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We are interested in the solution to the following pure-state control program (P):

Maximize Λ(x) ≡
∫ 1

0
(S(t, ẋ(t))− x(t) · f(t)) dt

subject to x ∈ W 1,1([0, 1],R), x(t) ≥ 0 for all t ∈ [0, 1].

The constraints require that the state variable x is a non-negative, absolutely continuous
real function. We say that x is admissible if it satisfies these constraints. Note that
the integrand in Λ(x) is a linear function in x and that the state constraint, x(t) ≥ 0, is
independent of t. These two restrictions within the class of state-constrained, non-smooth
optimal control problems are the source of many of the sharp results in the analysis that
follows.

We maintain the following assumptions on the data of the problem. We assume that
S(t, ·) is an upper-semi continuous function bounded from above and that f(t) is a posi-
tive function that is also bounded from above with a corresponding absolutely continuous
distribution function, F (t) ≡

∫
[0,t]

f(t). Without loss of generality, we normalize S and

f such that F (1) = 1 and so we can think of F as a probability distribution. Lastly,
we assume that S(·, ·) is L × B-measurable, where L is the set of Lebesgue measurable
subsets of [0, 1] and B is the set of Borel measurable subsets of R.

Importantly, we do not assume a priori that S(t, ·) is a continuous function. We
present our main result for this class of problems.

Theorem .1. x̄ is a solution to program (P) if and only if x̄ is admissible and there exists
a probability measure µ defined over the Borel subsets of [0, 1] with distribution function

M(t) ≡
∫
[0,t)

µ(ds)

such that the following two conditions are satisfied:

1.
∫
[0,1]

x̄(s)µ(ds) = 0,

2. ˙̄x(t) ∈ arg maxv∈R S(t, v) + (F (t)−M(t)) · v, for a.e. t ∈ [0, 1].

Furthermore, if
y(t, α) ≡ arg max

v∈R
S(t, v) + (F (t)− α) · v

is single-valued and continuous over the domain (t, α) ∈ [0, 1]2, then the solution x̄ to (P)
is continuously differentiable.

Remarks:
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• The statement in Theorem .1 is very similar to Theorem 1 in Jullien (2000). In
both theorems, the necessary and sufficient conditions are stated in terms of a prob-
ability measure which serves as the multiplier equation for the state constraint and
an optimization condition constructed from this probability measure. Moreover,
both theorems use a similar condition to establish the continuity of ˙̄x(t) in the
solution to (P). Jullien’s Theorem, however, uses the stronger hypothesis that S
is twice continuously differentiable. Our technical contribution is to weaken these
hypotheses to requirements of upper semi-continuity and measurability. This gen-
eralization allows us to apply the necessary and sufficient conditions above to our
class of common agency games with upper semicontinuous contract menus.

• The condition that y(t, α) is single-valued and continuous is implied by the strict
concavity of S(t, ·). It is also implied by the weaker condition in Jullien (2000,
Assumption 2) that S(t, v) − (α − F (t)) · v is strictly quasi-concave in v for any
α ∈ [0, 1].

• The distribution M(t) defined with respect to µ is nondecreasing on (0, 1] and it is
undefined at t = 0. Note in particular that the distribution M is constructed to be
left-continuous rather than right-continuous.

• Program (P) allows for an unrestricted choice of ẋ(t) ∈ R. With some minor tech-
nical conditions, we can generalize program (P) to require ẋ(t) ∈ Q(t), where Q(t)
is a t-dependent, convex and closed “velocity” set.1

Proof of Theorem .1:

Overview. We prove necessity by specializing Theorem 3 from Vinter and Zheng
(1998), exploiting fact that our integrand in Λ is a linear function of x and that the state
constraint x(t) ≥ 0 is linear and independent of t. Sufficiency is proven by generalizing
Arrow’s sufficiency theorem to non-smooth optimal control problems and specializing the
theorem to the case in which the objective integrand is a linear function of x. The regu-
larity of the optimal solution follows from arguments involving the necessary conditions.
While the proof seems straightforward when viewed from this broad vantage point, a
considerable investment in concepts and notation from non-smooth, non-convex analysis
is required along the way.

