nice student
Each nice student wants to match the behavior of the other nice student

(α, α) or (β, β) seem sensible.
Nice Students

Each nice student wants to match the behavior of the other nice student

- \((\alpha, \alpha)\) or \((\beta, \beta)\) seem sensible.

- We need to know what people think about each other’s behavior to have a prediction
Selfish vs. Nice

Nice

\[
\begin{array}{c|cc}
\text{Selfish} & \alpha & \beta \\
\hline
\alpha & 1, 2 & 3, 0 \\
\beta & 0, 1 & 2, 3 \\
\end{array}
\]
Selfish vs. Nice

<table>
<thead>
<tr>
<th></th>
<th>Nice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selfish</td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>1, 2</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0, 1</td>
</tr>
</tbody>
</table>

- Nice wants to match what Selfish does
Selfish vs. Nice

<table>
<thead>
<tr>
<th></th>
<th>Nice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\alpha)</td>
</tr>
<tr>
<td>Selfish</td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>1, 2</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0, 1</td>
</tr>
</tbody>
</table>

- Nice wants to match what Selfish does
- No matter what Nice does, Selfish wants to play \(\alpha\)
Selfish vs. Nice

Nice

\[
\begin{array}{ccc}
\text{Selfish} & \alpha & \beta \\
\alpha & 1, 2 & 3, 0 \\
\beta & 0, 1 & 2, 3 \\
\end{array}
\]

- Nice wants to match what Selfish does
- No matter what Nice does, Selfish wants to play \(\alpha \)
- If Nice can think one step about Selfish, she should realize she should play \(\alpha \)
Selfish vs. Nice

<table>
<thead>
<tr>
<th></th>
<th>(\alpha)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>1, 2</td>
<td>3, 0</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0, 1</td>
<td>2, 3</td>
</tr>
</tbody>
</table>

- Nice wants to match what Selfish does
- No matter what Nice does, Selfish wants to play \(\alpha\)
- If Nice can think one step about Selfish, she should realize she should play \(\alpha\)
- \((\alpha, \alpha)\) seems the sensible prediction
OUTLINE

STRATEGIC FORM GAMES

SOLVING A GAME: NASH EQUILIBRIUM
COMPONENTS OF A GAME

Players: Who is involved?

Strategies: What can they do?

Payoffs: What do they want?
Chicken

<table>
<thead>
<tr>
<th></th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Player 1</td>
<td>Straight</td>
</tr>
<tr>
<td>Straight</td>
<td>0, 0</td>
</tr>
<tr>
<td>Swerve</td>
<td>1, 3</td>
</tr>
</tbody>
</table>
Choosing a Restaurant

<table>
<thead>
<tr>
<th></th>
<th>Rebecca</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>4, 3</td>
</tr>
<tr>
<td>V</td>
<td>0, 0</td>
</tr>
</tbody>
</table>
Working in a Team

2 players

Player i chooses effort $s_i \geq 0$

Jointly produce a product. Each enjoys an amount

$$\pi(s_1, s_2) = s_1 + s_2 + \frac{s_1 \times s_2}{2}$$

Cost of effort is s_i^2

$$u_i(s_1, s_2) = \pi(s_1, s_2) - s_i^2$$
Player 1’s payoffs as a function of each player’s strategy

\[u_1(s_1, 6) \]
\[u_1(s_1, 3) \]
\[u_1(s_1, 0.5) \]
Demand Bargaining

N players

Each player “demands” a real number in $[0, 10]$

If the demands sum to 10 or less, each player’s payoff is her bid

Otherwise players’ payoffs are 0
Outline

Strategic Form Games

Solving a Game: Nash Equilibrium
Nash Equilibrium

A strategy profile where no individual has a unilateral incentive to change her behavior

Before we talk about why this is our central solution concept, let’s formalize it
Notation

Player i’s strategy

- s_i

Set of all possible strategies for Player i

- S_i

Strategy profile (one strategy for each player)

- $s = (s_1, s_2, \ldots, s_N)$

Strategy profile for all players except i

- $s_{-i} = (s_1, s_2, \ldots, s_{i-1}, s_{i+1}, \ldots, s_N)$

Different notation for strategy profile

- $s = (s_i, s_{-i})$
Selfish Students

\[S_i = \{\alpha, \beta\} \]

4 strategy profiles: \((\alpha, \alpha), (\alpha, \beta), (\beta, \alpha), (\beta, \beta)\)
CHICKEN

\[
\begin{array}{cc|cc}
\text{Player 1} & \text{Player 2} & \text{Straight} & \text{Swerve} \\
\hline
\text{Straight} & 0, 0 & 3, 1 \\
\text{Swerve} & 1, 3 & 2, 2 \\
\end{array}
\]

\[S_i = \{\text{Straight, Swerve}\}\]

