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This study explores the economics of charitable fund-raising. We begin by de-
veloping theory that examines the optimal lottery design while explicitly relaxing
both risk-neutrality and preference homogeneity assumptions. We test our theory
using a battery of experimental treatments and find that our theoretical predic-
tions are largely confirmed. Specifically, we find that single- and multiple-prize
lotteries dominate the voluntary contribution mechanism both in total dollars
raised and the number of contributors attracted. Moreover, we find that the op-
timal fund-raising mechanism depends critically on the risk postures of potential
contributors and preference heterogeneity.

1. INTRODUCTION

A rich literature has developed in the past several decades that systematically
examines the supply side of public goods provisioning. Leaders in the field have
grappled with the importance of altruism, fairness, reciprocity, inequity aversion,
and the like in explaining the behavior of agents in such environments.2 Yet as
Andreoni (1998) aptly points out, the demand side of charitable fund-raising re-
mains largely unexplored and many critical issues remain unresolved. One line
of research that has begun to fill these gaps is the exploration of charitable lot-
teries as a means to finance public goods. In an important study, Morgan (2000)
shows that lotteries obtain higher levels of public goods provision than a vol-
untary contributions mechanism because the lottery rules introduce additional
private benefits from contributing. This serves to reduce the gap between private
and social marginal benefits, mitigating the tendency for agents to free ride.3

∗ Manuscript received February 2005; revised October 2006.
1 The Editor, Charles Yuji Horioka, and four anonymous reviewers provided remarks that signif-

icantly improved the manuscript. Doug Davis, Glenn Harrison, John Horowitz, and Ted McConnell
also provided excellent comments during the discovery process. Discussions with James Andreoni
helped to shape the manuscript. Andreas Lange gratefully acknowledges funding by the Deutsche
Forschungsgemeinschaft (DFG) under grant LA 1333/2-1. Please address correspondence to: John
A. List, Department of Economics, University of Chicago, Chicago, IL 60637. Phone: 773-702-9811.
Fax: 773-702-8490. E-mail: jlist@uchicago.edu.

2 For general models of reciprocity see Rabin (1993), Dufwenberg and Kirchsteiger (2004), Falk
and Fischbacher (2006), and Charness and Rabin (2002); for models of inequity aversion, see Fehr and
Schmidt (1999) and Bolton and Ockenfels (2000); and on altruism, see Andreoni and Miller (2002).

3 In a related line of research, scholars have explored the use of charitable auctions as a means to
finance public goods. For example, Goeree et al. (2005) compare the performance of the single-prize
lottery with both winner-pays and all-pay auctions.
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The goals of this article are to make both theoretical and empirical advances
on the demand side of charitable fund-raising by developing and testing theory
on the optimal lottery design. An important feature of our theoretical model is
that the introduction of a distribution over prizes enables a charitable fund-raiser
to exploit individual risk preferences and potential asymmetries in underlying
marginal valuations for the public good. Our theory provides several testable pre-
dictions: (1) when agents are risk neutral and have symmetric marginal valuations
for the public good, contributions in the single-prize lottery are greater than those
in an equivalent-valued multiple-prize lottery; (2) when agents have symmetric
marginal valuations for the public good, there exists a level of individual risk aver-
sion above which contributions in the multiple-prize lottery are greater than those
in an equivalent-valued single-prize lottery; and (3) with sufficient asymmetry in
the marginal valuations for the public good, risk-neutral agents contribute more
to the public good under the multiple-prize lottery than an identical set of agents
contribute under an equivalent-valued single-prize lottery. Furthermore, we find
that equilibria exist whereby lotteries induce greater participation rates than the
voluntary contribution mechanism (VCM).

We evaluate our theoretical conjectures via a series of experimental treatments
that examines the contribution decisions of agents across a number of settings.
The first set of treatments compares the outcomes of the VCM, the single-prize
lottery, and the multiple-prize lottery for agents who have symmetric valuations
for the public good, but who may differ in revealed risk preference. A second set
of treatments introduces individual heterogeneities in the marginal valuations for
the public good.

We find results that are generally consistent with our theory. First, we find that
average contributions and participation rates under both the single- and multiple-
prize lotteries are larger than under the VCM. Second, we find that the optimal
fund-raising mechanism depends crucially on individual risk posture. For example,
an interesting data pattern not anticipated by extant theory is that the decline in
contributions to the public good with respect to increases in risk posture is greater
in the single-prize lottery than in an equivalently valued multiple-prize lottery.
Yet, these tendencies are consistent with our theory of behavior for agents with
preferences that exhibit constant absolute risk aversion (CARA). The data also
draw attention to the fact that the optimal lottery mechanism relies on the degree
of asymmetry across individual marginal valuations for the public good. Finally,
we find that total provision of the public good is largest under the single-prize
lottery.

We view the contribution of our study as threefold. First, our analysis has im-
plications for practitioners in the design of fund-raising campaigns. Second, our
theory and empirical tests highlight avenues for future empirical and theoretical
work on charitable giving. Finally, our insights underscore the theoretical proper-
ties and viability of a mechanism that can finance public goods without too much
government direction.

The remainder of the article is crafted as follows. Section 2 presents a model of
investment decisions for individuals with CARA preferences. Section 3 outlines
our experimental design. Section 4 describes our results. Section 5 concludes.



LOTTERIES TO FINANCE PUBLIC GOODS 903

2. LOTTERY THEORY

Consider an economy that is populated by agents, i = 1, . . . , n, with quasi-linear
utility functions of the form

ui = yi + hi (G),(1)

where yi is a numeraire and G represents the provision level of the public good.
Each agent is endowed with initial income w, which can be converted into the
public good G on a one-for-one basis.4 We assume hi(·) to be increasing and
concave (h′

i (·) > 0, h′′
i (·) ≤ 0), and make the standard assumption that it is socially

desirable to provide a positive amount of the public good, that is,
∑

i h′
i (0) > 1.

Assuming an interior solution, the socially optimal contribution level for each
agent is given by ∑

i

h′
i (G∗) = 1.(2)

2.1. Voluntary Contributions. Consider an organization that relies on volun-
tary contributions for public good provisioning. Denoting individual contributions
by bi and the total contribution by B, agent i would maximize her utility w − bi +
hi(B) by choosing the contribution level bi according to

h′
i (B) ≤ 1(3)

(with equality if bi > 0), which determines the Nash equilibrium provision level
GN . From concavity of hi(·), we immediately obtain the following result:

PROPOSITION 1. With quasi-linear preferences, voluntary contributions under-
provide the public good relative to first-best levels: GN < G∗.

