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A B S T R A C T

EEG studies of wakeful rest have shown that there are brief periods in which global electrical brain activity on
the scalp remains semi-stable (so-called microstates). Topographical analyses of this activity have revealed that
much of the variance is explained by four distinct microstates that occur in a repetitive sequence. A recent fMRI
study showed that these four microstates correlated with four known functional systems, each of which is
activated by specific cognitive functions and sensory inputs. The present study used high density EEG to
examine the degree to which spatial and temporal properties of microstates may be altered by manipulating
cognitive task (a serial subtraction task vs. wakeful rest) and the availability of visual information (eyes open vs.
eyes closed conditions). The hypothesis was that parameters of microstate D would be altered during the serial
subtraction task because it is correlated with regions that are part of the dorsal attention functional system. It
was also expected that the sequence of microstates would preferentially transition from all other microstates to
microstate D during the task as compared to rest. Finally, it was hypothesized that the eyes open condition
would significantly increase one or more microstate parameters associated with microstate B, which is
associated with the visual system. Topographical analyses indicated that the duration, coverage, and occurrence
of microstate D were significantly higher during the cognitive task compared to wakeful rest; in addition,
microstate C, which is associated with regions that are part of the default mode and cognitive control systems,
was very sensitive to the task manipulation, showing significantly decreased duration, coverage, and occurrence
during the task condition compared to rest. Moreover, microstate B was altered by manipulations of visual
input, with increased occurrence and coverage in the eyes open condition. In addition, during the eyes open
condition microstates A and D had significantly shorter durations, while C had increased occurrence. Microstate
D had decreased coverage in the eyes open condition. Finally, at least 15 microstates (identified via k-means
clustering) were required to explain a similar amount of variance of EEG activity as previously published values.
These results support important aspects of our hypotheses and demonstrate that cognitive manipulation of
microstates is possible, but the relationships between microstates and their corresponding functional systems
are complex. Moreover, there may be more than four primary microstates.

1. Introduction

Conceptualizations of the brain as a complex network have initiated
innovative investigations of brain organization and function (Bullmore
and Sporns, 2009; Sporns, 2011). This paradigm shift towards a
network-based understanding of the brain has compelled some in-
vestigators to revisit a well-established electroencephalography (EEG)
technique developed to characterize the phenomenon of brain electric
microstates (Lehmann and Skrandies, 1980). Microstates, observed

during the recording of EEG, are defined as brief periods of time during
which global electrical brain activity remains semi-stable. These
transient periods of stability last between 80 and 120 ms (Lehmann
and Skrandies, 1980; Lehmann et al., 1998). Each microstate is
classified on the basis of its corresponding EEG scalp potential map
(Pascual-Marqui et al., 1995; Wackermann et al., 1993). Previous
studies revealed that just four microstates explain nearly 80% of the
variance of EEG brain activity during wakeful rest, a state in which
subjects are awake and alert, but not engaged in a specific task. These
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four microstates (labeled A, B, C, and D by Lehmann and colleagues)
occur in a repetitive sequence within subjects and there is a typical
procession of this sequence across healthy controls, regardless of
gender—though there are developmental differences (Koenig et al.,
2002; Lehmann and Skrandies, 1980; Lehmann et al., 2005; Van de
Ville et al., 2010; Wackermann et al., 1993). Furthermore, the spatial
and temporal properties of microstates differ across psychiatric and
neurological disorders, including schizophrenia (Andreou et al., 2014;
Kindler et al., 2011; Koenig et al., 1999; Lehmann et al., 2005; Strelets
et al., 2003), panic disorder (Kikuchi et al., 2011), and Alzheimer's
Disease (Strik et al., 1997). In the case of schizophrenia, several
microstate abnormalities have been observed in the prodromal phase
(Andreou et al., 2014) as well as in both medication-naïve (Lehmann
et al., 2005) and chronic (Strelets et al., 2003) patient populations
compared to healthy controls, including irregularities in duration and
occurrence (Kindler et al., 2011; Strelets et al., 2003), disturbance of
sequence (Lehmann et al., 2005), and abnormal topography (Koenig
et al., 1999).

The foregoing findings have generated much excitement about the
possibility of using microstates to further our understanding of the
neurobiological bases of these various psychiatric diseases. Moreover,
these results have led to speculation that microstates are fundamental
building blocks of cognition, i.e. the underlying brain activity that
subserves human cognitive processes (Khanna et al., 2015; Lehmann
et al., 1998). This speculation that microstates are elementary cognitive
components is based on two features of microstates: (1) their timescale
of occurrence coincides with the sub-second range of synchronous
firing of large neural networks (Bressler and Menon, 2010; Logothetis
et al., 2001; Whittingstall and Logothetis, 2009); and, (2) the covar-
iance of microstates with diseases that are characterized by profound
cognitive deficits, such as schizophrenia (Andreasen et al., 1999, 1996;
Schmahmann, 2004). One problem with such an assertion, however, is
that EEG microstates contain scant anatomical information due to the
inherent limitation in spatial resolution of this methodology—i.e., the
EEG inverse problem (Grech et al., 2008). To address this issue, Britz
and colleagues simultaneously recorded EEG and functional magnetic
resonance imaging (fMRI) to investigate the microstate phenomenon
and its relationship with functional systems of the resting human brain.
Their investigation showed that the four aforementioned microstates
correlated with four well-studied functional systems observed in many
resting-state fMRI studies: auditory (microstate A), visual (microstate
B), partially cognitive control and partially default mode (microstate
C), and dorsal attention (microstate D) (Britz et al., 2010; Power et al.,
2011; Yeo et al., 2011).

