Graduate Program in Health Administration & Policy (GPHAP)

January 9, 2017
Colleen Grogan
Certificate Program—Draws from Five Schools

GPHAP

Social Work/SSA

Pritzker School of Medicine

Booth School of Business

Law School

Public Policy/Harris School
Interdisciplinary and Cross-Sector Perspectives & Knowledge

Persistent Health/Social Problems

Private Sector/Business School

Non-profit Sector—Civil Society/Social Work Social Welfare School

Govt-Public Sector/Public Policy School

Legal-Regulatory/Law School
Micro and Macro-level Understanding

Micro
- Clinical Social Work
- Medicine

Macro
- Business
- Law-Courts
- Public Policy

PATIENTS

CBOs
Clinics
Hospitals
Why Interdisciplinary & Cross-Sector Collaborative Learning?
Why Interdisciplinary & Cross-Sector Collaborative Learning?

• **Creativity**: Innovative Ideas
• **Pragmatic**: business, government, non-profits have long recognized the importance of interdisciplinary and multi-disciplinary teams
• **Collective Action**: less duplication and fragmentation; complex health problems demand collaboration across organizations and sectors
• **Democratic**: to every issue, there are multiple perspectives and all voices should be heard

- Arguably all these reasons lead to a more effective solution
- May be the *only way* to solve complex problems
Barriers to Interdisciplinary Work?

- **Lack of Training**
 - Few students are trained in interdisciplinary programs
 - Discipline-specific classes build depth in single-subject areas
 - But, tend to present information in an isolated manner
 - Fail to perceive, or question, the overlapping values or questions raised by different disciplines
 - Fewer still know how to integrate disciplinary frames and use them

- **Structural Barriers**
 - Organizations work in Silos
 - Sectors work independently
 - Why?
 - Funders (firms, government, and foundations) focused on the isolated intervention of individual organizations. This encourages competition between organizations and among sectors.
 - Yet, Large-scale social change to address complex problems requires broad cross-sector coordination and inter-organizational coordination
How does it really work?

DESPERATELY NEEDED AND GPHAP HAS POTENTIAL, BUT
Interdisciplinary Learning

• What is it?
Table I

Predicted Outcomes of Interdisciplinary Programs

<table>
<thead>
<tr>
<th>Author</th>
<th>Outcome</th>
</tr>
</thead>
</table>
| Ackerman (1989) | Flexible thinking
Ability to generate analogies and metaphors
Understanding of the strengths and limitations of disciplines
Ability to assess value to knowledge gained |
| Ackerman & Perkins (1989) | Enhanced thinking and learning skills
Improved higher-order cognitive skills
Improved content retention
Capacity for proactive and autonomous thinking skills
Ability to devise connections between seemingly dissimilar contexts |
| Field, Lee, & Field (1994) | Ability to tolerate ambiguity or paradox
Sensitivity to the ethical dimensions of issues
Enlarged perspectives and horizons
Ability to synthesize or integrate
Enhanced creativity, original insights or unconventional thinking
Enhanced critical thinking
Capacity to perceive a balance between subjective and objective thinking
Humility, sensitivity to bias, and empowerment
Ability to demythologize experts |
Rowntree (1982)

- Interdisciplinary Approach:
 - “one in which two or more disciplines are brought together, preferably in such a way that the disciplines interact with one another and have some effect on one another’s perspectives.”
Interdisciplinary Knowledge & Appreciation—GPHAP Program

Degree Programs

- Conceptual Knowledge: Booth
- Conceptual Knowledge: Harris
- Conceptual Knowledge: SSA
- Conceptual Knowledge: LAW
Interdisciplinary Knowledge & Appreciation—GPHAP Program

Degree Programs

CONCEPTUAL KNOWLEDGE Booth
CONCEPTUAL KNOWLEDGE Harris
CONCEPTUAL KNOWLEDGE SSA
CONCEPTUAL KNOWLEDGE LAW

GPHAP

DOMAIN (HEALTH) KNOWLEDGE
Interdisciplinary Interaction
Interdisciplinary Knowledge & Appreciation—GPHAP Program