4 strategy profiles: (Straight, Straight), (Straight, Swerve), (Swerve, Straight), (Swerve, Swerve)
Choosing a Restaurant

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>4,3</td>
<td>1,1</td>
</tr>
<tr>
<td>V</td>
<td>0,0</td>
<td>3,4</td>
</tr>
</tbody>
</table>

$S_E = ?$ \quad S_R = ?$

Strategy profiles: ?
Demand Bargaining with 3 Players

$S_i = [0, 10]$
- Player i can choose any real number between 0 and 10

$s = (s_1 = 1, s_2 = 4, s_3 = 7) = (1, 4, 7)$
- An example of a strategy profile

$s_{-2} = (1, 7)$
- Same strategy profile, with player 2’s strategy omitted

$s = (s_{-2}, s_2) = ((1, 7), 4)$
- Reconstructing the strategy profile
Notating Payoffs

Players’ payoffs are defined over strategy profiles

- A strategy profile implies an outcome of the game

Player i’s payoff from the strategy profile s is

$$u_i(s)$$

Player i’s payoff if she chooses s_i and others play as in s_{-i}

$$u_i(s_i, s_{-i})$$
Nash Equilibrium

Consider a game with N players. A strategy profile $s^* = (s_1^*, s_2^*, \ldots, s_N^*)$ is a Nash equilibrium of the game if, for every player i

$$u_i(s_i^*, s_{-i}^*) \geq u_i(s_i', s_{-i}^*)$$

for all $s_i' \in S_i$
A strategy, s_i, is a best response by Player i to a profile of strategies for all other players, s_{-i}, if

$$u_i(s_i, s_{-i}) \geq u_i(s'_i, s_{-i})$$

for all $s'_i \in S_i$
Best Response Correspondence

Player i’s **best response correspondence**, BR_i, is a mapping from strategies for all players other than i into subsets of S_i satisfying the following condition:

- For each s_{-i}, the mapping yields a set of strategies for Player i, $\text{BR}_i(s_{-i})$, such that s_i is in $\text{BR}_i(s_{-i})$ if and only if s_i is a best response to s_{-i}.
An Equivalent Definition of NE

Consider a game with N players. A strategy profile $s^* = (s_1^*, s_2^*, \ldots, s_N^*)$ is a **Nash equilibrium** of the game if s_i^* is a best response to s_{-i}^* for each $i = 1, 2, \ldots, N$.

Selfish vs. Nice

<table>
<thead>
<tr>
<th></th>
<th>Nice</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Selfish</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>1, 2</td>
<td>3, 0</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0, 1</td>
<td>2, 3</td>
</tr>
</tbody>
</table>
SELFISH vs. NICE

<table>
<thead>
<tr>
<th>Selfish</th>
<th>Nice</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>(\alpha)</td>
</tr>
<tr>
<td>1, 2 (\checkmark)</td>
<td>3, 0</td>
</tr>
<tr>
<td>0, 1</td>
<td>2, 3</td>
</tr>
</tbody>
</table>
Selfish vs. Nice

<table>
<thead>
<tr>
<th></th>
<th>Nice</th>
<th>Selfish</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1(\checkmark), 2</td>
<td>3(\checkmark), 0</td>
</tr>
<tr>
<td>β</td>
<td>0, 1</td>
<td>2, 3</td>
</tr>
</tbody>
</table>
Selfish vs. Nice

<table>
<thead>
<tr>
<th></th>
<th>Nice</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Selfish</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>$1^\checkmark, 2^\checkmark$</td>
<td>$3^\checkmark, 0$</td>
</tr>
<tr>
<td>β</td>
<td>$0, 1$</td>
<td>$2, 3$</td>
</tr>
</tbody>
</table>
Selfish vs. Nice

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selfish</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>1✓, 2✓</td>
<td>3✓, 0</td>
</tr>
<tr>
<td>β</td>
<td>0, 1</td>
<td>2, 3✓</td>
</tr>
</tbody>
</table>
Selfish vs. Nice

<table>
<thead>
<tr>
<th></th>
<th>Nice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selfish</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>$1^\checkmark,2^\checkmark$</td>
</tr>
<tr>
<td>β</td>
<td>$0,1$</td>
</tr>
</tbody>
</table>
Chicken

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Straight</th>
<th>Swerve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Player 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Straight</td>
<td>0, 0</td>
<td>3, 1</td>
</tr>
<tr>
<td>Swerve</td>
<td>1, 3</td>
<td>2, 2</td>
</tr>
</tbody>
</table>
Chicken

Player 1

Straight

Swerve

Player 2

Straight

0, 0

3, 1

Swerve

1, 3

2, 2
Chicken

Player 1

<table>
<thead>
<tr>
<th>Straight</th>
<th>0, 0</th>
<th>1, 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swerve</td>
<td>3, 1</td>
<td>2, 2</td>
</tr>
</tbody>
</table>