Despite the evidence implicating each microstate with a specific
functional brain system and the association between these systems and
specific cognitive functions, to our knowledge only one study to date
has attempted to alter microstate features through behavioral manip-
ulation. Recently, Milz and colleagues showed that several microstate
parameters are affected by visualization and verbalization tasks com-
pared to both wakeful rest and to each other (Milz et al., 2016).
Moreover, there is some evidence that microstates affect the perception
of sensory stimuli. A recent study demonstrated that awareness of
visual stimuli near the perceptual threshold is influenced by the
topography of the microstate that occurs just before stimulus presenta-
tion (Britz et al., 2014). However, if microstates are true markers of
cognitive and psychological function, then they should be modulated by
both task demands and sensory inputs. In this study, the goal is to
examine the degree to which specific microstates are influenced by
cognitive task, in this case serial sevens subtraction, and by altering
sensory input to the visual system (i.e., eyes-open vs. eyes-closed
conditions). Another goal of the study is to examine the effect of
performing a cognitive task on the sequence of microstate transitions,
as alterations in microstate sequence have been observed in patients
with schizophrenia (Lehmann et al., 2005).

Serial sevens subtraction was selected for the task condition for

several reasons. First, there is evidence demonstrating that serial
subtraction activates the dorsal attention system (Kazui et al., 2000).
The dorsal attention system is thought to be involved in the voluntary
control of attention (Klingberg et al., 1997; Mantini et al., 2007; Ozaki,
2011; Posner and Petersen, 1990; Posner et al., 1988). Moreover, serial
sevens is used to measure attention in the Mini Mental State Exam
(Moore et al., 1980; Smith, 1967), although some have argued that the
task is primarily an index of arithmetic skill and not attention
(Karzmark, 2000). Finally, such a task can be performed with both
eyes-open and eyes-closed, which allowed for the examination of the
effects of alterations in visual input.

It was predicted that (1) a task requiring the voluntary control of
attention would significantly increase one or more microstate para-
meters (duration, occurrence, and coverage) for microstate D, which is
associated with the dorsal attention system, as compared to wakeful
rest; (2) the sequence of microstates would preferentially transition
from all other microstates to microstate D during the task condition as
compared to rest; and, (3) the eyes-open condition would significantly
increase one or more microstate parameters for microstate B, which is
associated with the visual system, as compared to eyes-closed rest.

2. Materials and method

2.1. Participants

Twenty-four healthy young adults were recruited to participate in
the study from fliers posted around the campus of Indiana University
and the city of Bloomington for payment, as well as from a subject pool
of undergraduate students for course credit. All participants provided
written informed consent and the study was approved by the Indiana
University Institutional Review Board (protocol #0903000109).
Exclusion criteria included a history of neurological or psychiatric
disorders, a history of chronic substance use, learning disabilities, and
head injuries resulting in a loss of consciousness. More than 24 young
adults were recruited, but these excluded participants had an insuffi-
cient amount of clean data after application of stringent artifact
rejection methods (detailed below). The 24 included participants
ranged between the ages of 18–35 (9 male, 15 female; mean
age=21.1; SD=4.5 years).

2.2. Electroencephalogram

EEG was recorded from 61 cortical Ag-AgCl electrodes
(International 10–20 cap system; Falk Minow Services/EasyCap,
Munich, Germany) at a sampling rate of 1,000 Hz and gain of
10,000. The specific electrodes sites are Fp1/2, Fpz, AF7/8, AF3/4,
AFz, F7/8, F5/6, F3/4, F1/2, Fz, FT7/8, FC5/6, FC3/4, FC1/2, FCz,
T7/8, C5/6, C3/4, C1/2, Cz, TP7/8, CP5/6, CP3/4, CP1/2, CPz, P7/8,
P5/6, P3/4, P1/2, Pz, PO7/8, PO3/4, POz, O1/2, and Oz. During
acquisition EEG data were high pass filtered at 0.02 Hz (12 dB/octave),
low pass filtered at 300 Hz (8th order elliptic), and amplified with an
EPA Sensorsium (Charlotte, NC) bioamplification system. The hori-
zontal electrooculogram (EOG) data were recorded from electrode sites
F9 and F10, and vertical EOG data were recorded from electrodes
placed on the left superior and inferior orbits. All EEG electrodes were
referenced to a single electrode placed on the tip of the nose. EEG data
were recorded continuously using NeuroScan Acquire 4.1 software
package and impedances were established below 10 kΩ for all electrode
sites. Participants were seated in a comfortable chair in an acoustically
attenuated and electrically shielded room.

2.3. Procedures

Participants completed a total of four tasks during the experiment:
eyes-open wakeful rest (EOR), eyes-closed wakeful rest (ECR), eyes-
open serial subtraction (EOSS), and eyes-closed serial subtraction
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(ECSS). Each task consisted of three separate two-minute trials with a
short break between each trial. During the resting tasks, participants
were instructed to remain awake and to allow their minds to wander.
During the serial subtraction tasks, participants were instructed to
count backwards from a large seed number (639, 691, 732, 783, 816, or
885) by sevens silently and to report the number reached at the end of
the trial. Restarting from the seed number was permitted if the
participant lost his or her place. In order to minimize eye movements
during the eyes-open tasks, participants were instructed to fix their
gaze on crosshairs in the center of a computer screen. In order to
minimize eye movements during the eyes-closed tasks, participants
were instructed to fix their gaze on the crosshairs in the center of a
computer screen first and then close their eyes while keeping them
positioned as if viewing the crosshairs. The order in which subjects
completed the tasks was counterbalanced to allow for all possible
permutations (twenty four total).

2.4. Signal processing

The continuous EEG data were segmented into 5 second epochs
and down sampled to 128 Hz. Conservative artifact rejection methods
were implemented utilizing algorithms in the MATLAB® (Version
2012b, The Mathworks, Natick, MA) toolbox EEGLab (Version
12.0.1.0b, http://sccn.ucsd.edu/eeglab/). Epochs containing artifacts
were rejected by use of the following criteria defined in EEGLab:
voltage values extending outside ± 150 µV, slopes greater than 50 µV
across an epoch, and aberrant distributions of voltage values more than
3 standard deviations away from the mean. Data were then visually
inspected, and any epochs containing obvious eye-blink artifacts that
the algorithms missed were rejected. Following the methods of Koenig
et al. (2002), artifact free epochs were bandpass filtered using the
EEGLab basic finite impulse response filter to include broadband
frequencies between 2–20 Hz, average referenced, and baseline
corrected for further analysis.

