Uncertainty in Economic Analysis and the Economic Analysis of Uncertainty

LARS PETER HANSEN, UNIVERSITY OF CHICAGO

Real knowledge is to know the extent of one’s ignorance.
—Confucius

When I think about knowledge, I find it virtually impossible to avoid thinking about uncertainty. Uncertainty adds a new dimension to discussions of knowledge that are especially important in economic analyses when we seek a better understanding of markets and the resulting outcomes for society and quantitative answers to important policy questions. It has been important in my research and also more generally in economic scholarship to take inventory, not only of what we know, but also of the gaps to this knowledge. Thus, part of economic research assesses what we know about what we do not know and how we confront what we do not know. Uncertainty matters not only for how economic researchers interpret and use evidence, but also for how the consumers and enterprises that we seek to model confront the future.

Modeling systems as they play out over time is pervasive in many scientific disciplines, including economics. To use this approach to address real-world problems requires that we impose a specific structure on the models, guided by economic analysis and empirical evi-
Econometrics is the subfield of economics in which models grounded in economic theory are considered in light of real-world measurements. The productive examination of these models requires adaptation and modification of statistical methods to understand better their successes and defects. My own research interests explore how to build and assess the implications of dynamic economic models by developing and applying statistical methods for analyzing time series data. The dynamic models are necessarily abstractions and purposefully simplified along some dimensions. They are wrong by choice of the builder, yet they aim to be revealing. The evidence that I (and others) often use for studying dynamic economic models is quite naturally time series data. These data are spaced over time by taking snapshots or averages of measures of macroeconomic outcomes and financial market returns. Especially recently, important extensions have included the time series measurements of the distributions of the actions of consumers and enterprises as they interact in markets. In the aggregate, their actions affect economic outcomes, and some models incorporate these distributional dynamics in nontrivial ways. This field and my own research necessarily confront uncertainty in multiple ways. Over the course of my career, my perspective and focus have shifted toward broader notions of uncertainty and their consequences for market outcomes and prudent policy making. At the same time, it has been advantageous to bring in, adapt, and modify insights from other disciplines including statistics, decision theory, and control theory.

Quantitatively oriented economists build what are called structural models. This ambition takes us beyond the pure forecasting problems that occupy considerable attention in the private sector. In his Nobel address, Milton Friedman wrote, “Positive scientific knowledge that enables us to predict the consequences of a possible course of action is clearly a prerequisite for the normative judgement whether that course of action is desirable.” Notice that Friedman refers to a “possible course of action.” This requires making predictions that are pos-
sibly outside of the range of the historical data and hence for which we may not have direct evidence on economic impacts of the possible courses of action of interest. Economists refer to these predictions as “counterfactual” predictions as distinct from just forecasting the future without entertaining alternative policies with economic consequences. Structural models aim to make counterfactual predictions, and they do so by using formal economic models in conjunction with data that support the exploration of alternative courses of action. These models are meant to inform us as to what happens when we explore changes in economic policy, such as government subsidies or taxes, that are outside the realm of historical experience. Such models also aim to help assess the economic consequences when we entertain alternative monetary or fiscal policies and when we consider the impact of governmental oversight of financial markets and other forms of regulation. These are policy questions with consequences to the entire economic system. The counterfactual predictions are an explicit form of policy analysis for an interdependent system typical of dynamic economic models. They are meant to answer policy-relevant questions, but to do so rigorously, they require clear statements of what is maintained as constant or invariant when we alter other parts of the system as stipulated by the policy under consideration. The credible development and application of structural dynamic models in economics relevant for policy analysis remain an important research challenge. This development includes incorporating uncertainty in both the model development and the answers that the models are used to provide. The remainder of my essay discusses this challenge.