In voluntary settings, agents fail to internalize the benefits conferred on all other
agents when investing in the public good. Thus, each agent tends to contribute less
than is socially optimal. In the extreme, that is, if h′

i (0) ≤ 1 for all i, each individual
contributes zero to the public good.5

2.2. Lotteries. To alleviate free riding, a charitable fund-raiser can link con-
tributions to the public good with the chance of winning a prize in a lottery.
Generalizing Morgan (2000) to allow for multiple prizes, we consider a lottery

4 We focus on private provisioning of public goods. Alternatively, there is an interesting line of work
that explores dual (public and private) provisioning of public goods (see, e.g., Epple and Romano,
2003).

5 In our case of quasi-linear utility, all agents who contribute under the VCM have identical marginal
valuation of the public good. Similarly, Andreoni (1988) and Fries et al. (1991) show for more general
utility functions that for large (replicated) economies only one type of agent contributes. To reverse
this standard result of free riding, motivations beyond the consumption value of the public good could
be introduced. Sugden (1982, 1984) and Andreoni (1990) are among the many interesting studies that
relax the link between utility and the level of public good provided and define utility as a function of
both the level of the public good provided and own contributions.
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that pays k ≤ n prizes, ordered by P1 ≥ · · · ≥ Pk. For ease of notation, we define
Pk+1 = · · · = Pn = 0. We assume that the total prize level distributed by the char-
ity is exogenously given by P and is taken out of the contributions. In contrast to
Morgan (2000), however, we assume that the lottery will be carried out regard-
less of whether total contributions (ticket sales) are sufficient to cover the prizes.
Thus, if contributions are less than the prize level, the charity runs a deficit.6 Total
provision of the public good is hence given by

G(B) = B − P.

Consider first the case of symmetric agents with identical valuations of the public
good, h(·) := hi(·). Each player i contributes to the public good by purchasing bi

lottery tickets. The probability player i wins prize s is denoted by π si and depends
on contribution levels. We assume that each agent can only win one prize. The
expected utility of agent i is therefore given by

EUi =
n∑

s=1

πsiρ(Ps − bi + h(B − P)),

where ρ(·) is a Bernoulli utility function. We assume that players have CARA
preferences represented as ρ(z) = −exp (−σ z)/σ , where σ denotes the level of
risk aversion. Therefore,

EUi =
n∑

s=1

πsiρ(Ps − bi + h(B − P)) = − 1
σ

n∑
s=1

πsi exp [−σ (Ps − bi + h(B − P))]

= − 1
σ

exp [−σ (Pn − bi + h(B − P))]

[
1 +

n−1∑
s=1

πsi (exp [−σ (Ps − Pn)] − 1)

]
,

(4)

where πni = 1 − ∑n−1
s=1 πsi .

Under the lottery rules, the probabilities of agent i winning prize s depend on
the contributions of all agents. Assuming that the other (symmetric) players each
contribute b−i , these probabilities are given by

π1i = bi

bi + (n − 1)b−i

π2i = (n − 1)b−i

bi + (n − 1)b−i

bi

bi + (n − 2)b−i

· · ·

πsi = (n − 1)b−i

bi + (n − 1)b−i

(n − 2)b−i

bi + (n − 2)b−i
· · · bi

bi + (n − s)b−i
.

(5)

6 Canceling the lottery and returning the money paid for lottery tickets to all contributors is often
infeasible for real-world charities (List and Lucking-Reiley, 2002). In addition, a charity might decide
to run a loss from a charity event if by doing so it can generate a warm list of potential donors that
reduces the solicitation costs in subsequent fund-raising drives.
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For example, π2i is the probability that some other agent wins the first prize
multiplied by the probability of agent i winning the second prize (conditional on
all the first-prize winner’s tickets taken out). For a symmetric equilibrium (bi =
b−i = b), these probabilities reduce to

πsi = 1
n

for all s = 1, . . . , n.(6)

The marginal effect of bi on the probabilities, π si , is given by

∂πsi

∂bi
= πsi

bi
−

s∑
j=1

πsi

bi + (n − j)b−i
,(7)

which gives the following representation of the symmetric equilibrium:

∂πsi

∂bi
= 1

nb

(
1 −

s−1∑
j=0

1
n − j

)
=:

1
nb

H(s).(8)

Using these preliminaries, we now discuss the equilibrium contribution levels of
agents in a multiple-prize lottery. For an interior solution, the first-order condition
for agent i who maximizes her expected utility (4) is given by

0 = σ (1 − h′(B − P))

+
n−1∑
s=1

(
σ (1 − h′(B − P))

1
n

+ 1
nb

H(s)
)

(exp [−σ (Ps − Pn)] − 1).

Rearranging this equation provides the following expression for the optimal con-
tribution level of an agent in the multiple-prize lottery:7

B(1 − h′(B − P)) = R := n
σ

n−1∑
s=1

H(s) (1 − exp [−σ (Ps − Pn)])

1 +
n−1∑
s=1

exp [−σ (Ps − Pn)]

.(9)

Because the left-hand side of (9) is increasing in B, a symmetric equilibrium in
which contributions cover prize payments exists only if for B = P we have P(1 −
h′ (0)) < R.

Interestingly, equilibrium contributions depend solely on prize differencesPs −
Pn. The intuition is that any arbitrary small contribution guarantees the agent the

7 Note that the right-hand side R of (9) does not depend on the valuation h(·) of the public good. For
all h(·), equilibrium contributions are increasing in R. Thus, the discussion of optimal lottery design is
independent of the specifics of the underlying public good.
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minimum prizePn, which is equivalent to a certain payment and does not change
the incentives to contribute to the public good. Hence, it is always optimal for the
fund-raiser to set the lowest prize value equal to 0 and award fewer prizes than
there are agents competing for them.

2.3. Optimal Lottery—Symmetric Risk-Neutral Players. For risk-neutral
agents, applying l’Hospital’s rule for σ → 0 to condition (9) leads to the following
condition defining an optimal contribution level:

B(1 − h′(B − P)) =
n−1∑
s=1

H(s)(Ps − Pn).(10)

Since H(s) (defined in (8)) is decreasing in s and
∑

t Pt = P, condition (10) im-
plies that optimally only one prize P1 = P > 0 should be provided.8 Equilibrium
contribution levels exceed total prize payments and are given by

B(1 − h′(B − P)) = n − 1
n

P,(11)

as our assumption that the public good is socially desirable, that is, nh′ (0) > 1,
this immediately implies that P(1 − h′(0)) < n − 1

n P. Similar to Morgan (2000),
we are thus able to show the existence of a symmetric equilibrium in which total
contributions to the public good are sufficient to cover the prize payments. Because
condition (11) can only be satisfied if h′ (B − P) < 1 and B > 0, this lottery leads
to a net provision level larger than that obtained by a VCM.

PROPOSITION 2 (Optimal Lottery—Risk-Neutral Players). If a lottery is used
to finance a public good and agents are risk neutral, contributions are maximized
by providing only one prize whenever the overall prize budget is fixed. The lottery
yields a provision level of the public good in excess of the VCM level GN .