2.5. Microstate analysis

Microstate analysis followed exactly the procedures of Koenig et al.
(1999). Briefly, the first five clean, processed epochs of each subjects'
EEG data were included in the microstate analysis. Microstates were
assigned to one of k predefined classes via the following method. First,
a scalp potential map was assigned to all time points at which there was
a Global Field Power peak (instantaneous maximum in the EEG field
amplitude). Then, an energy minimization algorithm was used to
assign all time points in between Global Field Power peaks to one of
the two adjacent peak maps (similar to interpolation). Hence, a
sequence of scalp potential maps was generated for each data set.
Afterwards, a dissimilarity index implementing modified k-means
clustering was used to sort the maps into one of the four predefined
(model) microstate classes.

The four model microstate classes were designated as the grand
mean microstate maps computed by use of eyes-closed resting (ECR)
data from all 24 subjects. Also, the grand mean microstate maps for
each other experimental condition were computed in order to compare
the topographies of the model microstate classes across conditions.
Given the similarity of microstate topographies across conditions (see
SI Fig. 1), the model maps generated from the ECR data were used as
the predefined classes for all conditions. See Section 4.3 for a
discussion of the one major topographic difference- microstate B
(visual) derived from eyes-open serial subtraction data. Finally, the
microstate parameters—duration, occurrence, and coverage—and ex-
plained variance were calculated for the sorted microstates (see Koenig
et al. (2002), Pascual-Marqui et al. (1995), and Wackermann et al.
(1993) for further details). Duration is defined as the total time over
which temporally consecutive maps were assigned to the same micro-
state class. Occurrence is defined as the number of times a microstate

occurred during a one second period. Coverage is defined as the total
percent of the epoch for which a microstate accounted. Explained
variance is defined as the variance of EEG activity explained by all four
microstates.

2.6. Statistical analysis

Separate 2×2×4 repeated measures analyses of variance
(rmANOVAs) were conducted for the three microstate parameters
(duration, occurrence, and coverage). Each rmANOVA contained one
factor for eye condition (open or closed), one factor for task condition
(rest or serial subtraction), and one factor for microstate class (A, B, C,
or D). For the explained variance tests both eye and task conditions
were examined together in a 2×2 rmANOVA (since the factor for
microstate classes was not required). Post-hoc paired samples t-tests
were used to determine significant differences between eye conditions
and task conditions when main effects or interactions in the rmANOVA
were significant. To minimize the risk of type I errors, Bonferroni
correction was applied separately for each rmANOVA because dura-
tion, occurrence, and coverage are not independent measures, which
Bonferroni correction assumes. Eight rest versus task comparisons
were made per rmANOVA (two for each of the four microstates, one for
eyes-closed and one for eyes-open). Thus, the thresholds for signifi-
cance were p < 0.05 for the rmANOVAs and p < 0.0063 (p < 0.05/8) for
the post-hoc t-tests.

2.7. Markov chain analysis

AMarkov chain is a stochastic model that describes the dynamics of
a system with multiple states; that is, if the system is in one state at a
certain time point, a Markov chain describes the probability distribu-
tion of the system either remaining in that state or transitioning to a
different state for the next consecutive time point (Grinstead and Snell,
2010). Separate Markov chains were computed for each of the four
experimental conditions in order to avoid a priori assumptions about
the underlying probability distribution of state changes for each
condition (rest vs. task and eyes open vs. closed). Moreover, one set
of chains allowed for microstates to remain in their current state
between consecutive time points (self-transitions) and the other did
not. The reason for performing the analysis with self-transitions
allowed is to test the stability of microstates. The logic for analyzing
the data without self-transitions is to characterize the pattern of
transitions between microstates when they do occur. Thus, two
Markov chains were generated (one allowing self-transitions and the
other excluding them) for each of the following conditions: eyes-closed
rest, eyes-open rest, eyes-closed serial subtraction, and eyes-open serial
subtraction. The null model used for within-condition statistical testing
assumed transition probabilities are proportional to the relative
occurrence of each microstate, following the precedent set by
Lehmann et al. (2005).

3. Results

Grand mean model microstate maps are displayed at the bottom of
Figs. 1 and 2 and in the Fig. 3 inset. The results from all of the
rmANOVAs and post-hoc analyses are detailed below and organized by
each parameter tested. See Fig. 1 for duration and occurrence, Fig. 2
for coverage, and Fig. 3 for explained variance; see Table 1 for
summary statistics and results from all post-hoc t-tests.

3.1. Duration (Fig. 1, top row)

There was a significant interaction effect for eyes x microstate class,
F(3,21)=7.686, p=0.001. Post-hoc tests showed that both microstate A
(auditory, p=0.002) and microstate D (dorsal attention, p < 0.001) had
significantly shorter durations during the eyes open condition com-
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pared to eyes closed. Additionally, there was a significant interaction
effect for task×microstate class, F(3,21)=8.935, p=0.001. Post-hoc tests
showed that the duration of microstate C (cognitive control/default, p
< 0.001) was significantly shorter during the serial sevens task com-
pared to the rest condition. Finally, there was a significant interaction
effect between eyes×task×microstate class, F(3,21)=4.591, p=0.013.
Follow-up t-tests indicated a significant decrease in the duration of
microstate C (p < 0.001) during ECSS compared to ECR. There was also

a significant decrease in the duration of microstate D (p≤0.001) during
all eyes-open conditions compared to the corresponding eyes-closed
condition (i.e., EOR< ECR, EOSS < ECSS), as well as a decrease in the
duration of microstate A, which was significantly lower (p=0.002)
during EOSS compared to ECSS. Overall, microstate duration de-
creased during the eyes open conditions, resulting in a main effect of
eyes, F(1,23)=18.727, p < 0.001. Performance of the serial sevens task
also decreased microstate duration compared to rest, as demonstrated
by main effect of task, F(1,23)=8.722, p=0.007. Lastly, there was a
main effect of microstate class, F(3,21)=13.879, p < 0.001, for micro-