I. Uncertainty in Economic Dynamics

Counterfactual predictions are most appropriately framed by using probabilities. While we might wish that a counterfactual prediction
be a simple number, this is typically not a credible ambition. One source of uncertainty confronted in economics is “external random impulses” or “shocks” that are taken as exogenously specified modeling inputs aimed at capturing unanticipated changes from outside the economic system being modeled. Decades ago, Ragnar Frisch featured dynamic economic models characterized by the transmission of random impulses over time to economic variables of interest. Following on the insights of previous scholars such as Eugen Slutsky, random or unanticipated changes to the economic environment have influences that persist over time. Random changes in the weather can have a lasting impact on agricultural production. Random changes in technology, including, say, information technology, take time to fully absorb and exploit, and they can have durable impacts on the economic system. Formalizing these surprise changes as random impulses when incorporated into an economic model makes predictions probabilistic. This gives one formal way for the builders and users of dynamic economic models to incorporate uncertainty. Given that the inherent random impulses have lasting impact, the resulting modeling outcome is a stochastic process with temporal dependence in the economic variables. By assumption, we cannot know in advance the outcome of these random shocks. An additional source of uncertainty emerges because we only know model inputs imperfectly. This source is often and conveniently captured by so-called subjective probabilities. Observations that we accumulate over time and from a variety of sources help in learning or resolving this specification uncertainty, but this learning may occur slowly.

In spite of a strong conceptual basis for structural models, some critics go so far as to dismiss the quantitative aspiration of structural models as hopeless. At the very least there is a justifiable concern that our quantitative models might miss something important, as they are at best rough approximations to a more complex economic system. There are multiple components to uncertainty in economic anal-
yses, and it is a challenge for researchers to characterize the full nature and magnitude of these components.

Economic models contain people making decisions often in the presence of uncertainty. For instance, any investment in human or financial capital requires a forward-looking perspective to determine the nature and magnitude of the investment. Even in modern-day farmers’ markets, suppliers confront uncertainty by deciding how much to bring to the marketplace, and they make guesses as to the likely demands for their goods. For tractability, economists are led to embrace simplified models of decision making for how individuals cope with this uncertainty, recognizing that they are at best approximations. Such models are well understood not to do justice to the full set of insights from psychology of individual decision-making.

One relevant concept in decision-making is the risk-aversion paradigm commonly used in economic analyses that endows decision makers with known probabilities over possible events that can be realized in the future. But market environments can be complex, and this complexity makes it challenging to assign probabilities when using a risk-aversion model to capture individual behavior. While some model builders may prefer to use so-called rules of thumb in structural economic models, these so-called rules of thumb still must specify how these rules adapt to the environmental complexity and changes as we explore alterations in the underlying economic environment. The economic analysis of uncertainty becomes a central ingredient in the construction of dynamic economic models. It has ramifications for prices that clear markets and for how resources are allocated through the use of these markets. Instead of positing rules of thumb, I will explore more disciplined ways to extend the elegant and valuable risk-aversion model used pervasively in economics. In less formal terms, imagine entertaining multiple views (in my case, models) of the economic system with uncertainty about which might be the best one. These views are relevant because they provide inputs into the forward-looking decisions we
make. Instead of committing to just one view, all might be considered, but with different weights attached to their validity. The choice of weights may not be obvious and in fact may even be influenced by the implications of the alternative views. Taking this one step further, add in an acknowledgment that each of the possible views is a simplified guess and not a fully complete or accurate picture of the economic system. To connect to the formalization that I use in this essay, think of views as models with implied probabilities of outcomes. How to weight the predictions of these models and to capture their potential limitations adds to uncertainty about opportunities decision makers might face in the future. I take such considerations to be pervasive and applicable to individuals, to businesses, and to the design and conduct of economic policy.

II. Formalizing the Components of Uncertainty

Scholars have long wrestled with uncertainty and its consequences, and I find it valuable to draw on some of their perspectives. For instance, initial contributions of probability as an application of mathematics were to games of chance, such as flipping coins, throwing dice, drawing colored balls randomly from an urn with a known number of each contained in the urn, and complex extensions of such games. For coin flipping, we are confident in a 50-50 chance of the coin coming up heads, and when rolling one die we are comfortable with presuming that there is a one in six chance of rolling a five. The formalization of probability in conjunction with games of chance has a long history. The study of potentially complicated games of chance drew in eminent mathematicians, including Blaise Pascal and Pierre de Fermat in their famed exchange about the so-called “problem of points” or “division of stakes.” The analysis proceeded with given or presupposed probabilities. This component of uncertainty where we know probabilities but not outcomes is what I will call risk within a model, building on a distinction made by Frank Knight and others.6
include within a model to remind us that we are taken as given the probabilities. The case of known probabilities is a key part of how economists and others conceive of risk aversion. In dynamic contexts, the random impulses that I mentioned previously when modeled formally with probability specifications provide sources of macroeconomic risk confronted by individuals, markets, and governments.