Non-smooth analysis. We first introduce some notation from non-smooth analysis.
We draw heavily from Vinter and Zheng (1998) in the following presentation. A complete
treatment can be found in the monograph of Vinter (2000); Theorem 3 from Vinter and
Zheng (1998) appears as Theorem 10.2.1 in Vinter (2000).

Take a closed set A ⊆ Rk and a point x ∈ A. A vector p ∈ Rk is a limiting normal
to A at x if there exists a sequence (xi, pi)→ (x, p) and a K ≥ 0 such that for each i in
the sequence pi · |xi − x| ≤ K|xi − x|2. The cone of limiting normal vectors to A at x is

1Proposition 8 in Vinter and Zheng (1998) (reproduced as Proposition 10.4.2 in Vinter (2000)) in-
dicates how one can easily incorporate a non-state-dependent velocity constraint set. The statement of
Theorem .1 would need only be modified with this domain restriction. Indeed, the necessary conditions of
the Theorem .1 apply even to a program in which the velocity set Q depends upon both t and x(t). With
state dependence, however, our sufficiency proof cannot be used and so this generalization is limited.
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denoted NA(x). Given a lower semi-continuous function g : Rk → R∪{+∞} and a point
x ∈ Rk such that g(x) < +∞, the limiting subdifferential of g at x is defined as

∂g(x) ≡ {ξ | (ξ,−1) ∈ Nepi{g}(x, g(x))},

where epi{g} is the epigraph of the function g defined as

epi{g} ≡ {(x, α) ∈ Rk × R |α ≥ g(x)}.

The asymptotic limiting subdifferential of g at x, written ∂∞g(x), is defined as

∂∞g(x) ≡ {ξ | (ξ, 0) ∈ Nepi{g}(x, g(x))}.

Two results from nonsmooth analysis (e.g., Vinter (2000), Propositions 4.3.3 and 4.3.4)
that we use are (1) ∂∞g(x) = {0} if g is Lipschitz continuous and (2) for any x such that
g(x) is finite,

Nepi{g}(x, g(x)) = {(ξd,−ξ) | ξ > 0 d ∈ ∂g(x)} ∪ {∂∞g(x)× {0}}.

We denote the Euclidean norm in Rk by | · | and the norm on W 1,1 (the space of
absolutely continuous functions) by

||x||W 1,1 ≡ |x(0)|+
∫
[0,1]

|ẋ(t)|dt.

A local maximizer of Λ(x) is a feasible arc, x̄, which maximizes Λ(x) over all feasible
arcs x ∈ W 1,1([0, 1],R+) within an ε neighborhood of x̄,

||x̄− x||W 1,1 ≤ ε.

A local minimizer is defined analogously.

Necessity. For completeness, we state Theorem 3 of Vinter and Zheng (1998) which
provides necessary conditions for solutions to the following minimization program (P’):

Minimize J(x) ≡ `(x(0), x(1)) +
∫ 1

0
L(t, x(t), ẋ(t))dt

subject to x ∈ W 1,1([0, 1],Rk) and h(t, x(t)) ≤ 0 for all t ∈ [0, 1].

We further specialize their theorem to our present problem in which the range of x(t) is
one-dimensional and there is no endpoint cost function, `(x(0), x(1)) ≡ 0. The modified
statement of their result for ` = 0 and x(t) ∈ R follows.

Theorem .2. (Vinter and Zheng (1998), Theorem 3) Let x̄ be a W 1,1 local mini-
mizer for (P’) such that J(x̄) < +∞. Assume that the following hypotheses are satisfied:

(H1) L(·, x, ·) is L× B measureable for each x and L(t, ·, ·) is lower semi-continuous for
a.e. t ∈ [0, 1].