Fig. 1. Microstate duration and occurrence. The graphs display the mean duration (top row) and occurrence (bottom row) of each microstate with corresponding standard errors from
the mean. The black circles correspond to rest conditions and the red squares correspond to task conditions (serial sevens subtraction). The left column displays results from eyes-closed
conditions, while the right column displays results from eyes-open conditions. All significant differences are indicated via asterisks (p < 0.0063, Bonferroni Corrected). Lines between
columns indicate a comparison between eye conditions. The empirical microstate maps are displayed below and labeled by their associated functional system from Britz et al. (see text
for details). EC=eyes-closed, EO=eyes-open.

Fig. 2. Microstate coverage (Percent of Total Time). The matrix displays the total
percent of time covered by each microstate for all four experimental conditions. Since the
data are percentages, the sum of the values across each row must be 100%. The black
lines and asterisks correspond to comparisons that were significantly different (p <
0.0063, Bonferroni Corrected). The empirical microstate maps are displayed below and
labeled by their associated functional system from Britz et al. (see text for details).
EC=eyes-closed, EO=eyes-open.

Fig. 3. Variance explained as a function of number of microstates. The graph displays
the percent of variance of EEG activity explained by k number of microstates for k
between 2 and 22 microstates, inclusive. The solid lines correspond to eyes-closed
conditions and the dashed lines correspond to eyes-open conditions. The black lines
correspond to resting conditions and the red lines correspond to task (serial sevens
subtraction) conditions. All comparisons with respect to eye condition were significantly
different (closed > open, p < 0.0063). The inset displays the empirical grand mean
microstate maps derived from all subjects’ eyes-closed resting data with k specified as
4 (methodology of studies by Lehmann, Koenig, and colleagues).
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state duration, driven largely by microstate D, which follow-up t-tests
determined was significantly longer than microstates A and B (p <
0.001).

3.2. Occurrence (Fig. 1, bottom row)

There was a significant interaction effect for eyes x microstate class,
F(3,21)=4.621, p=0.012, which follow up t-tests determined was
driven by increased occurrence of microstate B (visual, p < 0.001)
and microstate C (cognitive control/default, p=0.001) during the eyes
open condition compared to when eyes were closed. Also, there was a
significant interaction effect for task×microstate class, F(3,21)=12.355,
p < 0.001, which follow up t-tests showed was primarily due to
significantly increased occurrence of microstate D (dorsal attention,
p < 0.001) during the serial sevens task compared to rest. Finally, there
was a significant interaction effect for eyes×task×microstate class,
F(3,21)=3.883, p=0.024. Post-hoc analyses indicated that there was a
significant increase in the occurrence of microstate B (visual, p < 0.001)
during EOR compared to ECR and a similar increase for microstate C
(p < 0.001) during EOSS compared to ECSS. There was also a
significant decrease in the occurrence of microstate C (p=0.001) during
ECSS compared to ECR and, conversely, a significant increase in the
occurrence of microstate D (p < 0.001) during EOSS compared to EOR.
Overall, microstate occurrence increased during eyes open conditions,
F(1,23)=25.303, p < 0.001, as well as during the serial sevens task
compared to rest, F(1,23)=5.909, p=0.023. Finally, there was a main
effect of microstate class, F(3,21)=6.534, p=0.003, for microstate
occurrence, in which microstate D occurred significantly more fre-
quently compared to microstate A (auditory, p < 0.001).

3.3. Coverage (Fig. 2)

There was a significant interaction effect for eyes x microstate class,
F(3,21)=7.219, p=0.002. Follow-up pairwise comparisons showed a
significant decrease in coverage of microstate D during the eyes open
condition (dorsal attention, p < 0.001). There was also a significant
interaction effect for task×microstate class, F(3,21)=13.457, p < 0.001.
Post-hoc tests showed that coverage of microstate C decreased sig-
nificantly (cognitive control/default, p < 0.001) during the serial sevens
condition, while coverage of microstate D significantly increased during
the serial sevens task (p < 0.001). Finally, there was a significant
interaction effect for eyes×task×microstate class, F(3,21)=6.384,
p=0.003. Post-hoc analyses revealed a significant increase in the

coverage of microstate B (visual, p < 0.001) with a contrasting sig-
nificant decrease in the coverage of microstate D (p < 0.001) during
EOR compared to ECR. Moreover, there was a significant increase in
the coverage of microstate C (p < 0.001) during EOSS compared to
ECSS. There was also a significant decrease in the coverage of
microstate C (p < 0.001) during ECSS compared to ECR, and a
significant increase in the coverage of microstate D (p < 0.001) during
EOSS compared to EOR. Overall, there was a main effect of microstate
class, F(1,23)=11.109, p < 0.001, driven by an increased coverage for
microstate D compared to microstate A (auditory, p < 0.001).