2.4. Charitable Lotteries—Symmetric, Risk-Averse Agents. Having estab-
lished that the single-prize lottery is indeed the optimal lottery for symmetric,
risk-neutral players, we turn to an examination of relaxing risk neutrality and
symmetry assumptions. If agents are risk averse and (9) holds, agents receive less
utility from the chance of winning one big prize. Their expected utility can be
increased by flattening the payoffs, that is, by splitting the single prize into two
or several smaller prizes. Hence, it may be optimal for the fundraiser to provide
more than one prize. Indeed, it is possible that the introduction of multiple prizes
is necessary to cover the costs of the lottery. For example, this would be the case if

8 An interesting parallel to the optimality of providing a single prize was pointed out by a referee:
Moldovanu and Sela (2001) consider a contest setting (or equivalently an all-pay auction setting) with
incomplete information on effort costs. They show that the provision of a single prize maximizes the
average effort level with a linear effort–cost relationship, whereas multiple prizes might be optimal
for nonlinear effort–costs.
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the right-hand side of condition (9) satisfies P(1 − h′ (0)) > R for the single-prize
lottery, whereas for an appropriately designed multiprize lottery, the inequality is
reversed.

Note, however, that for any given distribution of prizes the right-hand side
of (9) approaches 0 as risk aversion goes to infinity. Therefore, the net public
good provision converges toward that obtained under a VCM, GN . Yet, in such
instances, lottery contributions will always cover the prize payments provided that
h′(0) > 1. In contrast, aggregate contributions will not cover the prizes if h′(0) <

1, and agents are sufficiently risk averse. In this latter case, the fund-raiser will run
a deficit and run the lottery.

PROPOSITION 3 (Multiple-Prize Lotteries—Symmetric Risk-Averse Players). If
the total prize budget is fixed at P and the number of (potential) participants is given
by n, more than one prize should be provided if

σ > σ∗ = 1
P

log
[

n2 − 2n + 2
n2 − 3n + 2

]
.

If the level of risk aversion is large enough, the optimal lottery provides n – 1 prizes.
Provided that h′(0) > 1, the provision from any lottery converges toward the VCM
level GN from above if risk aversion gets infinitely large. The lottery contributions
fall short of the prize level if h′(0) < 1 and agents are sufficiently risk averse.

PROOF OF PROPOSITION 3. See the Appendix.

Risk aversion therefore provides one impetus for the use of a multiple-prize
lottery. As shown in Proposition 3, the critical level of risk aversion necessary to
induce a charitable fund-raiser to optimally introduce (at least) a second prize is
decreasing in both the prize budget P and the number of participants n. Similar
arguments hold for the introduction of up to n – 1 prizes. Consequently, for a
charity to maximize the provision level of the public good, it should consider the
risk posture of potential contributors, particularly when designing high-valued
lotteries with a large number of participants. However, it should be noted that
charitable lotteries may fail to generate a net increase in public good provision
relative to a VCM when potential donors are sufficiently risk averse.

2.5. Lottery—Asymmetric Risk-Neutral Agents. Thus far we have assumed
that agents have identical preferences for the public good and have thus focused
on symmetric equilibria. In this section, we explore behavior among risk-neutral
agents who are asymmetric in their valuations hi(B) of the public good B. The fol-
lowing proposition derives conditions under which a fund-raiser should introduce
at least a second prize (i.e., under which a shift from P1 = P and P2 = 0 to P1 =
P − ε and P2 = ε for small ε > 0 leads to increased contributions).

PROPOSITION 4. For asymmetric risk-neutral agents, the lottery contributions are
sufficient to cover the prizes. If under a single-prize lottery a set S of k agents
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contribute a total of B1 to the public good and their marginal valuations of the
public good are given by h′

i (B1 − P), it is optimal to introduce (at least) a second
prize if [

1
k

∑
i∈S

1 − h′
i (B1 − P)

] [
1
k

∑
i∈S

1
1 − h′

i (B1 − P)

]
>

(k − 1)2

k(k − 2)
(>1).(12)

The lottery leads to a provision level in excess of the VCM level GN .

PROOF OF PROPOSITION 4. See the Appendix.

For symmetric valuations of the public good, the left-hand side of (12) equals 1.
Hence, the inequality cannot hold and contribution levels will decrease if one shifts
weight to the second prize. If, however, agents are heterogeneous with respect to
their marginal valuations of the public good, the left-hand side of the equation
is larger than 1 and the introduction of a second prize may increase aggregate
contributions.

The intuition for this result is straightforward: compared to high marginal val-
uation types, contributions to the public good and lottery are expensive for low
marginal valuation agents. Therefore, given the contributions of high marginal
value types, the low types place only a small probability on winning the prize
and may decide not to contribute. If multiple prizes are provided, however, the
chances of winning one of these prizes increase, leading to positive contributions.
Given a large number of such low-valuation types, the total contributions to the
public good may increase.

EXAMPLE 1. Assume two types of agents with linear marginal valuation of the
public good: h′

i (G) = h̄i G, h̄1 = 0.75, and h̄2 = 0.5. The number of type 1 agents
is given by n1 = 2, the total number is given by n = n1 + n2. One can easily show
that only type 1 agents contribute if one prize is provided: b1 = P and b2 = 0.

Using Proposition 4, we obtain that the fund-raiser can improve on the perfor-
mance of the single-prize lottery if

(0.25n1 + 0.5n2)(4n1 + 2n2) >
(n − 1)2n

n − 2

⇔ (n − 1)(2 + n) >
(n − 1)2n

n − 2

⇔ n > 4

By providing two prizes, the fund-raiser provides higher incentives for type 2
agents to contribute and thereby increase the aggregate contribution level if more
than two low-type agents exist: n2 = n − n1 > 2.

Example 1 highlights a potential “double-dividend” of the multiprize lottery:
Under certain parameter values, both aggregate contributions and participation
rates are increased. Indeed, this represents a general attractiveness of lotteries
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versus a VCM. Fund-raising strategists around the globe understand the impor-
tance of building a “donor development pyramid,” which includes as its base
first-time donors. The base is commonly understood to be the most difficult, yet
most important, stage in building a successful long-term fund-raising effort.

3. EXPERIMENTAL DESIGN

In summary, our theory provides several testable predictions: (1) When agents
are risk neutral and have symmetric marginal per capita returns (MPCRs) for
the public good, contributions in the single-prize lottery are greater than those
in an equivalently valued multiple-prize lottery; (2) when agents have symmet-
ric MPCRs, there exists a level of risk aversion, σ , above which contributions
in the multiple-prize lottery are greater than those generated in an equivalently
valued single-prize lottery; and (3) there exists a level of individual MPCR hetero-
geneity for which risk-neutral agents contribute more to the public good under the
multiple-prize lottery than the same set of agents contribute under an equivalently
valued single-prize lottery.