Player 2

Swerve
Chicken

<table>
<thead>
<tr>
<th></th>
<th>Player 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Straight</td>
<td>Swerve</td>
</tr>
<tr>
<td>Player 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Straight</td>
<td>0, 0</td>
<td>3(\checkmark) , 1(\checkmark)</td>
</tr>
<tr>
<td>Swerve</td>
<td>1(\checkmark) , 3</td>
<td>2, 2</td>
</tr>
</tbody>
</table>
Chicken

<table>
<thead>
<tr>
<th></th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 0</td>
<td>3✓, 1✓</td>
</tr>
<tr>
<td>1✓, 3✓</td>
<td>2, 2</td>
</tr>
</tbody>
</table>

Player 1

<table>
<thead>
<tr>
<th>Straight</th>
<th>Swerve</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 0</td>
<td>3✓, 1✓</td>
</tr>
<tr>
<td>1✓, 3✓</td>
<td>2, 2</td>
</tr>
<tr>
<td></td>
<td>Straight</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>Player 1</td>
<td></td>
</tr>
<tr>
<td>Straight</td>
<td>0, 0</td>
</tr>
<tr>
<td>Swerve</td>
<td>1✓, 3✓</td>
</tr>
</tbody>
</table>

Chicken
You Solve Choosing a Restaurant

<table>
<thead>
<tr>
<th></th>
<th>Rebecca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethan</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>P</td>
<td>4, 3</td>
</tr>
<tr>
<td>V</td>
<td>0, 0</td>
</tr>
</tbody>
</table>
Another Practice Game

<table>
<thead>
<tr>
<th></th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>10, 2</td>
</tr>
<tr>
<td>R</td>
<td>3, 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Player 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>10, 2</td>
</tr>
<tr>
<td>D</td>
<td>-1, 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Player 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>5, 7</td>
</tr>
</tbody>
</table>
WORKING IN A TEAM

\[u_1(s_1, s_2) = \pi(s_1, s_2) - s_1^2 = s_1 + s_2 + \frac{s_1 s_2}{2} - s_1^2 \]

Find Player i’s best response by maximizing for each \(s_2 \)

\[\frac{\partial u_1(s_1, s_2)}{\partial s_1} = 1 + \frac{s_2}{2} - 2s_1 \]
Working in a Team

\[u_1(s_1, s_2) = \pi(s_1, s_2) - s_1^2 = s_1 + s_2 + \frac{s_1s_2}{2} - s_1^2 \]

Find Player \(i \)’s best response by maximizing for each \(s_2 \)

\[\frac{\partial u_1(s_1, s_2)}{\partial s_1} = 1 + \frac{s_2}{2} - 2s_1 \]

First-order condition sets this equal to 0 to get \(BR_1(s_2) \)

\[1 + \frac{s_2}{2} - 2 BR_1(s_2) = 0 \]
Working in a Team

\[u_1(s_1, s_2) = \pi(s_1, s_2) - s_1^2 = s_1 + s_2 + \frac{s_1s_2}{2} - s_1^2 \]

Find Player \(i \)'s best response by maximizing for each \(s_2 \)

\[\frac{\partial u_1(s_1, s_2)}{\partial s_1} = 1 + \frac{s_2}{2} - 2s_1 \]

First-order condition sets this equal to 0 to get \(BR_1(s_2) \)

\[1 + \frac{s_2}{2} - 2 BR_1(s_2) = 0 \]

\[BR_1(s_2) = \frac{1}{2} + \frac{s_2}{4} \]

\[BR_2(s_1) = \frac{1}{2} + \frac{s_1}{4} \]
Player 1’s Best Response

utility

$u_1(s_1, 6)$

$u_1(s_1, 3)$

$u_1(s_1, 0.5)$

$BR_1(0.5)$ $BR_1(3)$ $BR_1(6)$ s_1
Nash Equilibrium

\[BR_1(s_2) = \frac{1}{2} + \frac{s_2}{4} \]

\[BR_2(s_1) = \frac{1}{2} + \frac{s_1}{4} \]
SOLVING FOR NE

Since best responses are unique, a NE is a profile, \((s_1^*, s_2^*)\) satisfying

\[
s_1^* = BR_1(s_2^*) = \frac{1}{2} + \frac{s_2^*}{4} \quad s_2^* = BR_2(s_1^*) = \frac{1}{2} + \frac{s_1^*}{4}
\]