3.4. Explained variance (Fig. 3)

Only a main effect of eyes was observed for EEG variance explained
by microstate, F(1,23)=34.126, p < 0.001; no significant interaction
effects were observed. Post-hoc analyses revealed significantly lower
explained variance during eyes-open conditions compared to eyes-
closed conditions, regardless of task (rest p < 0.001; serial subtraction
p=0.002). However, the variance of EEG activity explained by the four
microstates during ECR (the canonical methodology for the study of
microstates) was lower than values previously reported (μ ± σ=68.65 ±
4.8% compared to ~80%). Thus, further analyses were performed in
order to investigate the amount of variance that is explained by
different numbers of microstates (i.e. specifying different values of k
during the modified k-means clustering). These analyses were inspired
by analyses originally performed by Pascual-Marqui on both modeled
EEG data and event-related potential data obtained from an auditory
oddball task (Pascual-Marqui et al., 1995). There was a clear increase
in explained variance as the number of microstates increased for all
experimental conditions. During ECR, the mean explained variance
reached a value of 80% or more only after 15 or more microstates were
specified for the clustering algorithm (k≥15). In other words, 15 or
more microstates were required to explain at least 80% of the variance
of EEG activity. The pattern of lower explained variance during eyes-
open conditions, regardless of task, remained statistically significant
for all values of k tested (2–22).

3.5. Sequence of microstate transitions (Fig. 4)

The results of the Markov chain analyses are displayed in Fig. 4.
There was an extremely high probability (~0.8) of self-transitions when
allowed, regardless of experimental condition. When self-transitions
were not allowed (in order to examine the pattern of between

Table 1
Summary statistics and post-hoc tests. On the left side of the table, means and standard deviations are listed for each microstate by parameter tested (duration, occurrence, coverage, or
explained variance) and by experimental condition (eyes-closed (EC) or eyes-open (EO) and rest (R) or task (SS for serial subtraction)). On the right side of the table, p values from the
corresponding paired-samples t-tests are reported. Significant values (p < 0.0063, Bonferroni Corrected) are displayed in bold.

ECR EOR ECSS EOSS Post-hoc comparisons - p value

Mean SD Mean SD Mean SD Mean SD ECR v. ECSS EOR v. EOSS ECR v. EOR ECSS v. EOSS

Duration
A 64.75 15.1 60.40 10.9 67.61 13.2 58.71 9.8 0.205 0.354 0.124 0.002
B 65.29 14.0 68.63 10.1 67.71 11.3 62.47 13.0 0.396 0.036 0.226 0.085
C 78.32 16.8 71.22 16.4 60.17 8.8 63.78 8.5 <0.001 0.028 0.078 0.096
D 81.15 18.3 62.20 10.6 81.72 15.0 69.79 14.3 0.860 0.005 < 0.001 0.001
Occurrence
A 3.09 0.80 3.47 0.65 3.34 0.78 3.62 0.80 0.065 0.265 0.016 0.015
B 3.23 0.55 4.12 0.87 3.49 0.70 3.86 0.56 0.036 0.132 < 0.001 0.016
C 3.78 0.97 4.18 0.66 3.18 0.80 4.15 1.11 0.001 0.856 0.051 <0.001
D 3.64 0.78 3.57 0.69 4.16 0.73 4.19 0.78 0.004 <0.001 0.758 0.917
Coverage
A 19.79 6.1 20.71 4.4 22.67 7.1 21.02 4.8 0.048 0.722 0.505 0.228
B 21.11 5.6 27.94 5.5 23.93 7.1 24.31 7.2 0.019 0.057 < 0.001 0.828
C 29.97 10.5 29.47 6.9 19.38 6.4 25.98 5.4 <0.001 0.046 0.804 <0.001
D 29.15 7.3 21.89 3.7 34.03 8.4 28.68 5.2 0.015 <0.001 < 0.001 0.016
Variance 68.65 4.8 61.50 6.3 69.20 5.3 62.53 7.2 0.441 0.639 < 0.001 0.002

B.A. Seitzman et al. NeuroImage xx (xxxx) xxxx–xxxx

5



microstate transitions), there were neither discernable nor significant
differences in transition probabilities within or between eyes-closed
rest and eyes-closed serial subtraction. However, there was a clear
preference for transitions to microstate C (from A and D) during eyes-

open rest compared to a null model where transition probabilities are
proportional to relative microstate occurrence (p < 0.0063). This
pattern (preferential transitions to C) disappeared during eyes-open
serial subtraction and, for microstate D, was replaced with preferential

Fig. 4. Sequence of microstate transitions. Each matrix displays the Markov chain for one of the four experimental conditions for all four primary microstates. If the system is in a state
at one time point (e.g., microstate A), the matrix displays the probability distribution that the system transitions to another state (e.g, A to B) or remains in that state (e.g., A to A) for the
consecutive time point. Self-transitions (A to A, etc.) were allowed for chains in the left column and were not allowed for chains in the right column. Compared to a null model where
transition probabilities are proportional to relative occurrence (Lehmann et al., 2005), all microstates were significantly more likely to self-transition across all experimental conditions.
A Right Column: Eyes-Closed Conditions, No Self-Transitions Allowed. There were no significant differences within eyes-closed resting, within eyes-closed serial subtraction, or between
rest and task that survived multiple comparison correction (each compared to the aforementioned null model). B Right Column: Eyes-Open Conditions, No Self-Transitions Allowed.
Under the same aforementioned null model, microstates A and D were significantly more likely to transition to C, while C was more likely to transition to A and D within eyes-open rest.
Within eyes-open serial subtraction, microstate C was more likely to transition to B and D, and D was also more likely to transition to B. As before, no direct comparisons between rest
and task were significant after multiple comparison correction. *p < 0.0063, Bonferroni Corrected.
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transitions to microstate B. Moreover, microstate C preferentially
transitioned to A and D during eyes-open rest and to B and D during
eyes-open serial subtraction. Despite the observed significant differ-
ences within eyes-open rest and within eyes-open serial subtraction,
direct comparisons between rest and task revealed no significant
differences for either eye condition.

4. Discussion

The goal of this study was to examine the effects of task perfor-
mance and the state of the visual system (eyes open vs. closed) on EEG
microstates. We hypothesized that (1) a task requiring the voluntary
control of attention would significantly increase one or more para-
meters (duration, occurrence, and coverage) of microstate D (asso-
ciated with the dorsal attention system) as compared to wakeful rest,
(2) the sequence of microstates would preferentially shift from all other
microstates to microstate D during the task as compared to rest, and
(3) eyes-open rest would significantly increase one or more parameters
of microstate B (associated with the visual system) as compared to
eyes-closed rest.