An original contributor to the use of probability theory for the analysis of social science data is Jacob Bernoulli, one in a family of mathematicians, over three hundred years ago (see fig. 1). His discovery is the Law of Large Numbers, along with some refinements. His fundamental result characterizes how unknown probabilities are revealed by repeated sampling, say, from an urn with an unknown fraction of white and red balls. Bernoulli was not motivated by games of chance but instead by the application of probability theory to represent and understand social scientific data. These are data in which probabilities are unknown post hoc and only fully revealed imperfectly by actual data. These probabilities or their implications are presumed targets of the empirical investigation.7

Bernoulli confronted a common situation in which we do not know probabilities but seek to learn about them. Sometimes this learning occurs so quickly as to reveal the answer we seek, but often not. This is why we have a field of statistics to study more complicated versions of the question that intrigued Bernoulli. For the purposes of this essay, the conceptual contributions of Bruno de Finetti and Leonard Savage stand out.8 They provided a framework for subjective probability. If you take n draws from an urn with an unknown fraction of balls, subjectivists argue that the draw $n + 1$ should not be viewed as independent of the previous draw because this draw will be informative about the unknown probability. Statistical independence commonly used in building is a conditional statement, one that conditions on the actual probability. Bernoulli’s calculations were made conditioned on the probability of, say, the fraction of white balls in the urn, treating
the draw \(n + 1 \) as independent of draw \(n \). To complete the probability specification from the de Finetti and Savage perspectives requires a “subjective probability” (prior) over the possible fractions, which induces a form of dependence, but it also allows for the formal probabilistic statement of what we know about the fractions of white balls after observing \(n \) draws from an urn. While I use urns in this illustration, what really interested Bernoulli is what we can learn from data about the probabilities of outcomes.

More generally, when external analysts such as econometricians are unsure which among a family of possible models is correct, subjective probability suggests that we assign weights to the alternative models. Given an initial weighting, we open the door to the elegant Bayesian approach to learning. I use the term *ambiguity about a model* for the component of uncertainty that pertains to how we assign
weights across alternative models. While de Finetti and Savage were both proponents of subjective probability, both also acknowledge the challenge of doing this in practice. This challenge is the impetus for robust Bayesian methods that explore the sensitivity analysis to subjective probability inputs. For instance, probabilities of the potential outcomes or predictions of interest could be very sensitive to the initial subjective weighting of alternative models. A robust Bayesian seeks to characterize that sensitivity.9

Models in economics and elsewhere derive their value in part from their simplifications or abstractions. They are necessarily wrong or equivalently misspecified along some dimensions. However, this observation by no means destroys their value. In economic applications, this misspecification is often transparent, and we hope that it does not distort too much the answer to the questions we address. But the potential for model misspecification gives a third component to uncertainty, one that is perhaps the most difficult to address or quantify. Some of the more interesting attempts to address this challenge come out of the extensive literature on robust control theory. An example that I found to be particularly revealing and valuable in my own research is a paper by Ian Petersen, Matthew James, and Paul Dupuis, where there is uncertainty about how to specify the probabilities for the outcomes of the random shocks.10 As I noted previously, following Slutsky and Frisch,11 these random shocks are pervasive in modeling economic time series. Uncertainty about the probabilities of these random shocks includes an incomplete understanding of intertemporal dependencies in the constructed dynamic economic models. Recognizing the limitations of the existing models alters their prudent usage.

III. Who Confronts Uncertainty?

Like others, I think of uncertainty from two vantage points, both of which are important in building, assessing, and using dynamic eco-
nomic models. One perspective is that of researchers who estimate some unknown parameters, just as Bernoulli envisioned, and they assess or test the model implications. I call this perspective of an external analyst as coming from outside of the models looking to evaluate them based on evidence or prior judgment. This is the typical vantage point of the discipline of statistics, and a rich array of methods have been developed with this in mind.