We design an experiment that follows our theory to examine these conjec-
tures. Table 1 provides a design summary. We begin with the traditional control
treatment that induces symmetric MPCRs, denoted VCM-Symmetric. Our other
VCM treatment introduces heterogeneous valuations for the public good, but
holds constant the average MPCR: denoted VCM-Asymmetric. We cross both
of these treatments with comparable single-prize (denoted SPL-Symmetric and
SPL-Asymmetric) and multiple-prize treatments (denoted NPL-Symmetric and
NPL-Asymmetric), leading to six treatments.

All treatments were conducted at the University of Maryland–College Park.
The symmetric treatments consisted of five sessions (one for the VCM and two
each for the NPL and SPL) held on separate days with different subjects. The
asymmetric treatments consisted of six sessions (two sessions for each treatment)
held on separate days with different subjects. Each session consisted of two parts,
the first to gather information on contribution levels across the various treatments.
The second part was included to gather data on individual risk postures.

3.1. Part 1. The first part of each session was designed to compare contri-
bution levels across the SPL, the NPL, and the VCM. The VCM treatment and
the SPL follow the instructions from Morgan and Sefton (2000) to enable direct
comparison. Table 1 summarizes the key features of our experimental design and
the number of participants in each session. Subjects were recruited on campus
using posters and e-mails that advertised subjects could “earn extra cash by par-
ticipating in an experiment in economic decision-making.” The message stated
that students would be paid in cash at the end of the session and that sessions
generally take less than an hour and a half. The same protocol was used to ensure
that each session was run identically.

Each subject was seated at linked computer terminals that were used to transmit
all decision and payoff information. The sessions each consisted of 12 rounds, the
first 2 being practice. The subjects were instructed that the practice rounds would
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TABLE 1
EXPERIMENTAL DESIGN

Session 1 Session 2

VCM-Symmetric
MPCR = 0.30 N = 20 subjects
Endowment = 100 10 rounds

200 observations
SPL-Symmetric

MPCR = 0.30 N = 20 subjects N = 16 subjects
Endowment = 100 10 rounds 10 rounds
Prize = 80 200 observations 160 observations

NPL-Symmetric
MPCR = 0.30 N = 20 subjects N = 16 subjects
Endowment = 100 10 rounds 10 rounds
Prizes = {50, 20, 10} 200 observations 160 observations

VCM-Asymmetric
MPCR = {0.9, 0.1, 0.1, 0.1} N = 20 subjects N = 12 subjects
Endowment = 100 10 rounds 10 rounds

200 observations 120 observations
SPL-Asymmetric

MPCR = {0.9, 0.1, 0.1, 0.1} N = 20 subjects N = 16 subjects
Endowment = 100 10 rounds 10 rounds
Prize = 80 200 observations 160 observations

NPL-Asymmetric
MPCR = {0.9, 0.1, 0.1, 0.1} N = 20 subjects N = 16 subjects
Endowment = 100 10 rounds 10 rounds
Prize = {50, 20, 10} 200 observations 160 observations

NOTES: Cell entries provide the experimental design and parameters for each
treatment. For example, in the VCM-Symmetric treatment, the MPCR =
0.30 and the subjects were endowed with 100 tokens. In this treatment, there
was one session of 20 subjects that lasted for 10 rounds. VCM, SPL, and NPL
denote voluntary contributions mechanism, single-prize lottery, and multiple-
prize lottery. Symmetric and Asymmetric denote induced preferences for the
public good: in the symmetric case, each player has an MPCR of 0.30; in the
asymmetric case, the MPCRs are 0.9, 0.1, 0.1, and 0.1 for the four players.

not affect earnings. Once the individuals were seated and logged into the terminals,
a set of instructions and a record sheet were handed out. The subjects were asked
to follow along as the instructions, which are available on request, were read
aloud. After the instructions were read and any questions were answered, the first
practice round began.

At the beginning of each round, subjects were randomly assigned to groups of
four. The subjects were not aware of whom they were grouped with, but they did
know that the groups changed every round. Each round the subjects were endowed
with 100 tokens. Their task was simple: decide how many tokens to place in the
group account and how many to place in their private account. After all subjects
made their choice, the computer informed them of the total number of tokens
placed in their group account, the number of points from the group account and
the private account, as well as any bonus points that were earned. The payoff for
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the round was determined by summing the points from the group account, points
from the private account, and any bonus points received.

The points for each round were determined as follows. For all sessions, subjects
received 1 point for each token placed in their private account. In the five sessions
with symmetric valuations for the public good, they were awarded 0.3 points for
each token placed in the group account by themselves and the other members of
their group. In the six sessions with asymmetric valuations for the public good,
subjects were awarded either 0.9 or 0.1 points for each token placed in the group
account by themselves and the other members of their group.9 In addition, each
session had a different method for earning bonus points.

We follow Morgan and Sefton (2000) by adding the cost of the prize (80 tokens)
to the group account in the VCM, which makes the VCM treatment comparable
to the lottery treatments. In the symmetric VCM session, all subjects, regardless
of their contributions to the group account, therefore earned 24 bonus points; in
the asymmetric VCM session, subjects received either 72 or 8 bonus points. These
bonus points represent the value of 80 tokens placed in the group accounts.

In the SPL sessions, group members competed for a lottery prize of 80 points.
Each subject’s chance of winning the prize was based on his or her contribution
to the group account compared with the aggregate number of tokens placed in
the group account. For the NPL sessions, group members competed for one of
three lottery prizes of values 50, 20, and 10 points, respectively. As in the SPL
sessions, subjects’ chances of winning the first prize were based on his or her
share of group contributions. The three prizes were awarded in order of value,
and without replacement, meaning that in each round, three of the four group
members would receive some bonus points.

At the end of the experiment, one of nonpractice rounds was chosen at random
as the round that would determine earnings.10 Subjects were paid $1.00 for every
15 points earned. They recorded their earnings for Part 1 of the session and added
those to their earnings for Part 2 of the experiment to determine total earnings
for the session.

3.2. Part 2. The second part of the session was designed to lend insights into
subjects’ risk postures and link those preferences to behavior in the public goods
game described earlier. Attempting to measure risk postures in one game and
applying them to more closely explore behavior in another is not novel to this
study (see, e.g., Eckel and Wilson, 2004). There are issues, however, with such
an approach, including whether risk preferences are stable across games, over

9 In the asymmetric sessions, there was one agent in each group of four who had a valuation for
the public account of 0.9 and three agents who had valuations of 0.1 for tokens placed in the group
account. Individual valuations were held constant throughout the session, and each group of four had
exactly one member with the high valuation and three members with the low valuation.