4.1. Attention task affects microstate D as predicted

The data mostly support the first hypothesis; that is, one or more
parameters associated with microstate D (dorsal attention) would
increase during the serial sevens subtraction task. All three parameters
associated with microstate D (duration, occurrence, and coverage) were
significantly higher during the task compared to wakeful rest during
eyes-open conditions. Similar changes were observed during eyes-
closed conditions (task > rest), but due to multiple comparison correc-
tion, only occurrence was significantly higher (coverage was at trend
levels). These results suggest that cognitive manipulation of a micro-
state is possible. However, the success of the manipulation may depend
on the state of the visual system, since the largest effects were observed
during eyes-open conditions (although, the results observed during
eyes-closed conditions were in the hypothesized direction).
Furthermore, the abovementioned results partially support the asso-
ciation between microstate D and the dorsal attention system reported
by Britz and colleagues. The implemented cognitive task, which is
thought to activate the dorsal attention system, affected the parameters
of microstate D, which is correlated with the dorsal attention system, a
functional system activated by attention tasks.

It is important that our results are discussed in the context of the
aforementioned work by Milz and colleagues, who examined microstate
parameters under three different eyes-closed task conditions. Where
we observed an increase in microstate D occurrence during eyes-closed
task compared to rest, they observed a decrease in microstate D
occurrence during one of their tasks compared to rest. Similarly, where
we observed a trend level increase in microstate D coverage during
eyes-closed task compared to rest, they observed a decrease in
microstate D coverage during two of their tasks compared to rest.
However, note that the tasks employed by Milz and colleagues are quite
different from the serial subtraction task used here. All of their tasks
start with the subject viewing an image, then the subject closes his or
her eyes, and finally the subject is asked to concentrate on the image for
50 s. The images were either pictures (object visualization), an array of
black dots on a white background (spatial visualization), or the text
“Define: ‘Familiarization’” with the word to be defined varying across
trials (verbalization). There is a clear difference between these tasks
and serial sevens subtraction, yet both paradigms require the voluntary
control of attention. Hence, one might expect that both behavioral
manipulations would have similar effects on the parameters of micro-
state D. Thus, the association between microstate D and the dorsal
attention system may be tenuous. It is also possible that cognitive
manipulation of a target microstate is not straightforward, a possibility
discussed below.

4.2. Attention task affects microstate C unexpectedly

Although the task manipulation affected microstate D as predicted,
the manipulation was non-specific, affecting other microstates in
addition to D. Primarily, all three parameters (duration, occurrence,
and coverage) associated with microstate C were significantly lower
during the task compared to rest (eyes-closed conditions only; trends
for duration and coverage during eyes-open conditions). In this case,
our results agree with the findings of Milz et al. as they observed a
decrease in microstate C duration for two of their tasks compared to
rest. Moreover, there was a significant preference for transitions to
microstate C from all other microstates during eyes-open rest (a
pattern that disappears during eyes-open serial subtraction). These
unexpected findings with respect to microstate C may be explained in
the context of the task-positive and task-negative systems observed in
the fMRI literature.

Specifically, a large portion of fMRI literature argues that the dorsal
attention system is task-positive, meaning Blood Oxygen Level
Dependent (BOLD) signals localized to the dorsal attention system
increase during task performance compared to rest (Petersen and
Posner, 2012; Posner and Petersen, 1990). This argument is in
accordance with our finding that microstate D parameters increase
during the task compared to rest. Note that the dorsal attention system
is one among a number of task-positive systems, e.g. fronto-parietal
system, cingulo-opercular system (Dosenbach et al., 2008, 2007; Fair
et al., 2007); however, there is only one task-negative system observed
in the fMRI literature—the default mode network (DMN). BOLD
signals localized to the DMN decrease during task performance
compared to rest, and there are anti-correlations between DMN
BOLD signals and those from many other functional systems during
rest, especially the dorsal attention system (Fox and Raichle, 2007;
Raichle, 2015; Raichle et al., 2001; Vincent et al., 2007). Taken
together, these data suggest that microstate D is task-positive and
microstate C is task-negative.

Such an interpretation of microstate C may seem straightforward in
the isolated context of the present study, but this claim must be
reconciled with the findings of Britz and colleagues. The authors show
that a portion of the regions correlated with microstate C belong to
cognitive control networks, primarily what they call the salience
network, in the tradition of Seeley et al. (2007), but what others would
call the cingulo-opercular system (Coste and Kleinschmidt, 2016;
Dosenbach et al., 2008, 2006; Nelson et al., 2010; Neta et al., 2014;
Sadaghiani and D’Esposito, 2015; Sadaghiani et al., 2010). Moreover,
they make the specific point that in their study none of the four
microstates correlated with the DMN. It is worth noting that Britz and
colleagues used independent component analysis to confirm the
identities of the resting-state functional systems (which were identified
by a convolution of EEG and fMRI time courses using a general linear
model- see Britz et al. (2010) for details). Therefore, the individual
portions of each independent component assumed to form a resting-
state functional system are merely spatially independent regions of the
brain that share BOLD signal covariance (i.e., the pairwise relation-
ships between the regions are ambiguous). Even so, several previous
studies have identified similar components to those Britz and collea-
gues correlated with microstates (Beckmann et al., 2009, 2005; Smith
et al., 2009) and these components are quite similar to functional
systems identified via techniques that do provide information about
pairwise relationships between brain regions (Dosenbach et al., 2007;
Power et al., 2011; Yeo et al., 2011). Thus, system definition is likely
not the source of the aforementioned discrepancy.