Economists’ models include economic agents making decisions. For instance, investment decisions are in part based on people’s views of the future possible benefits. Decisions on how much to produce when production takes time depends in part on perceived prices or economic rewards for selling the goods in the future. Once economic decision makers are included in formal dynamic economic models, their expectations come into play and become an important ingredient to the model as well as the uncertainties they confront. This challenge was well-appreciated by economists such as Arthur Pigou, John Maynard Keynes, and John Hicks. Thus, economic agents inside the models that economists build face challenges that bear similarity to those of statisticians. What are sensible ways to forecast the future, and how much confidence should we have in those forecasts?

When building models, while some researchers make simplistic connections to psychology, we make no pretense to capture all of the psychological complexities faced by individuals in different situations. We make bold simplifications to keep the analysis of the interdependent system tractable. An elegant, pervasively used simplification is the imposition of rational expectations. This is an equilibrium construct that imposes model-consistent beliefs on the individuals inside models. This approach was initiated within macroeconomics by John Muth and Robert Lucas. Following Lucas’s paper, in particular, rational expectations became an integral part of an equilibrium for a stochastic economic model. This approach makes the analysis of risk aversion tractable and provides an operational way to analyze
counterfactuals using dynamic economic models. There is a direct extension of the rational expectations paradigm that includes unknown parameters or states confronted by economic agents using subjective probabilities and Bayesian learning. The rational expectations hypothesis and its extension to Bayesian learning abstract from ambiguity about subjective inputs and concerns about potential model misspecification.

A substantial literature has evolved on econometric implications of dynamic models with rational expectations with a variety of different implementations. One important line quantifies the impact of alternative shocks featured originally by Slutsky and Frisch to the macroeconomy by inferring these shocks from data and measuring how they are transmitted to the macroeconomy. An initial important contributor of this extensively used approach is Christopher Sims. An empirical counterpart to rational expectations is implicit in much of this work, as the shocks that are identified through econometric methods are also the ones pertinent to the economic system being analyzed. A complementary approach imposes more a priori structure on the underlying transition mechanisms while imposing rational expectations in deriving and assessing testable restrictions on the data generation. As featured in “Nobel Lecture: Uncertainty Outside and Inside Economic Models,” I along with several coauthors explored and applied a third approach aimed at studying part of a dynamic economic system while seeking to be agnostic about the rest. Even though the implicit model of the economy was that of an interrelated dynamic system, it proved advantageous to have econometric methods that allow the researcher to “do something without doing everything.” My own interest focused on the implied linkages between the macroeconomy and financial markets. The featured relations captured the forward-looking investment decisions of individuals and enterprises. This approach also imposed an empirical counterpart to rational expectations by, in this case, presuming
the beliefs of the economic agents are consistent with historical time series data. Although not their original aim, empirical investigations, including my own, produced characterizations of empirical puzzles rather than confirmation of models. It pushed me and others to think harder about the potential for model misspecification and its consequences. If I, as a researcher, have to struggle in selecting good models of the economy, perhaps the people inside the models that I study face similar challenges. Thinking about uncertainty in broader terms became an attractive extension of the rational expectations perspective.

The perceived complexity of the economic environment alters how individuals make forward-looking decisions. This is self-evident from statistical decision theory and looks equally pertinent to external analysis as well as to the economic decision makers in the models we build. I find the tools of decision theory and statistics to be valuable in thinking about both challenges. It is easier to imagine behavioral anomalies persisting in complex environments in which model selection is known to be truly challenging even for sophisticated statisticians. There is a rather extensive literature on decision theory under uncertainty that draws on insights from economics, statistics, and control theory that are valuable guides for thinking through such issues.\(^\text{18}\) My own research and applications have found value from both the axiomatic approaches common in economics, the more practically oriented control theory methods, and the insights from applied probability theory that feature characterizations of statistical complexity and resulting difficulties in learning from evidence. Decision theory provides two attributes relevant for building and using dynamic economic models. It gives a formal language to discuss decision making in an uncertain environment, and it provides justifications for tractable ways to represent preferences to be used in formal statements of decision problems.