10 This practice has become increasingly common in economics experiments. With a fixed budget,
this approach permits us to observe a large number of individual decisions over (perhaps) higher pay-
offs for each decision since only one decision is used for payment. Laury (2005) reports an experiment
that tests this approach and finds evidence in favor of its effectiveness (i.e., subjects do not appear to
scale-down payoffs to account for the random selection that is made).
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time, etc. and whether individual unobservables that influence risk posture are
correlated with behavior in the public goods game. Clearly, because risk posture
is not exogenously imposed on players (such as MPCRs are induced in the public
goods game) an important caveat must be placed on the results from such an
exercise.

In this part of the session, the low payoff treatment of Holt and Laury (2002) was
replicated with all values multiplied by a factor of 4 (the instructions are available
on request).11 In each of the 11 sessions, this part was conducted in an identical
manner. The treatment is based on ten choices between paired lotteries (see the
Appendix). The payoff possibilities for Option A, $8.00 or $6.40, are much less
variable than those for Option B, $15.40 or $0.40, which was considered the risky
option. The odds of winning the higher payoff for each of the options increase with
each decision. The paired choices are designed such that a risk-neutral individual
should choose Option A for the first four decisions and then switch to Option B
for the remaining six decisions. The paired choices are also designed to determine
degrees of risk aversion. The implied CARA risk preferences for our experimental
parameters are summarized in the Appendix.

On completion of Part 1 of the session, instructions and a decision sheet were
handed out. After the directions were read and questions were answered, the
subjects were asked to complete their decision sheets by choosing either A or B
for each of the 10 decisions. The subjects were instructed that one of the decisions
would be randomly selected ex post and used to determine their payoffs. Part of a
deck of cards was used to determine payoffs, cards 2–10 and the Ace to represent 1.
After each subject completed his or her decision sheet, a monitor would approach
the desk and randomly draw a card twice, once to select which of the 10 decisions
to use, and a second time to determine what the payoff was for the option chosen,
A or B, for the particular decision selected. After the first card was selected, it was
placed back in the pile, the deck was reshuffled, and the second card was drawn.

After all the subjects’ payoffs were determined, they combined their payoff
from Part 1 with that of Part 2 to compute their final earnings. The final payoffs
were then verified against the computer records, and subjects were paid privately
in cash for their earnings. Each of the sessions took approximately 75 minutes and
subjects earned an average of $18.79 for participating.

4. RESULTS

Our experimental design enables us to test a number of theoretical predictions
regarding contribution levels across our various treatments. We craft the results
summary by first pooling the data across subjects of all risk postures, but later
explore the effects of risk preference on contribution schedules. This approach
permits a comparison of our results with the voluminous public goods literature,
which implicitly assumes risk neutrality, and therefore represents joint hypothesis
testing in some cases.

11 The payoffs for the Holt and Laury experiment were multiplied by a factor of 4 so that the
domain of earnings from this experiment ($0.40, $15.40) would correspond with the domain of potential
earnings from the public goods game ($1.20, $29.33).
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TABLE 2
EXPERIMENTAL RESULT—MEAN CONTRIBUTION LEVELS BY TREATMENT

Mean Donation

High-Valuation Low-Valuation
All Agents Agents Only Agents Only

VCM-Symmetric 22.845 tokens
(17.336 tokens)

SPL-Symmetric 42.647 tokens
(18.531 tokens)

NPL-Symmetric 32.830 tokens
(20.998 tokens)

VCM-Asymmetric 25.425 tokens 50.85 tokens 16.917 tokens
(24.269 tokens) (32.774 tokens) (23.436 tokens)

SPL-Asymmetric 47.228 tokens 74.833 tokens 38.026 tokens
(27.271 tokens) (22.287 tokens) (22.284 tokens)

NPL-Asymmetric 40.95 tokens 63.9 tokens 33.3 tokens
(28.913 tokens) (35.707 tokens) (22.135 tokens)

NOTES: Cell entries provide the mean and standard deviation for each treatment. For
example, in the VCM-Symmetric treatment, the average token contribution was 22.845
with a standard deviation of 17.336 tokens. VCM, SPL, and NPL denote voluntary
contributions mechanism, single-prize lottery, and multiple-prize lottery. Symmetric and
Asymmetric denote induced preferences for the public good: In the symmetric case, each
player has an MPCR of 0.30; in the asymmetric case, the MPCRs are 0.9, 0.1, 0.1, and
0.1 for the four players.

Our first hypothesis concerns whether lotteries introduce a compensating ex-
ternality that serves to attenuate the tendency for agents to free ride in every
treatment. This hypothesis is directly testable using our experimental data and
implies that mean contributions in our symmetric (asymmetric) lottery sessions
should be greater than mean contributions in our symmetric (asymmetric) VCM
sessions.12 Table 2 provides mean contribution levels for each of our treatments.

As can be seen from Table 2, contribution levels in the two lottery treatments
(SPL and NPL) are greater than those in the VCM when marginal valuations
are either symmetric or asymmetric: mean contribution levels were 42.7 (32.8)
tokens in the symmetric SPL (NPL) treatment and were 47.2 (41.0) tokens for the
asymmetric SPL (NPL) treatment, significantly larger than contributions under
the VCM: 22.9 (25.4) tokens in the symmetric (asymmetric) treatments.

Statistical support of these results can be found in Table 3, which provides
differences in mean contribution levels across treatment. Entries in the table pro-
vide the difference between the mean contributions in the column treatment with
the corresponding mean contribution level in the row treatment. For example, the
entry in row 1 column 1 indicates that mean contribution levels in the symmet-
ric SPL treatment were 19.8 tokens greater than contributions in the symmetric

12 Of course, under our design our model predicts that VCM contributions should be 0, whereas
contributing all tokens would be efficient.
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TABLE 3
DIFFERENCE IN MEAN CONTRIBUTION LEVELS

SPL- NPL- VCM- SPL- NPL-
Symmetric Symmetric Asymmetric Asymmetric Asymmetric

VCM-Symmetric 19.802∗∗ 9.986∗ 2.58 24.383∗∗ 18.105∗∗
SPL-Symmetric −9.817∗∗ −17.222∗∗ 4.581 −1.697
NPL-Symmetric −7.405∗ 14.397∗∗ 8.12∗
VCM-Asymmetric 21.803∗∗ 15.525∗∗
SPL-Asymmetric −6.277

∗∗Denotes statistically significant at the p < 0.05 level.
∗Denotes statistically significant at the p < 0.10 level.
NOTES: Cell entries provide the difference in mean contribution levels between the col-
umn and row treatments. For example, the difference in mean contributions between the
symmetric SPL sessions and the symmetric VCM treatment is 19.802 tokens with this
difference being statistically significant at the p < 0.05 level using a Mann–Whitney test.
VCM, SPL, and NPL denote voluntary contributions mechanism, single-prize lottery,
and multiple-prize lottery. Symmetric and Asymmetric denote induced preferences for
the public good: In the symmetric case each player has an MPCR of 0.30; in the asym-
metric case the MPCRs are 0.9, 0.1, 0.1, and 0.1 for the four players.