Degree Programs

- CONCEPTUAL KNOWLEDGE Booth
- CONCEPTUAL KNOWLEDGE Harris
- CONCEPTUAL KNOWLEDGE SSA
- CONCEPTUAL KNOWLEDGE LAW

GPHAP

- DOMAIN (HEALTH) KNOWLEDGE
- Interdisciplinary Interaction

ACTION SKILLS
Interdisciplinary Knowledge & Appreciation
Interdisciplinary Knowledge & Appreciation—GPHAP Program

Degree Programs

- CONCEPTUAL KNOWLEDGE Booth
- CONCEPTUAL KNOWLEDGE Harris
- CONCEPTUAL KNOWLEDGE SSA
- CONCEPTUAL KNOWLEDGE LAW

GPHAP

- DOMAIN (HEALTH) KNOWLEDGE
- Interdisciplinary Interaction

ACTION SKILLS
Interdisciplinary Knowledge & Appreciation

ACTIONS
OUTCOMES
Interdisciplinary Knowledge & Appreciation—GPHAP Program

Degree Programs

- CONCEPTUAL KNOWLEDGE Booth
- CONCEPTUAL KNOWLEDGE Harris
- CONCEPTUAL KNOWLEDGE SSA
- CONCEPTUAL KNOWLEDGE LAW

GPHAP

- DOMAIN (HEALTH) KNOWLEDGE
- Interdisciplinary Interaction

ACTION SKILLS
- Interdisciplinary Knowledge & Appreciation

ACTIONS

OUTCOMES

Is that the best we can do??
<table>
<thead>
<tr>
<th>Structural Level</th>
<th>Description within a context of interdisciplinary learning</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uni-structural</td>
<td>Learner focuses on a relevant discipline.</td>
<td>Declarative and procedural knowledge in one discipline</td>
</tr>
<tr>
<td>(uni-disciplinary)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-structural</td>
<td>The learner acquires knowledge in several disciplines but does not integrate them.</td>
<td>Declarative and procedural knowledge in several disciplines that are related to a central theme; multidisciplinary thinking</td>
</tr>
<tr>
<td>(multi-disciplinary)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relational</td>
<td>The learner integrates knowledge from several disciplines around a central theme. Critical thinking skills are being developed as the learner becomes aware of the strengths and limitations of the perspectives offered by each discipline.</td>
<td>Interdisciplinary content thinking (declarative and procedural knowledge); critical thinking skills; some metacognitive skills; advanced epistemological beliefs</td>
</tr>
<tr>
<td>(interdisciplinary, limited to one central theme or problem)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended abstract</td>
<td>The learner acquires a knowledge structure that integrates interpretive tools (methodologies, theories, paradigms, concepts, etc.) from multiple disciplines. The learner uses metacognitive skills to monitor and evaluate his or her own thinking processes. The learner applies an interdisciplinary knowledge structure to new interdisciplinary problems or themes.</td>
<td>A well-developed interdisciplinary knowledge structure; interdisciplinary content thinking; critical thinking skills; metacognitive skills; highly advanced epistemological beliefs; transfer of interdisciplinary knowledge</td>
</tr>
<tr>
<td>(interdisciplinary, extended to other themes or problems)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table III
Application of Biggs & Collis (1982) Structural Model to Interdisciplinary Learning