The cingulo-opercular system is a well-studied functional system
that is thought to be crucial for task performance (Coste and
Kleinschmidt, 2016; Dosenbach et al., 2008, 2006; Nelson et al.,
2010; Neta et al., 2014; Sadaghiani and D’Esposito, 2015;
Sadaghiani et al., 2010; Seeley et al., 2007). Several fMRI studies
demonstrate that the cingulo-opercular system is involved in the
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maintenance of behaviorally-relevant task parameters, suggesting that
this system supports task-level control (Dosenbach et al., 2008, 2006;
Nelson et al., 2010; Neta et al., 2014); however, others would argue
that the system is responsible for the maintenance of alertness during
task performance and of cognitive resources available for task perfor-
mance (Coste and Kleinschmidt, 2016; Sadaghiani and D’Esposito,
2015; Sadaghiani et al., 2010; Seeley et al., 2007). Regardless of its
specific functions, if microstate C truly represents this system, then one
would expect that performance of the serial sevens subtraction would
increase the parameters associated with microstate C, since the task
requires sustained task performance; however, our data contradict this
expectation, as the parameters of microstate C decrease during the
task. On the other hand, if microstate C correlates with the DMN, an
association supported by our results, then the abovementioned claim
may be valid. Future studies should probe this discrepancy, perhaps by
use of a more widely implemented cognitive control task (e.g., the N-
back task) or by use of network science techniques to identify
functional systems. Furthermore, future work should investigate task
effects on microstates C and D in a psychiatric population, as a recent
meta-analysis revealed that the resting-state properties of these specific
microstates vary in patients with schizophrenia (Rieger et al., 2016).

4.3. Visual sensory manipulation affects all microstates and
explained variance

The data partially support the second hypothesis; that is, one or
more parameters associated with microstate B (visual) would increase
during eyes-open rest compared to eyes-closed rest. Most (2 out of 3)
parameters associated with microstate B were significantly higher
during eyes-open rest compared to eyes-closed rest (occurrence and
coverage). Note that there were no significant differences in microstate
B parameters observed during task comparisons, which is congruent
with two of the three tasks (both visualizations) from Milz et al.
(compared to rest). However, the topography of microstate B changed
substantially during eyes-open serial subtraction compared to all other
conditions (see SI Fig. 1). The topographic difference observed here
resembles the topographic difference in microstate B reported by Milz
and colleagues in three of their between-condition comparisons (see
Fig. 6 from Milz et al., 2016): object visualization minus verbalization,
object visualization minus spatial visualization, and rest minus verba-
lization (Milz et al., 2016). This discrepancy may explain why we
observed no significant differences in microstate B parameters between
task conditions.

Once again, the changes in parameters were non-specific; all other
microstates were also affected by eye conditions (during eyes-open
conditions: decreased duration for A, decreased duration and coverage
for D, and increased occurrence and coverage for C). Interestingly, the
changes to microstates C and D were in the opposite direction from one
another, providing further support for their potential task-positive and
task-negative aspects. Perhaps the most striking result is the substan-
tial decrease in explained variance during eyes-open conditions
compared to eyes-closed conditions, regardless of task. Taken together,
these results suggest that microstate analyses will likely differ depend-
ing upon the state of the visual system. Hence, it may be the case that
microstate studies implementing different methodologies with respect
to eye conditions cannot be compared.

A potential explanation for the decrease in explained variance is
that the perception of visual stimuli that are not present during eyes-
closed wakeful rest are sufficiently disruptive to increase the variability
of electrophysiological signatures of brain dynamics. However, this is
speculative and requires the attention of future studies. An alternative
explanation, put forth originally by Kondakor and colleagues, is that
visual input increases the number of distributed processes in the brain
relative to eyes-closed (awake) conditions (Kondakor et al., 1997),
which is consistent with the observed decrease in explained variance
during eyes-open conditions. Regardless, it is important to note that

the explained variance obtained from the experimental data differs
substantially from the values reported by Lehmann and colleagues in
their previous works (~69% compared to ~80%).

The abovementioned result suggests that there may be more than
four primary microstates, a possibility that was investigated further.
Our data show clearly that as the number of microstates specified for
the clustering algorithm (k) increased, explained variance increased
proportionally, regardless of experimental condition. Moreover, up-
wards of 15 microstates were required to explain a similar amount of
variance to the values published by Lehmann and colleagues during
eyes-closed rest. Thus, we argue that there are probably more than four
primary microstates. However, it appears as though the number is
finite, as the curves in Fig. 4 seem to approach an asymptote, albeit
slowly. Future studies should attempt to determine the optimal number
(or range of numbers) of microstates empirically, perhaps by use of
similar methods to those employed by Yeo et al. (2011) to estimate the
number of functional systems.

4.4. Stable sequence of microstate transitions during rest and task

Finally, the data do not support the third hypothesis. None of the
Markov chains revealed preferential transitions to microstate D from
the other three microstates during task. This result is somewhat
surprising at first glance, but it may be explained simply. When self-
transitions were considered, there was an extremely high probability
that each microstate would remain in its current state between time
points (instead of transitioning to a different microstate), regardless of
experimental condition. This finding aligns with the widely-observed
phenomenon that microstates are semi-stable at rest, and we add to
this observation by showing that they remain semi-stable during task.
This may explain why we observed only two significant differences in
the sequence of microstate transitions when self-transitions were
ignored (that were not already present during rest, i.e. microstate C
still made preferential transitions to D during eyes-open rest and task).