VCM treatment, a difference that is statistically significant at the p < 0.05 level
using the Mann–Whitney test.13 In the symmetric (asymmetric) NPL treatment,
mean contribution levels were 10 tokens (15.5 tokens) greater than those in the
symmetric (asymmetric) VCM treatment, and both of these differences are sta-
tistically significant at conventional levels. Figure 1 shows that these differences
are robust to period, as the treatment effect exists in all 10 periods, but is the
largest in magnitude in latter periods, when contribution rates decay in the VCM
treatments.

Overall, these data generate our first set of results:

RESULT 1a. Mean contribution levels in the single-prize lottery (SPL) are
greater than mean contribution levels in the VCM for both the symmetric and
asymmetric MPCR sessions.

RESULT 1b. Mean contribution levels in the multiple-prize lottery (NPL) are
greater than mean contribution levels in the VCM for both the symmetric and
asymmetric MPCR sessions.

The first part of Result 1a replicates the findings of Morgan and Sefton (2000),
who used a higher MPCR of 0.75. The second part of Result 1a and Result 1b are
novel to the literature.

13 In deriving the Mann–Whitney test statistic, we use as the unit of observation the mean con-
tribution levels for each agent in the session. Thus, we are basing the test statistic on a comparison
of 36 observations for the symmetric and asymmetric lottery sessions versus 20 (32) observations in
the symmetric (asymmetric) VCM. Yet, it might be the case that data within sessions are not statisti-
cally independent. To attenuate these concerns, we have run regression models that include controls
for individual and session-specific random effects. These results, which are available on request, are
consonant with the results presented in the text.
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FIGURE 1

MEAN CONTRIBUTIONS PER PERIOD—BY TREATMENT

4.1. Single- Versus Multiple-Prize Lottery. Our theory provides a number
of testable hypotheses regarding the performance of the SPL versus the NPL
conditioned on the underlying distribution of marginal valuations for the public
good. For symmetric, risk-neutral agents, contributions in a lottery that provides
a single prize should dominate those obtained from an equivalently valued NPL.
This insight is contained in Table 4, which provides Nash equilibrium predictions
for contribution levels across our four lottery treatments. As rows 1 and 2 of
Table 4 illustrate, in our environment, total contribution levels in the symmetric
one-prize lottery should exceed those from the symmetric NPL by approximately
21 tokens.

This leads to our second testable hypothesis: contributions in the symmetric SPL
should be greater than those in the symmetric NPL if risk neutrality represents
a reasonable approximation of the risk posture of our subjects. Table 2 indicates
that mean contribution levels for agents in the SPL treatment was 42.7 tokens,
whereas mean contribution levels in the NPL treatment was 32.8 tokens.

Further statistical support of this insight is provided in Table 3 and Figure 1.
As indicated in the table, the difference in contribution levels between these two
treatments of 9.8 tokens is statistically significant at the p < 0.05 level using a
Mann–Whitney test. This difference is roughly one-half as large as our theoretical
prediction, yet if our sample includes agents of varying risk postures this result
might follow (we return to this possibility below). These data lead to our next
result:



916 LANGE, LIST, AND PRICE

TABLE 4
NASH EQUILIBRIUM PREDICTIONS (RISK NEUTRAL AGENTS)—LOTTERY TREATMENTS

Total Group Individual High-Valuation Low-Valuation
Contributions Donation Agents Agents

SPL-Symmetric 85.7 tokens 21.425 tokens
NPL-Symmetric 64.4 tokens 16.1 tokens
SPL-Asymmetric 85.7 tokens 76.5 tokens 3.1 tokens
NPL-Asymmetric 94.06 tokens 68.7 tokens 8.5 tokens

NOTES: Cell entries provide the Nash equilibrium predictions for risk-neutral agents in our four lot-
tery treatments. For example, in the symmetric single-prize lottery (SPL-Symmetric), each agent is
predicted to contribute 21.425 tokens to the public account. In the asymmetric single-prize lottery,
the high-valuation agent is predicted to contribute 76.5 tokens to the public good and the three low-
valuation agents are each predicted to contribute 3.1 tokens. VCM, SPL, and NPL denote voluntary
contributions mechanism, single-prize lottery, and multiple-prize lottery. Symmetric and Asymmetric
denote induced preferences for the public good: In the symmetric case, each player has an MPCR of
0.30; in the asymmetric case, the MPCRs are 0.9, 0.1, 0.1, and 0.1 for the four players.

RESULT 2. Agents in the symmetric SPL treatments contribute more to the
public good than do agents in the symmetric NPL treatment.

We have found evidence suggesting that, in general, agents with symmetric pref-
erences for the public good prefer the SPL. Our theory also provides several
testable predictions regarding asymmetries in marginal valuations of the public
good. Indeed, when asymmetries are introduced, a series of conjectures results for
risk-neutral agents. First, contributions in the symmetric SPL are statistically in-
distinguishable from contributions in the asymmetric SPL. Second, contributions
in the asymmetric NPL are greater than contributions in the asymmetric SPL.
Third, contributions in the asymmetric NPL are greater than contributions in the
symmetric NPL.

A test of these theoretical conjectures can be carried out by examining data
across the symmetric and asymmetric lotteries. Table 4 provides a summary of the
Nash equilibrium predictions for contribution levels in all cases. The table pro-
vides the basis for the various hypotheses. For example, total contributions in the
asymmetric NPL should exceed those from the asymmetric SPL by approximately
8 tokens. This increase is composed of two parts: although the high-valuation
agent (MPCR = 0.9) decreases contributions by 7.8 tokens, this decrease is offset
by an increase in contributions of 16.2 tokens by the three low-valuation agents
(MPCR = 0.1).

Table 3 provides statistical evidence concerning this set of results. The data show
several interesting patterns. For example, we find that average contributions in the
symmetric SPL of 42.6 tokens are not significantly different from the 47.2 tokens
contributed in the asymmetric SPL. This null result is consonant with our theoret-
ical predictions. However, our finding that contributions in the asymmetric NPL
are statistically indistinguishable from contributions in the two SPL treatments
(41 tokens vs. 47.2 and 42.6 tokens, respectively) is at odds with our theory. This
result is surprising given that in pilot experiments using an MPCR averaging 0.75,
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we found statistically significant results suggesting that contributions in the NPL
dominate contributions in the SPL. Indeed, if we pooled those data with the data
herein, statistical significance is achieved as well.14

A further insight is that contributions in the asymmetric NPL weakly dominate
contributions in the symmetric NPL: Table 3 shows that average contributions in
the asymmetric NPL sessions are 8.12 tokens greater than those in the symmetric
NPL sessions, with this difference significant at the p < 0.10 level. This result is
consistent with our theory. In sum, these insights provide three new results:

RESULT 3a. Contributions in the symmetric single-prize lottery are statistically
indistinguishable from contributions in the asymmetric single-prize lottery.