<table>
<thead>
<tr>
<th>Structural Level</th>
<th>Description within a context of interdisciplinary learning</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uni-structural (uni-disciplinary)</td>
<td>Learner focuses on a relevant discipline.</td>
<td>Declarative and procedural knowledge in one discipline.</td>
</tr>
<tr>
<td>Multi-structural (multi-disciplinary)</td>
<td>The learner acquires knowledge in several disciplines but does not integrate them.</td>
<td>Declarative and procedural knowledge in several disciplines that are related to a central theme; multidisciplinary thinking</td>
</tr>
<tr>
<td>Relational (inter-disciplinary, limited to one central theme or problem)</td>
<td>The learner integrates knowledge from several disciplines around a central theme. Critical thinking skills are being developed as the learner becomes aware of the strengths and limitations of the perspectives offered by each discipline.</td>
<td>Interdisciplinary content thinking (declarative and procedural knowledge); critical thinking skills; some metacognitive skills; advanced epistemological beliefs</td>
</tr>
<tr>
<td>Extended abstract (interdisciplinary, extended to other themes or problems)</td>
<td>The learner acquires a knowledge structure that integrates interpretive tools (methodologies, theories, paradigms, concepts, etc.) from multiple disciplines. The learner uses metacognitive skills to monitor and evaluate his or her own thinking processes. The learner applies an interdisciplinary knowledge structure to new interdisciplinary problems or themes.</td>
<td>A well-developed interdisciplinary knowledge structure; interdisciplinary content thinking; critical thinking skills; metacognitive skills; highly advanced epistemological beliefs; transfer of interdisciplinary knowledge</td>
</tr>
<tr>
<td>Structural Level</td>
<td>Description within a context of interdisciplinary learning</td>
<td>Outcomes</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Uni-structural (uni-disciplinary)</td>
<td>Learner focuses on a relevant discipline.</td>
<td>Declarative and procedural knowledge in one discipline</td>
</tr>
<tr>
<td>Multi-structural (multi-disciplinary)</td>
<td>The learner acquires knowledge in several disciplines but does not</td>
<td>Declarative and procedural knowledge in several disciplines that are related</td>
</tr>
<tr>
<td>Relational (inter-disciplinary, limited to one central theme or problem)</td>
<td>The learner integrates knowledge from several disciplines around a central theme. Critical thinking skills are being developed as the learner becomes aware of the strengths and limitations of the perspectives offered by each discipline.</td>
<td>Interdisciplinary content thinking (declarative and procedural knowledge); critical thinking skills; some metacognitive skills; advanced epistemological beliefs</td>
</tr>
<tr>
<td>Plural, extended to other themes or problems</td>
<td>Integrates interpretive tools (methodologies, theories, paradigms, concepts, etc.) from multiple disciplines. The learner uses metacognitive skills to monitor and evaluate his or her own thinking processes. The learner applies an interdisciplinary knowledge structure to new interdisciplinary problems or themes.</td>
<td>Knowledge structure; interdisciplinary content thinking; critical thinking skills; metacognitive skills; highly advanced epistemological beliefs; transfer of interdisciplinary knowledge</td>
</tr>
</tbody>
</table>
Table III
Application of Biggs & Collis (1982) Structural Model to Interdisciplinary Learning

<table>
<thead>
<tr>
<th>Structural Level</th>
<th>Description within a context of interdisciplinary learning</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uni-structural (uni-disciplinary)</td>
<td>Learner focuses on a relevant discipline.</td>
<td>Declarative and procedural knowledge in one discipline</td>
</tr>
<tr>
<td>Multi-structural (multi-disciplinary)</td>
<td>The learner acquires knowledge in several disciplines but does not integrate them.</td>
<td>Declarative and procedural knowledge in several disciplines that are related to a central theme; multidisciplinary thinking</td>
</tr>
<tr>
<td>Relational (inter-disciplinary, limited to one central theme or problem)</td>
<td>The learner integrates knowledge from several disciplines around a central theme. Critical thinking skills are being developed as the learner becomes aware of the</td>
<td>Interdisciplinary content thinking (declarative and procedural knowledge); critical thinking skills; some metacognitive skills; advanced epistemological beliefs</td>
</tr>
</tbody>
</table>

Extended abstract (interdisciplinary, extended to other themes or problems)