It is challenging to understand financial markets using the risk-aversion model under rational expectations. Asset pricing theory in-
forms us that it is the exposure to macroeconomic risks that requires market compensation. These are the risks that cannot be diversified by averaging over large cross-sections of exposures. The risk compensations are sometimes observed to be large and puzzling. Moreover, in some of the existing economic models, exposure to long-term macroeconomic risks can have even short-term consequences for financial markets. Thus, the models implicitly impose a burden on investors inside the model to assign credible probabilities to events that will only be realized far into the future. Motivated in part by the empirical shortcomings that I mentioned previously, a literature is emerging that uses advances in decision theory to study the impact of uncertainty, broadly conceived, on market prices and the resulting outcomes. Adding in components of uncertainty other than risk provides a different perspective on this evidence. For instance, economists currently debate the possibility of a permanent “secular stagnation” in the macroeconomy. By the term secular stagnation, economists refer to the possibility that future growth rates will be on average smaller than past ones. The alternative views of the prospects for permanently sluggish growth may be conceptualized as alternative models of the economy with uncertainty as to which of these views gives the best approximation. Uncertainty of this nature spills over to private sector investor decisions and financial market returns. A broad perspective on uncertainty adds a richness to how we capture investor behavior inside economic models. Investor struggles in the presence of ambiguity aversion or concerns with model misspecification aid our understanding of why financial markets reflect more caution in bad macroeconomic times than in good times.

This more general perspective on uncertainty also provides a way to capture investor confidence. A fully confident investor may commit completely to a single model where a less confident investor may entertain multiple models with uncertainty as to how to weight them or
suspect each of them to be, at best, a coarse approximation (and therefore misspecified). Such a formulation could also be a way to introduce investor heterogeneity in economic models, heterogeneity that captures differences in how confident investors are in their views of the future. I next explore how a more sober perspective on uncertainty could enrich the analysis of prudent policy design.

IV. Uncertainty and Policy

The connection between uncertainty and incomplete knowledge and the design of economic policy has long been discussed in informal ways. If structural econometric models are to provide quantitative inputs into decision-making, how will uncertainty alter how these models should be used as formal guides for policy making? The impact of uncertainty has been recognized by scholars, but less so when economists play advisory roles. Indeed, years ago when Friedrich Hayek wrote on the pretense of knowledge, he warned of the dangers of trying to satisfy what the public seeks: “Even if true scientists should recognize the limits of studying human behaviour, as long as the public has expectations, there will be people who pretend or believe that they can do more to meet popular demand than what is really in their power.”

From my standpoint, there are two elaborations of these statements that intrigue me. First, I am inclined to think in terms of uncertainty in our understanding of human behavior and its economic consequences. Second, I am concerned about unproductive policies premised on a projected overconfidence in a particular model or perspective of the economic system. Going further, I see at least two interrelated questions:

(a) Does incomplete knowledge or understanding of complicated policy problems enhance the appeal of simple solutions?
(b) How socially detrimental is complexity in policy implementation in light of the resulting uncertainties faced by the private sector?

Regarding the first question, with a complete and confident understanding of an interdependent complex economic system, we might well be led to embrace a complex policy to improve social well-being. How does this perspective change when our understanding is incomplete, and does uncertainty or incomplete knowledge make simple solutions to complex problems more appealing?22

Decades ago, Friedman made reference to “long and variable lags” in the mechanism by which money influences prices and the macroeconomy.23 He used this observation to argue for simple policy rules instead of more ambitious attempts at more subtle management of the macroeconomy. The reference to long and variable lags was a statement of skepticism about the knowledge needed to credibly implement a more complicated policy rule. Monetary policy is different now from when Friedman was writing, and some of Friedman’s own perspectives on monetary transition mechanisms have since been challenged in important ways.24 But Friedman’s concern that there will be unproductive outcomes induced by over-stating our understanding of a basic mechanism continues to be relevant to current-day macroeconomic policy making. Learning more about the economic system potentially opens the door to more reliable policy levers, but there remains an important task: to assess when the uncertainty is sufficiently resolved to justify a more finely tuned approach to the conduct of policy.

Regarding the second question pertaining to policy and complexity, part of the practical ramifications of complexity in the design of policy is to provide additional flexibility to policy makers in their implementation. For instance, it might well be desirable that policy authorities have some discretionary powers in times of crisis or extreme events
that were not appropriately planned for. But this same complexity bur-
dens the private sector as it is left guessing about implementation in
the future. Counterproductive aspects of regulatory discretion are known
from the important work of Stephen Stigler and others. A different
twist on discretion occurs in the dynamic macroeconomic policy set-
ing. When policy makers are unable to make long-term commitments,
there is a repeated temptation for them to act in discretionary ways.
Finn Kydland and Edward Prescott have studied the resulting adverse
consequences relative to rule-based commitments. Both contribu-
tions are fundamental, but my interest in this essay is to add to this dis-
cussion by suggesting an interplay between complexity and uncertainty.