RESULT 3b. Contributions in the asymmetric multiple-prize lottery are statisti-
cally indistinguishable from contributions in the single-prize lottery.

RESULT 3c. Contributions in the asymmetric multiple-prize lottery weakly dom-
inate contributions in the symmetric multiple-prize lottery.

4.2. Lottery Incentives and the Tendency to Free Ride. One theoretical pre-
diction that necessarily falls out of our model is that charitable lotteries attenuate
the tendency for strong free riding. Theoretically, charitable lotteries induce pos-
itive donations from agents that would not otherwise contribute to the public
good/charity under a VCM. Furthermore, our theory predicts that under our pa-
rameter values, there is a greater incentive for low-value agents to give in the NPL
than in the SPL. Given that most charitable fund-raising guides highlight the value
of securing a “warm list” of donors who have previously given, charitable lotteries
might provide a double dividend for fund-raisers.

To examine whether the tendency to strongly free ride is attenuated by the
lottery incentives, we estimate a random effects probit model. In estimating the
model, we make use of the random effects probit specification of Butler and Moffitt
(1982),

Tit = β ′ Xit + eit eit ∼ N[0, 1],

where Tit equals unity if agent i donated 0 in period t, and equals 0 otherwise,
and Xit are model covariates. The vector Xit includes treatment dummies and a
one-period-lagged value of the total group donations for agent i.

Table 5 provides empirical results for our estimated random effects probit
model. Testing the hypothesis that individuals are less likely to strongly free ride
in our lottery treatments is equivalent to testing whether the estimated coeffi-
cients on the indicators for our four lottery sessions are negative and statistically
significant. Results from our model support this hypothesis. As indicated in col-
umn 2, the estimated coefficients on all four lottery indicators are negative and
statistically significant at the p < 0.01 level. These coefficient estimates suggest
that conditioned on underlying model covariates, agents in the lottery treatments
are less likely to contribute 0 than in an equivalent VCM.

14 These results, and results from our pilot data, are available on request.
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TABLE 5
RANDOM EFFECTS PROBIT OF FREE-RIDING BEHAVIOR

Tit = 1 If Agent i
Free Rides in Period t

Constant −0.5258
(0.273)

NPL-Symmetric −1.224∗∗
(0.308)

SPL-Symmetric −1.345∗∗
(0.206)

VCM-Asymmetric −0.747∗
(0.325)

SPL-Asymmetric −1.318∗∗
(0.378)

NPL-Asymmetric −2.289∗∗
(0.421)

One-period-lagged group donations −0.002∗∗
(0.0009)

Total number of observations 1620
Total number of agents 180

∗∗Denotes statistically significant at the p < 0.01 level.
∗Denotes statistically significant at the p < 0.05 level.
NOTES: Cell entries provide parameter estimates from a ran-
dom effects probit model where Tit = 1 if agent i contributed
0 to the public good in period t. For example, the negative and
significant coefficient on the symmetric N-prize lottery treat-
ment dummy variable suggests that, relative to the symmet-
ric VCM, agents in this treatment are less likely to free ride
in any given period. VCM, SPL, and NPL denote voluntary
contributions mechanism, single-prize lottery, and multiple-
prize lottery. Symmetric and Asymmetric denote induced
preferences for the public good: In the symmetric case, each
player has an MPCR of 0.30; in the asymmetric case, the
MPCRs are 0.9, 0.1, 0.1, and 0.1 for the four players.

Further support for this insight is provided by t-tests comparing the estimated
parameter values for the various lottery treatments with the parameter estimate
for the VCM treatment. For the symmetric lottery sessions, the estimated coeffi-
cients on both the SPL and NPL are smaller than the associated parameter for the
VCM (the constant term in the regression) at the p < 0.05 level of significance.
For the asymmetric lottery treatments, the coefficient estimate of the SPL (NPL)
is less than the estimated coefficient on the VCM at the p < 0.10 (p < 0.05) level
of significance.15 We conclude that

15 Furthermore, parameter estimates are consistent with our theoretical prediction that strong free-
riding incentives are lower in the asymmetric NPL than the asymmetric SPL. Agents in the asymmetric
NPL are approximately 1.2% less likely to free ride than in the asymmetric SPL, with this difference
significant at the p < 0.05 level. Estimated probabilities are evaluated at the mean value for one-period-
lagged group donations in the respective SPL (188.8 tokens) and NPL (168.3 tokens) treatments.
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RESULT 4. The introduction of a charitable lottery attenuates the tendency of
agents to “strongly free ride,” that is, increases the number of contributing agents.

4.3. Lottery Incentives and the Provision of the Public Good. Thus far we
have focused on contributions of individuals in the various treatments. A further
prediction of our theory is that lotteries can increase the total provision of the
public good. Recall that in the lotteries the exogenous prize amount was 80 tokens.
Accordingly, we must account for these prizes by subtracting 20 tokens from each
individual’s contribution in the lottery treatments. Following Morgan and Sefton
(2000), we provide Table 6, which summarizes the total provision of the public
good across the various treatments for the final round of play. We also provide
results from a Wilcoxon Rank-Sum test on whether the total public good provision
is larger in the lottery treatments than the VCM treatments.

The data highlight the power of the lottery mechanism. In all four comparisons,
the data indicate that lotteries provide greater levels of the public good than the
comparable VCM. Yet, this enthusiasm should be tempered, as the noisiness of
the data renders all statistical tests insignificant. These results are in line with those
in Morgan and Sefton (2000), although they do find some marginal significance.

TABLE 6
DIFFERENCE IN PUBLIC GOOD PROVISION—FINAL ROUND ONLY

Net Multiple-Prize Single-Prize
Provision Lottery Lottery

Symmetric sessions
VCM 35.0 3.44 31.44

(35.7) (0.45) (0.15)
NPL 38.4 28.0

(65.5) (0.20)
SPL 66.4

(74.6)
Asymmetric sessions

VCM 75.4 1.74 20.96
(48.9) (0.47) (0.23)

NPL 77.1 19.22
(42.2) (0.24)

SPL 96.3
(66.6)

NOTES: Cell entries in column 1 provide the average net provision level of
the public good in round 10 for each of our experimental treatments. The
associated standard deviations are in parentheses. Columns 2 and 3 provide
the difference in average provision levels between the associated column and
row treatments. The p-value for a one-sided Wilcoxon Rank-Sum test that the
column value is greater than the associated row value is given in parentheses.
VCM, SPL, and NPL denote voluntary contributions mechanism, single-prize
lottery, and multiple-prize lottery. Symmetric and Asymmetric denote induced
preferences for the public good: In the symmetric case, each player has an
MPCR of 0.30; in the asymmetric case, the MPCRs are 0.9, 0.1, 0.1, and 0.1
for the four players.
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TABLE 7
HOLT–LAURY RISK EXPERIMENT—BY TREATMENT AND MPCR