The learner acquires a knowledge structure that integrates interpretive tools (methodologies, theories, paradigms, concepts, etc.) from multiple disciplines. The learner uses metacognitive skills to monitor and evaluate his or her own thinking processes. The learner applies an interdisciplinary knowledge structure to new interdisciplinary problems or themes. A well-developed interdisciplinary knowledge structure; interdisciplinary content thinking; critical thinking skills; metacognitive skills; highly advanced epistemological beliefs; transfer of interdisciplinary knowledge
<table>
<thead>
<tr>
<th>Structural Level</th>
<th>Description within a context of interdisciplinary learning</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uni-structural (uni-disciplinary)</td>
<td>Learner focuses on a relevant discipline.</td>
<td>Declarative and procedural knowledge in one discipline</td>
</tr>
<tr>
<td>Multi-structural (multi-disciplinary)</td>
<td>The learner acquires knowledge in several disciplines but does not integrate them.</td>
<td>Declarative and procedural knowledge in several disciplines that are related to a central theme; multidisciplinary thinking</td>
</tr>
<tr>
<td>Relational (interdisciplinary, limited to one central theme or problem)</td>
<td>The learner integrates knowledge from several disciplines around a central theme. Critical thinking skills are being developed as the learner becomes aware of the interdisciplinary content thinking (declarative and procedural knowledge); critical thinking skills; some metacognitive skills; advanced epistemological beliefs</td>
<td></td>
</tr>
<tr>
<td>Extended abstract (interdisciplinary, extended to other themes or problems)</td>
<td>The learner acquires a knowledge structure that integrates interpretive tools (methodologies, theories, paradigms, concepts, etc.) from multiple disciplines. The learner uses metacognitive skills to monitor and thinking processes. The learner applies an interdisciplinary knowledge structure to new interdisciplinary problems or themes.</td>
<td>A well-developed interdisciplinary knowledge structure; interdisciplinary content thinking; critical thinking skills; metacognitive skills; highly advanced epistemological beliefs; transfer of interdisciplinary knowledge</td>
</tr>
</tbody>
</table>
Interdisciplinary Action Skills—GPHAP Teams

Degree Programs

- Conceptual Knowledge
 - Booth
- Conceptual Knowledge
 - Harris
- Conceptual Knowledge
 - SSA
- Conceptual Knowledge
 - Law

GPHAP Course

Domain (Health) Knowledge & Multiple Bodies of Conceptual Knowledge
Interdisciplinary Action Skills—GPHAP Teams

Degree Programs

- CONCEPTUAL KNOWLEDGE
 - Booth
- CONCEPTUAL KNOWLEDGE
 - Harris
- CONCEPTUAL KNOWLEDGE
 - SSA
- CONCEPTUAL KNOWLEDGE
 - LAW

GPHAP Course

- DOMAIN (HEALTH) KNOWLEDGE & INTERDISCIPLINARY KNOWLEDGE
- Interdisciplinary Teams
 - Booth
 - Harris
 - Law
 - SSA
Interdisciplinary Action Skills—
GPHAP Teams
Interdisciplinary Action Skills—GPHAP Teams

Degree Programs

- Conceptual Knowledge
 - Booth
- Conceptual Knowledge
 - Harris
- Conceptual Knowledge
 - SSA
- Conceptual Knowledge
 - Law

GPHAP Course

- Domain (Health) Knowledge
- & Interdisciplinary Knowledge
- Interdisciplinary Teams
 - Booth
 - Harris
 - Law
 - SSA

ACTION SKILLS
 - Interdisciplinary Action Skills

CREATIVE ACTIONS
 - For Complex Problems

OUTCOMES
Why Interdisciplinary Teams?

• Outcome Argument:
 • Interdisciplinary Knowledge is ONLY gained through experience working in interdisciplinary groups
 • Can learn how to work well in Teams
 • Can learn Critical Interdisciplinary Thinking through team work

• Pragmatic Argument: Most organizations will expect our students to work in teams
 • Need to develop individual skills
 • Need to know how to collaborative effectively

• Hope for the Future
 • Only way to solve complex social health problems is to develop new integrated solutions
 • Need to train students for that—it doesn’t come naturally
Interdisciplinary Knowledge

• Facilitated when curricula
 • “balance a focus on thinking about process with a focus on learning specific content.”
 • Ivanitskaya et al. article