Going beyond these two questions, I find it both attractive and
challenging to provide a more systematic analysis of uncertainty
and its consequences for the design and conduct of policy. In what fol-
lows, I will talk briefly about two policy challenges for which I find a
broad perspective on uncertainty to be revealing. No doubt each one
deserves its own essay or more likely treatise; but let me at least place
them on the radar screen of readers to provide some more specific
context to my discussion.

A. Financial Market Oversight

The term “systemic risk” has shown up prominently in the academic
literature and in discussions related to financial market oversight
since the advent of the financial crisis. Prior to the crisis, the term
was rarely used. Mitigating systemic risk is a common defense under-
lying the need for macro-prudential policy initiatives. How to design
and implement such policies remains an open question. When it
comes to systemic risk, perhaps we should defer and trust our govern-
mental officials engaged in regulation and oversight to “know it when
they see it,” but this opens the door to counterproductive regulatory
discretion and policy uncertainty.
I have written previously on the challenges in identifying and measuring systemic risk.28 There, I argue for thinking more broadly in terms of systemic uncertainty instead of the more narrow construct of risk. I exposit some of the many challenges that are pertinent to building quantitative models to support the conduct of macro-prudential policy. While I am an enthusiastic supporter of model development in this area, currently we face counterparts to Friedman’s concerns about long and variable lags because of our limited understanding of the underlying phenomenon. People on the front lines of policy making have also noted important limitations both in our understanding of systemic risk and in making it a guiding principle for financial oversight.29 How best to provide governmental oversight of financial markets is arguably a hard and complex problem. Given limitations in our knowledge base, it is not at all apparent that a complex solution is the best course of action. Friedman’s appeal for simple and transparent rules for monetary policy may be equally applicable to the design and conduct of macro-prudential policy.

B. Climate Economics

Federal agencies use estimates of the “social cost of carbon” to assess the climate impacts of various programs and regulations. Economists applaud cost-benefit analysis, and the aim to be numerate looks attractive. The current computations come from simulations from alternative models of the interplay between the climate and the economic system. There is a weighting across models, a reported sensitivity to the choice of a discount factor used in computing present values measures, an attempt to make probabilistic statements, and an acknowledgment of some omissions in the measure of climate damages. This all has the appearance of good quantitative social science in action. Unfortunately, the current calculations also abstract from some critical sources of uncertainty about the timing and magnitude
of how human inputs influence the climate, and they run the danger of conveying a deeper understanding than truly exists.

Let me start with the basic construct. How useful is it to think of the social cost of carbon divorced from the benefits? How far can we push microeconomic reasoning without thinking through the macroeconomic system-wide consequences? Thus, it is not clear to me conceptually what should be meant by the social cost of carbon net of benefits and system-wide implications. We can determine what is actually measured by opening the hoods, so to speak, of the models used to generate the computations. By so doing, there are at least partial answers to these questions.

But let’s take a step back. First, while basic physical considerations play important roles in the construction of climate models, there are important gaps in the ability to translate these insights into reliable quantitative predictions. Second, once merged with economic components, the carbon-temperature linkage is dramatically simplified for reasons of tractability with only limited understanding of the consequences of this simplification. Third, it is well known from the theory of asset pricing that there should be an important link between uncertainty and discounting when computing intertemporal valuations that balance off costs over time. Thus, the uncertain social impact of carbon in the future should alter the stochastic discounting of inputs used to measure the net social cost of carbon. While so-called local or small changes are amenable to stochastic counterparts to the discount formulations used in deterministic cost-benefit analyses, more global changes in policy require more comprehensive calculations. These three points just scratch the surface of some truly important modeling challenges that climate scientists and economists continue to grapple with. Perhaps the most productive outcome of regulatory discussions of the social cost of carbon is the nurturing of future research in this important area rather than the actual reported numbers.
Acknowledging uncertainty and our limits to understanding does not imply a call for inaction. Depending on what aspect of the uncertainty we find to be most consequential to society helps us to better frame a discussion of policy making in the future. The possibility of major adverse impacts of, say, carbon emissions on the climate can suffice for justifying policy responses such as carbon taxation or cap and trade. Even though we are uncertain as to the magnitude, timing, and climate impacts from carbon emissions, this alone does not rationalize a wait-and-see attitude. Indeed, it may well be less costly socially to act now than to defer policy responses to the future. Such trade-offs are of critical importance to explore and are best done so cognizant of the limits in our understanding and uncertainty in our analyses.