(H2) For every K > 0 there exists δ > 0 and k ∈ L1 such that

|L(t, x′, v)− L(t, x, v)| ≤ k(t)|x′ − x|, L(t, x̄(t), v) ≥ −k(t)

for a.e. t ∈ [0, 1], for all x, x′ ∈ x̄(t) + δB and v ∈ ˙̄x(t) + KB, where B is a unit
Euclidean ball.
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(H3) h is upper semi-continuous near (t, x̄(t)) for all t ∈ [0, 1], and there exists a constant
kh such that

|h(t, x′)− h(t, x)| ≤ kh|x′ − x|
for all t ∈ [0, 1] and all x′, x ∈ x̄(t) + δB.

Then there exist an arc p ∈ W 1,1, a constant λ ≥ 0, a non-negative measure µ on the
Borel subsets of [0, 1], and a µ-integrable function γ : [0, 1]→ R such that

(i). λ+ maxt∈[0,1] |p(t)|+
∫
[0,1]

µ(ds) = 1,

(ii).

ṗ(t) ∈ co

{
η | (η, p(t) +

∫
[0,t)

γ(s)µ(ds),−λ)

∈ Nepi{L(t,·,·)}(x̄(t), ˙̄x(t), L(t, x̄(t), ˙̄x(t)))

}
a.e.,

(iii).

p(0) = p(1)−
∫
[0,1]

γ(s)µ(ds) = 0,

(iv). (
p(t) +

∫
[0,t)

γ(s)µ(ds)

)
· ˙̄x(t)− λL(t, x̄(t), ˙̄x(t))

≥
(
p(t) +

∫
[0,t)

γ(s)µ(ds)

)
· v − λL(t, x̄(t), v)

for all v ∈ R a.e.,

(v). γ(t) ∈ ∂>x h(t, x̄(t)) µ-a.e. and supp{µ} ⊆ {t |h(t, x̄(t)) = 0}, where

∂>x h(t, x) ≡ co{lim
i
ξi | ∃ti → t, xi → x such that

h(t, xi) > 0 and ξi ∈ ∂xh(ti, xi) for all i}.

We apply this result to our setting by substituting x · f(t) − S(t, v) in program (P)
in place of L(t, x, v) and thereby converting the maximization functional Λ in program
(P) to the minimization functional J in program (P’). We complete the transformation
by requiring that h(t, x) = −x, and that L is a continuous linear functional in x.

First, we verify that hypotheses H1-H3 are satisfied for our program (P). Because
S(t, ·) is upper semi-continuous and B measurable, and because L(t, x, v) is linear in x,
H1 is satisfied. H2 requires that L(t, ·, v) is Lipschitz continuous, which is trivial given L
is linear in x with coefficient f(t). Because the transformed program has h(t, x) = −x, h
is a continuous linear functional of x and thus H3 is also satisfied.

Next, we specialize the conclusions of Vinter and Zheng’s (1998) result my making
use of the additional restrictions on L and h. We present this in the following Lemma.

Lemma 1. Suppose that L(t, x, v) is a linear function of x and that h(t, x) = −x. Then
the conclusions (i)-(v) of Theorem .2 imply
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(a). λ+ maxt∈[0,1] |p(t)|+
∫
[0,1]

µ(ds) = 1,

(b). ṗ(t) = λf(t) a.e.,

(c). p(0) = p(1) +
∫
[0,1]

γ(s)µ(ds) = 0

(d). ˙̄x(t) ∈ arg maxv∈R

(
p(t) +

∫
[0,t)

γ(s)µ(ds)
)
· v + λS(t, v), a.e.,

(e). γ(t) = −1 µ-a.e. and supp{µ} ⊆ {t |h(t, x̄(t)) = 0}.

Proof of Lemma 1: Implications (i) and (a) are identical. Implication (ii) requires

ṗ(t) ∈ co

{
η |
(
η, p(t) +

∫
[S,t)

γ(s)µ(ds),−λ
)
∈ Nepi(L(t,·,·)) (x̄, ˙̄x, L(t, x̄, ˙̄x))

}
, a.e.