Substituting

\[
s_1^* = \frac{1}{2} + \frac{1}{2} + \frac{s_1^*}{4}
\]

\[
s_1^* = \frac{3}{2} + \frac{s_1^*}{4}
\]

\[
s_1^* = \frac{3}{2} + \frac{3}{2} = \frac{6}{2} = 3
\]

\[
s_1^* = \frac{3}{3} \quad s_2^* = \frac{3}{3}
\]
2 players

Each player, i, chooses a real number s_i

There is a benefit of value 1 to be divided between the players

At a strategy profile (s_i, s_{-i}), Player i wins a share

$$\frac{s_i}{s_i + s_{-i}}$$

The cost of s_i is s_i
Solving

Write down Player 1’s payoff from \((s_1, s_2)\)

\[u_1(s_1, s_2) = s_1 s_1 + s_2 \times 1 - s_1 = s_2 (s_1 + s_2) - 1 = 0 \]

Set equal to zero to maximize

\[\text{BR}_1(s_2) = \sqrt{s_2 - s_2^{3/8}} \]
Solving

Write down Player 1’s payoff from \((s_1, s_2)\)

\[
u_1(s_1, s_2) = \frac{s_1}{s_1 + s_2} \times 1 - s_1
\]
SOLVING

Write down Player 1’s payoff from \((s_1, s_2)\)

\[
 u_1(s_1, s_2) = \frac{s_1}{s_1 + s_2} \times 1 - s_1
\]

Calculate Player 1’s best response correspondence
Solving

Write down Player 1’s payoff from \((s_1, s_2)\)

\[
 u_1(s_1, s_2) = \frac{s_1}{s_1 + s_2} \times 1 - s_1
\]

Calculate Player 1’s best response correspondence

\[
 \frac{\partial u_1(s_1, s_2)}{\partial s_1} = \frac{s_1 + s_2 - s_1}{(s_1 + s_2)^2} \times 1 - 1 = \frac{s_2}{(s_1 + s_2)^2} - 1
\]

Set equal to zero to maximize

\[
 \frac{s_2}{(BR_1(s_2) + s_2)^2} - 1 = 0 \Rightarrow BR_1(s_2) = \sqrt{s_2} - s_2
\]
Solving

Player 2 is symmetric to Player 1, so write down both players’ best response correspondences
Player 2 is symmetric to Player 1, so write down both players’ best response correspondences

\[\text{BR}_1(s_2) = \sqrt{s_2} - s_2 \quad \text{BR}_2(s_1) = \sqrt{s_1} - s_1 \]
Player 2 is symmetric to Player 1, so write down both players’ best response correspondences

\[\text{BR}_1(s_2) = \sqrt{s_2} - s_2 \quad \text{BR}_2(s_1) = \sqrt{s_1} - s_1 \]

At a NE each player is playing a best response to the other. Write down two equations that characterize equilibrium.
Player 2 is symmetric to Player 1, so write down both players’ best response correspondences

\[\text{BR}_1(s_2) = \sqrt{s_2^* - s_2} \quad \text{BR}_2(s_1) = \sqrt{s_1^* - s_1} \]

At a NE each player is playing a best response to the other. Write down two equations that characterize equilibrium.

\[s_1^* = \sqrt{s_2^* - s_2^*} \quad s_2^* = \sqrt{s_1^* - s_1^*} \]
Solving

\[s_1^* = \sqrt{s_2^* - s_2^*} \quad s_2^* = \sqrt{s_1^* - s_1^*} \]

Use substitution to find Player 1’s equilibrium action
Solving

\[s_1^* = \sqrt{s_2^* - s_2^*} \quad s_2^* = \sqrt{s_1^* - s_1^*} \]

Use substitution to find Player 1’s equilibrium action

\[s_1^* = \sqrt{\sqrt{s_1^* - s_1^*} - \left(\sqrt{s_1^* - s_1^*}\right)} \Rightarrow s_1^* = \frac{1}{4} \]

Now substitute this in to find Player 2’s equilibrium action
Solving

\[s_1^* = \sqrt{s_2^* - s_2^*} \quad s_2^* = \sqrt{s_1^* - s_1^*} \]

Use substitution to find Player 1’s equilibrium action

\[s_1^* = \sqrt{\sqrt{s_1^* - s_1^*} - \left(\sqrt{s_1^* - s_1^*} \right)} \Rightarrow s_1^* = \frac{1}{4} \]

Now substitute this in to find Player 2’s equilibrium action

\[s_2^* = \sqrt{\frac{1}{4} - \frac{1}{4}} = \frac{1}{2} - \frac{1}{4} = \frac{1}{4} \]
Why Nash Equilibrium?

No regrets

Social learning

Self-enforcing agreements

Analyst humility
A Nash Equilibrium is a strategy profile where each player is best responding to what all other players are doing.

You find a NE by calculating each player’s best response correspondence and seeing where they intersect.

NE is our main solution concept for strategic situations.