V. How Might Decision Theory Contribute?

Arguably, Pascal’s wager about the existence of God is an initial formalization of decision theory. This dramatic illustration shows the role of assessing consequences of actions in the face of uncertainty when determining the rational decision. Indeed, as formulated in Pascal’s example, the best course of action, behaving as if God exists, is independent of any probabilistic detail beyond the possibility that God might exist. More generally, decision theory captures the important and sometimes subtle interplay between how uncertain we are about the future and the consequences of alternative actions we might take that affect that future.

I have already discussed how decision theory targeted to broad notions of uncertainty helps us to understand better the behavior of financial markets. In concluding this essay, let me discuss how decision theory can also help shape discussions of prudent policy making. Some of the insights from decision theory will appear to be self-evident and of little surprise, but the formalism is still of considerable value in both building and using models. Some examples
of unsurprising insights include the following. When we are unsure about some modeling inputs, it makes good sense to perform a sensitivity analysis by computing the consequences of changing the inputs. The target of this analysis should be the potential consequences that the decision maker truly cares about.

A sensible decision or a good course of action is one that performs relatively well across a range of model specifications. I will refer to this property as “robustness.” When there are multiple models to consider and we are unsure of how to weight them, decision theory pushes us to ask what the consequences are of a course of action under each of the possible weightings of models that are entertained. Policies that work well under the alternative models become attractive even if they cease to be the best course of action under any of the specific models. Unless we have a compelling a priori way to weight models, caution or aversion to ambiguity translates into looking at the adverse consequences of alternative possible weighting schemes in evaluating alternative policies. Potential misspecification can be conceptualized similarly but places an extra and perhaps unwieldy burden in guessing the myriad of ways the models might be wrong. If the ways that a model could be wrong is small in scope and easy to delineate, then presumably it would be tractable and preferable to fix the models rather than just acknowledge the potential flaws. I am not claiming that confronting potential model misspecification is an easy task, but I am suggesting that it not be forgotten. As I have already mentioned, robust control theory has already produced some tractable and revealing ways to confront model misspecification in dynamic settings. The survey paper by Massimo Marinacci and myself describes research, including some of my own with Thomas Sargent and others, that builds on some of the insights from control theory and incorporates them formally into decision theory and economic analysis.32

Applying decision theory sharpens the questions and frames the analysis, but it is not a panacea that makes prudent decision-making
necessarily easy. For instance, even with decision theory I am un-
aware of any general proposition linking incomplete knowledge of a
social or economic problem and to desirability of a simple course of
action. However appealing this link may seem, my guess is that justi-
fying it formally may turn out to be context specific and may depend
on the details of the actual policy problem.

The decision-theoretic approach raises interesting challenges about
how to communicate uncertainty in a policy realm. A robust statisti-
cian might just report ranges of potential probabilities for important
outcomes that are computed by looking across alternative ways to
weight model implications. This, as you might imagine, can quickly
overwhelm the attempt to communicate uncertainty. For decision
problems with a sufficiently nice mathematical structure, there are
so-called “worst-case” weighting schemes that depend on the details
of the decision problem, including the delineation of potential ways
to weight the models that are of interest. By construction, the so-
called robust course of action is actually the best course under this worst
case weighted family of models. This result essentially defines what is
meant by the worst case and it is derived as part of the solution to the
decision problem. In other words, it is an outcome of the decision
problem and not a hardwired input to that problem. This worst-case
weighting reflects caution induced by adopting a broad notion of un-
certainty. A fully committed Bayesian would only entertain one such
weighting scheme as implied by the subjective prior probabilities im-
posed on the problem. The chosen robust course of action, however,
would agree with that of a Bayesian fully committed to the worst-case
weighting.