Because L(t, x̄(t), ˙̄x(t)) = f(t) · x̄(t)− S(t, ˙̄x(t)) is finite, the limiting normal cone in the
above expression can be written as

Nepi(L(t,·,·))
(
x̄, ˙̄x, L̄

)
= {(ξd1, ξd2,−ξ) | ξ > 0, (d1, d2) ∈ ∂ (f(t) · x̄(t)− S(t, ˙̄x(t)))}⋃

{∂∞ (f(t) · x̄(t)− S(t, ˙̄x(t)))× {0}} .

Using the fact that L is additively separable in x and ẋ, a basic chain rule for lower
semi-continuous functions (Rockafellar and Wets (2004), Proposition 10.5) yields

∂ (f(t) · x̄(t)− S(t, ˙̄x(t))) = ∂ (f(t) · x̄(t))× ∂ (−S(t, ˙̄x(t)))

= {f(t)× ∂ (−S(t, ˙̄x(t)))} ,

and

∂∞ (f(t) · x̄(t)− S(t, ˙̄x(t))) ⊆ ∂∞ (f(t) · x̄(t))× ∂∞ (−S(t, ˙̄x(t)))

= {{0} × ∂∞ (−S(t, ˙̄x(t)))} ,

where the last equality makes use of the fact that a linear function is Lipschitz continuous
and hence ∂∞(f(t) · x̄(t)) = {0}. Substituting these subdifferentials into the expression
for the limiting normal cone, we have a simple inclusion:

Nepi(L(t,·,·))
(
x̄, ˙̄x, L̄

)
⊆ {(ξf(t), ξd2,−ξ) | ξ > 0, d2 ∈ ∂ (−S(t, ˙̄x(t)))}⋃

{{0} × ∂∞ (−S(t, ˙̄x(t)))× {0}} .

This simplifies yet again to the inclusion

Nepi(L(t,·,·))
(
x̄, ˙̄x, L̄

)
⊆ {(ξf(t), ξd2,−ξ) | ξ ≥ 0, d2 ∈ ∂ (−S(t, ˙̄x(t))) ∪ ∂∞ (−S(t, ˙̄x(t)))} .

The key point to note is that every vector in the limiting normal cone must point in the
same direction in the (x̄, L̄) plane, regardless of d2. Returning to implication (ii), we see
that every point η in the given convex hull must satisfy (η, ·,−λ) = (ξf(t), ·,−ξ) for some
ξ ≥ 0, and hence the convex hull reduces to {λf(t)}. We conclude that implication (ii)
simplifies to implication (b) given that L is both additively separable and linear in x.
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Implication (iii) is identical to implication (c).

Using the transformation L(t, x, v) = x·f(t)−S(t, v), implication (iv) simplifies to im-
plication (d). Lastly, the fact that h(t, x) = −x yields ∂xh(t, x̄(t)) = ∂>x h(t, x̄(t)) = {−1}.
Thus, implication (v) simplifies to γ(t) = −1 µ-a.e. and supp{µ} ⊆ {t | x̄(t) = 0}. This
is implication (e).

An immediate inspection of the conditions in (a)-(e) suggest further simplifications
by combining the conditions. Conditions (b) and (c) jointly yield

p(t) = λF (t).

Because p(1) = λ and γ(t) = −1 a.e. with respect to µ, condition (c) also implies∫
[0,1]

µ(ds) = λ.

Because we also have maxt∈[0,1] |p(t)| = λ, condition (a) implies λ > 0 and in particular
λ = 1

3
. Because λ > 0 and the conditions (a)-(e) are linear homogenous in λ, we can

arbitrarily choose λ = 1 and in the process normalize µ so that
∫
[0,1]

µ(ds) = 1 and thus

µ is a probability measure on [0, 1]. Defining M(t) =
∫
[0,t)]

µ(ds), the implication in (d)

is therefore
˙̄x(t) ∈ arg max

v∈R
S(t, v) + (F (t)−M(t)) · v, a.e.,

which is condition (2) of Theorem .1. Lastly, the implication of (e) can be summarized
as the complementary slackness condition µ(t) · x̄(t) = 0, which is equivalent to condition
(1). We have therefore proven the necessity of the conditions in Theorem .1.