We observed a preference for transitions to microstate C during
eyes-open rest (from A and D). Moreover, this pattern disappeared
during eyes-open task, which provides further support for the task-
negative nature of microstate C. Such a finding is the exact pattern of
activity one would expect to see in the DMN. Also, we observed a
change in preferential transitions to microstate B during eyes-open
task (from C and D; the rest pattern of transitions was C to A and D to
C). This finding may be explained simply: the increased processing
demands imposed by performing the difficult serial subtraction task
while attempting to stare at the fixation cross may necessitate revisiting
the visual system (associated with microstate B) more frequently. It is
important to note that the topography of microstate B changed
substantially during the eyes-open task (see SI Fig. 1), providing
further support for our interpretation of increased processing demands
during eyes-open serial subtraction. However, direct comparisons
between rest and task revealed no significant differences in the
sequence of transitions. Nevertheless, closer examination of micro-
states reveals many significant differences between rest and task and
eyes-open and eyes-closed at the level of individual features, as
discussed above in detail.

4.5. Considerations for future directions

The above discussion highlights a number of challenges regarding
the measurement of EEG microstates. For instance, what is the
“correct” number of microstates? What is the best classification
method, and what thresholds should be used? These issues are not
unique to microstate analysis; any such cluster-based approach will be
limited by the use of thresholds that are ultimately somewhat arbitrary.
For example, what is the “correct” number of factors or components to
retain for a factor analysis or for a principal component analysis?
Sometimes data-driven techniques elucidate the answer to this ques-
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tion (e.g., analysis of the distribution of eigenvalues or of comparison
data (Ruscio and Roche, 2012)). However, many cases depend on how
much explanatory power is gained by including additional numbers of
factors or components (or here, microstates). Perhaps a suitable
approach is the practical one, as there is an important distinction
between trying to find the “correct” number of microstates (if there is
such an entity at all) and trying to find the most interpretable number
of microstates for understanding EEG data. In the present study, the
extraction of four microstates was motivated by the central hypothesis
that manipulation of cognitive demands would impact the parameters
of microstates described previously in the literature (Koenig et al.,
2002; Lehmann and Skrandies, 1980; Lehmann et al., 2005, 1998) and
would further test the hypothesized relationship between microstates
and resting-state functional systems (Britz et al., 2010). However, the
question of how many behaviorally meaningful microstates can be
extracted from EEG (as well as their relationship with functional
systems) has not yet been addressed, and remains an important area
for future research.

4.6. Limitations

The most confounding result in the present study is that the
empirically computed model map of microstate D is notably different
from the corresponding map published by Lehmann and colleagues
(see SI Fig. 2). Note that microstate D as computed in the present study
is possibly an inversion or rotation of approximately 180° from the
same microstate described in previous publications. However, the
topography of microstate D observed here was stable across all four
experimental conditions (see SI Fig. 1). Conversely, the topography of
microstate B computed from eyes-open serial subtraction data was
substantially different from the other experimental conditions. These
two results may support the abovementioned possibility that there are
more than four primary microstates. Further, they reemphasize the
aforementioned issues of microstate classification (i.e., clustering
method and sorting criteria). Either way, such a discrepancy brings
into question the comparability of this study with any of Lehmann and
colleagues' work. This is a confounding factor that must be considered
when discussing any results from this experiment.

Another limitation was a problem inherent to the cognitive
manipulation; specifically, the inability to ensure that the subjects
were counting during the serial subtraction task. Ideally, only subjects
who reported possible correct responses on a majority of trials would
be included in the final analyses (possible correct response=seed
number–7n, for any natural number n). However, the task proved to
be too difficult to implement such a rejection criterion, as only one
subject reported all 6 possible correct responses (mean correct
responses=2.2). Instead, subjects who reported impossible values
(e.g., higher than the starting seed number, non-integer numbers,
etc.) were excluded from the analyses. We are confident that all of the
included subjects were performing the task on the basis of observations
and notes taken by the experimenters who collected the data.

Finally, in order to maintain context within the broader body of
microstate literature, we limited our analyses to 4 model microstate
classes for each experimental condition. Moreover, we processed our
data in the same way as other microstate studies (e.g., filtered from 2–
20 Hz), but with extremely conservative artifact rejection criteria,
which limited the amount of data we were able to include in the
microstate analysis (25/120 s per condition per subject). However, it is
possible that our results would vary if more than 4 microstates were
specified for the k-means clustering, under different processing re-
gimes (e.g., considering a wider range of frequencies), or if more data
were available for microstate analysis. Perhaps the first is not just
possible, but likely given the fact that k=4 microstates explained at
most 69% of the variance of EEG activity. Furthermore, the observed
effects due to the state of the visual system (i.e., eyes-open vs. eyes-
closed), may be related to fluctuations in brain activity related to

arousal levels (Horovitz et al., 2008; Tagliazucchi and Laufs, 2014).
Microstate analyses are particularly susceptible to this issue given that
the frequency range usually considered is dominated by alpha band
activity (8–13 Hz), which is known to change between eyes-open and
eyes-closed conditions (Berger, 1929). Thus, our interpretations are
limited by all of these factors, which need to be addressed carefully by
future microstate studies.

5. Conclusions

Cognitive manipulation of microstates is possible under certain
conditions, i.e. during a serial sevens subtraction task. However, such a
manipulation may not be able to target a specific microstate due to the
potential task-negative nature of microstate C. Moreover, microstate
parameters are substantially different during eyes-open and eyes-
closed conditions, indicating that data from both kinds of studies
should not be combined and may not be comparable at all. At the very
least, it is imperative that microstate studies report eye conditions.
Finally, it is possible that there are more than four primary microstates.
The use of k-means clustering restricts analyses by sorting microstate
maps into specifically (and always) k groups. Previous studies by
Lehmann and colleagues assert that k equals four; however, this
experiment suggests that may not be the case. Future studies should
investigate this matter further without an a priori hypothesis for the
number of microstates. A new method of analysis may be beneficial
towards this end, such as that developed by Betzel et al. (2012) or
Gärtner et al. (2015); however, the latter has engendered debate within
the field recently (Koenig and Brandeis, 2016). Additional future
directions include replicating the experiment in a population with
schizophrenia and moving from a cognitive manipulation to a more
robust sensory manipulation of microstates (e.g., EEG alpha photic
driving).
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