The worst case prior over a family of models is not just subjectively
determined. Its computation relies on the details of the decision prob-
lem, and the resulting weighting is slanted toward models with ad-
verse consequences for the decision maker. It is the result of the aver-
sion to ambiguity or a concern about model misspecification. In
economic decision problems that confront possible secular stagnation, the implied worst-case probabilities of macro growth are tilted in a pessimistic direction. These probabilities are among a range of possibilities entertained in the decision problem. Reporting (constrained) worst-case computations opens the door to claims of a biased treatment of the data. Indeed, this claim is accurate, but purposefully so. The worst-case prior deliberately slants how models are weighted and is part of the output when solving a decision problem. It also understates the underlying uncertainty.

A policy advisor may be tempted to slant model choices along the lines of this worst-case weighting in order to defend a course of action. Conveying formally the worst-case weighting as a weighting scheme of particular interest may be too subtle for communication pertinent in the policy arena. Perhaps we should expect our policy makers to engage in a form of “noble falsehood,” conceding that a broad notion of uncertainty is itself too complex for public discourse.33 Indeed, projecting views with great confidence is perhaps the easiest way to persuade policy makers and the public even when this confidence is not real. If only we had the requisite knowledge that allowed us to avoid such tricky issues and to embrace simple models with full confidence. Unfortunately, we are seldom that lucky. But naively ignoring uncertainty opens the door to ill-conceived policies that fail to deliver on their intended ambition.

VI. Conclusion

Like other areas of science, the study of economic dynamics seeks to provide quantitative answers to important policy questions. In so doing, uncertainty is prevalent in a variety of ways, as I have described in this essay. We should not shunt aside this uncertainty nor leave it in the background even if it can be challenging to acknowledge and act upon. The pretense of knowledge carries social costs that may only
be realized in the long term. But these costs undermine the modeling
developments and the integrity of the resulting applications. We
should be bold enough to bring uncertainty to the forefront in discus-
sions of what we know about the economy and the implications of
that knowledge for the conduct of policy.
Notes

Amy Boonstra, William Brock, Jonathan Lear, Stephen Stigler, Grace Tsiang, and Shadi Bartsch-Zimmer provided valuable feedback on earlier drafts of this essay.

16. For instance, see T. J. Sargent, “Rational Expectations, the Real Rate of Interest, and the Natural Rate of Unemployment,” *Brookings Papers in Economic Activity* 4, no. 2 (1973): 429–80. As I described in “Nobel Lecture,” early in my career I also contributed to this line of research in collaboration with Sargent.

20. For a recent illustration of this mechanism, see L. P. Hansen and T. J. Sargent, “Prices of Macroeconomic Uncertainties with Tenuous Beliefs,” technical report, University of Chicago and New York University, 2016.

22. This question is distinct from a related argument for simple models initiated as Ockham’s razor. Ockham’s razor is intended to help guide how we construct alternative models, an important question in its own right, but one that I have largely sidestepped in this essay. I have chosen instead to discuss how we confront uncertainty in the answers that our models are meant to provide.

27. Recall Justice Potter Stewart’s treatment of pornography.

29. See, e.g., A. Haldane and V. Madouros, “The Dog and the Frisbee,” speech given at Federal Reserve Bank of Kansas City’s 366th Economic Policy Symposium “The Changing Policy Landscape,” Jackson Hole, WY, August 31, 2012. In a speech on March 31, 2011, entitled “Regulating System Risk,” Daniel Tarullo, United States Federal Reserve Board of Governors, argued: “There is also need for more study of the dynamics by which stress at large, interconnected institutions can have negative effects on national and global financial systems. In fact, what may be needed is a new subdiscipline that combines the perspectives of industrial organization economics with finance. Without work of this sort, it may be difficult to fashion the optimally strong, sensible, post-crisis regulatory regime.”

33. This term is reminiscent of the Noble Lie of Socrates and Plato except that I use J. Lear’s preferred translation (Wisdom Won from Illness [Cambridge, MA: Harvard University Press, 2017]). Lear’s discussion adds more subtly to the discussion by arguing: “What is striking about the Noble Falsehood, in contrast to other myths and ideologies that are meant to legitimate the status quo, is that this allegory does its work by generating dissatisfaction.”