Sufficiency: We adapt the argument of Arrow’s sufficiency theorem using the basic
approach of Seirestad and Sydsaeter (1987) but relaxing their continuity and smoothness
assumptions.

Let x be any admissible arc: x ∈ W 1,1([S, T ],R) and x(t) ≥ 0 for all t ∈ [0, 1]. Define

∆ =

∫
[0,1]

{(S(t, ˙̄x(t))− x̄(t)f(t))− (S(t, ẋ(t))− x(t)f(t))} dt.

We will demonstrate that under the conditions (1) and (2) of Theorem .1, it follows that
∆ ≥ 0.

To this end, it is useful to define the Hamiltonian for program (P) using M(t)−F (t)
as the adjoint equation which satisfies conditions (1) and (2):

H(t, x, v) ≡ S(t, v)− x · f(t)− (M(t)− F (t)) · v.

Note that M(t) is defined for t ∈ (0, 1] and thus H inherits the same domain. Nonetheless,
because µ is not part of expression of ∆ and F is absolutely continuous, we can ignore
the point t = 0 in the integral and conclude that

∆ =

∫
(0,1]

(H(t, x̄(t), ˙̄x(t))−H(t, x(t), ẋ(t))) dt+

∫
[0,1]

(F (t)−M(t)) (ẋ(t)− ˙̄x(t)) dt.
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Define the optimized Hamiltonian as

Ĥ(t, x) ≡ sup
v∈R

H(t, x, v).

Because M(t)−F (t) is bounded on (0, 1] and S(t, ·) is bounded from above by assumption,
we note that Ĥ must be finite. Condition (2) implies that

Ĥ(t, x̄(t)) = H(t, x̄(t), ˙̄x(t))

and for any admissible x ∈ W 1,1([0, 1];R+),

Ĥ(t, x(t)) ≥ H(t, x(t), ẋ(t)).

Combining these facts, we obtain

H(t, x̄(t), ˙̄x(t))−H(t, x(t), ẋ(t)) ≥ Ĥ(t, x̄(t))− Ĥ(t, x(t))

= f(t) · (x(t)− x̄(t)).

The last statement relies fundamentally on the linearity of H in x. Substituting into the
previous statement for ∆, we have

∆ ≥
∫
(0,1]

f(t) · (x(t)− x̄(t))dt+

∫
[0,1]

(F (t)−M(t)) (ẋ(t)− ˙̄x(t)) dt

=

∫
[0,1]

(f(t) · (x(t)− x̄(t)) + F (t) (ẋ(t)− ˙̄x(t))) dt−
∫
(0,1]

M(t) (ẋ(t)− ˙̄x(t)) dt

=

∫
[0,1]

d

dt
[F (t)(x(t)− x̄(t))]dt−

∫
(0,1]

M(t) (ẋ(t)− ˙̄x(t)) dt

= (x(1)− x̄(1))−
∫
(0,1]

M(t) (ẋ(t)− ˙̄x(t)) dt.

It follows that ∆ ≥ 0 if

(x(1)− x̄(1))−
∫
(0,1]

M(t) (ẋ(t)− ˙̄x(t)) dt ≥ 0.

If M were absolutely continuous, we would be able to integrate the second term by parts
and reach such a conclusion. Because M is possibly discontinuous, we must proceed
more carefully. Note that M is nondecreasing on (0, 1] with at most a countable number
of upward jump discontinuities. Furthermore, M is absolutely continuous elsewhere,
allowing us to integrate by parts between any pair of discontinuities. Also note that at
any such upward jump point, τ , M is left and right continuous with M(τ) < M(τ+) and
(by condition (1)) we have x̄(τ+) = 0.

Denote the set of jump discontinuities by {τ1, τ2, . . . }, a possibly infinite set. Let I
be the index set of τi. Between any two points τi and τi+1, we know∫

(τi,τi+1]

M(t) (ẋ(t)− ˙̄x(t)) dt = M(t)(x(t)− x̄(t))|τi+1

t=τ+i
−
∫
(τi,τi+1)

(x(t)− x̄(t))µ(t)dt

= M(τi+1)(x(τi+1)− x̄(τi+1))−M(τ+i )(x(τi)− x̄(τi))

−
∫
(τi,τi+1)

(x(t)− x̄(t))µ(t)dt.
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The second equality above makes use of the fact that x and x̄ are continuous on [0, 1].
Define the size of the jump discontinuity at τ by d(τ) = M(τ+) −M(τ) > 0. Then

we may write∫
(0,1]

M(t) (ẋ(t)− ˙̄x(t)) dt

=
∑
i∈I

M(τi+1)(x(τi+1)− x̄(τi+1))− (d(τi) +M(τi))(x(τi)− x̄(τi))

−
∫
(τi,τi+1)

(x(t)− x̄(t))µ(t)dt

= (x(1)− x̄(1))−
∑
i∈I

d(τi)(x(τi)− x̄(τi))−
∫
(τi,τi+1)

(x(t)− x̄(t))µ(t)dt.

By complementary slackness in condition (1), we know x̄(t)µ(t) = 0 and at any jump
point τ we must have x̄(τ) = 0. Thus,∫

(0,1]

M(t) (ẋ(t)− ˙̄x(t)) dt = (x(1)− x̄(1))−
∑
i∈I

d(τi)x(τi)−
∫
(τi,τi+1)

x(t)µ(t)dt.

We deduce

∆ ≥ (x(1)− x̄(1))−
∫
(0,1]

M(t) (ẋ(t)− ˙̄x(t)) dt

=
∑
i∈I

d(τi)x(τi) +

∫
(τi,τi+1)

x(t)µ(t)dt.

Because x(t) ≥ 0, µ is a non-negative measure, and jump discontinuities d(τi) are pos-
itive, we conclude ∆ ≥ 0 as claimed. We have proven that conditions (1) and (2) are
sufficient for a solution.

Smoothness of the solution, x̄: We add the hypothesis that

y(t, α) ≡ arg max
v∈R

S(t, v) + (F (t)− α) · v

is single-valued and continuous for (t, α) ∈ [0, 1]2. It follows that y(t, α) is nonincreasing
in α and from condition (2), that ˙̄x(t) = q(t,M(t)) a.e.

Suppose to the contrary that ˙̄x is discontinuous at some point τ ∈ [0, 1]. Initially,
suppose that Condition (2) is extended to hold for all t ∈ [0, 1] rather than for a.e.
t ∈ (0, 1]; call this Condition (2’). Condition (2’) and the additional hypothesis that
y(t, α) is continuous in (t, α) jointly imply that ˙̄x(t) is discontinuous at τ only if M is
also discontinuous at τ . Any discontinuity in M , however, must be an upward jump,
d(τ) = M(τ+) −M(τ) > 0, implying that ˙̄x(t) must jump downwards. Complementary
slackness (condition (3)), however, imposes that x̄(τ) = 0, with the implication that a
downward discontinuity at τ would violate the state constraint x(t) ≥ 0 in the neighbor-
hood to the immediate right of τ . Hence, continuity must hold for all points t ∈ [0, 1)
under Condition (2’). Furthermore, because M is left continuous at t = 1, no jump in ˙̄x(t)
is possible at this endpoint. We conclude that Condition (2’) implies that ˙̄x(t) is contin-
uous for all t ∈ [0, 1]. The weaker Condition (2) allows ˙̄x(t) to violate the maximization
condition on sets of measure zero, including at t = 0. But such violations have no effect
on the solution x̄ which is absolutely continuous. Thus, x̄ is smooth as posited.
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