Not Risk Averse Risk Averse

VCM-Symmetric N = 11 subjects N = 9 subjects
(11 subjects) (9 subjects)

VCM-Asymmetric N = 15 subjects N = 17 subjects
(14 subjects) (18 subjects)

SPL-Symmetric N = 13 subjects N = 23 subjects
(11 subjects) (25 subjects)

SPL-Asymmetric N = 18 subjects N = 18 subjects
(14 subjects) (22 subjects)

NPL-Symmetric N = 22 subjects N = 14 subjects
(23 subjects) (13 subjects)

NPL-Asymmetric N = 20 subjects N = 16 subjects
(17 subjects) (19 subjects)

NOTES: Entries provide the number of agents who reveal a given risk posture.
Agents classified as risk averse select more than five of the “safe” alternative
As. Numbers in parentheses recalculate implied risk aversion as the midpoint
of any interval around which the subject is revealed indifferent between lot-
tery A and lottery B by switching responses between these alternatives. Cell
entries can be read as follows: in the VCM-Symmetric treatment there were
nine subjects who are classified as risk averse and nine subjects who are clas-
sified as risk averse using the revised procedure. VCM, SPL, and NPL denote
voluntary contributions mechanism, single-prize lottery, and multiple-prize
lottery. Symmetric and Asymmetric denote induced preferences for the pub-
lic good: In the symmetric case, each player has an MPCR of 0.30; in the
asymmetric case, the MPCRs are 0.9, 0.1, 0.1, and 0.1 for the four players.

4.4. Risk Aversion and Lottery Contributions. We can examine our data at
a level deeper based on our theoretical predictions and subjects’ revealed risk
preferences in Part 2 of our experiment. Risk preferences, summarized in Table 7,
were assigned on the basis of the observed choices in the Holt and Laury (2002)
experimental design.16 Cell entries provide the number of subjects in each treat-
ment that revealed a given risk posture. For example, 69.45% (25 out of 36) of
the subjects in our symmetric SPL treatment were classified as risk averse. In the
symmetric NPL, 38.89% (14 out of 36) of the subjects were classified as risk averse.

Our theory provides two testable implications of risk aversion on contributions
in our symmetric lottery sessions: (1) In both lottery treatments, contributions
should be a decreasing function in risk aversion and (2) contributions should de-
cline more rapidly in the SPL than in the NPL treatments. Table 8 summarizes
mean contribution levels (by revealed risk posture) for these two lottery treat-
ments. Perusal of the data presented highlights an important difference in the
behavior of risk-averse agents across these two treatments: contributions in the
SPL decline in risk aversion, whereas no such decline occurs in the NPL. Although

16 Agents classified as risk averse select the safe alternative A for the first six or more choice
alternatives. The corresponding CARA values for such agents are greater than 0.08 (see the Appendix).
Our theory predicts that under this definition of risk aversion, contributions of risk-averse agents should
be less than contributions of agents classified as non-risk-averse.
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TABLE 8
MEAN CONTRIBUTION LEVELS—SYMMETRIC LOTTERIES (BY RISK PREFERENCE)

Non-Risk-Averse Risk-Averse
Agents Agents

SPL-Symmetric 48.109 tokens 40.24 tokens
NPL-Symmetric 32.759 tokens 32.943 tokens

NOTES: Entries provide the average contribution levels by revealed risk pos-
ture for our symmetric lottery treatments. For example, risk-averse agents in
the single-prize lottery contribute on average 40.24 tokens to the public good.
Non-risk-averse agents in this treatment contribute an average of 48.104 to-
kens. Agents are assigned to risk class based on the midpoint of any interval
of indifference between Option A and Option B in the Holt and Laury exper-
imental design. There are a total of 25 agents classified as risk averse in the
symmetric SPL and 14 agents classified as risk averse in the symmetric NPL
sessions. SPL and NPL denote single-prize lottery and multiple-prize lottery.
Symmetric denotes that each player has an MPCR of 0.30.

these data patterns are consonant with our theory, the 7.9 token difference in the
SPL is not statistically significant at conventional levels.

5. CONCLUSIONS

Numerous mechanisms have been designed to elicit socially optimal levels of
public goods contributions. Theoretically, complex taxation/allocation schemes
have been designed that solve the free-rider problem. In practice, however, these
schemes have generally failed to achieve socially optimal contribution levels or
require a degree of coercion that exceeds acceptable levels. Perhaps using this
as an impetus, scholars have recently begun to explore the effectiveness of less
coercive mechanisms, including auctions and lotteries. Although this literature
is nascent, preliminary findings suggest that these mechanisms have an ability
to diminish free riding, and contributions levels can, in theory, approach first
best.

Our goal in this article is to provide theoretical and empirical evidence on an
alternate mechanism for the financing of public goods: the multiple-prize lottery.
Although symmetric risk-neutral agents strictly prefer single-prize lotteries, we
show that plausible levels of risk aversion and asymmetries in preferences for the
public good can generate an optimal lottery that includes more than one prize. We
test our theory using a series of laboratory treatments and find evidence in favor
of many of our theoretical predictions. Perhaps most importantly, contribution
levels under both the multiple-prize and single-prize lottery dominate those of
the VCM. Moreover, we find that risk posture and asymmetries in underlying
marginal valuations for the public good are critical components determining the
optimal lottery. For example, the Golden Rule in fund-raising guides reminds us
that generating a warm list of givers is central to any fund-raiser interested in
long-term viability. In this spirit, our results suggest that lotteries induce greater
levels of participation than VCMs.
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Before we can begin to make strong arguments that behavior observed in the
laboratory is a good indicator of behavior in the field, we must explore whether
similar findings are observed in the field. The next step in our research agenda
is to examine our theory outside of the laboratory in a real-world fund-raiser in
the spirit of List and Lucking-Reiley (2002). Although field experiments may not
be as “clean” as laboratory experiments, where researchers have more control
by inducing preferences to accord with theoretical assumptions, and excluding
other complicating factors, such an approach has the virtue of resembling natural
economic phenomena as closely as possible. In addition, field experiments pro-
vide a robustness check of the laboratory results in a natural setting, where the
mathematical assumptions of the theory cannot necessarily be guaranteed to hold.
Discussion of these results will be reserved for another occasion.

APPENDIX

A.1. Proofs

PROOF OF PROPOSITION 3. Consider first, the single-prize lottery. Here, P1 = P
and Pt = 0 for all t > 1, H(1) = n − 1

n , and H(t) = H(1) − ∑t−1
s=1

1
n − s . From (9), we

know that a lottery prize distribution maximizes contributions if

R̂ :=

n−1∑
s=1

H(s)[1 − exp(−σ Ps)]

1 +
n−1∑
s=1

exp(−σ Ps)

(A.1)

is maximized under the condition
∑n−1

s=1 Ps = P(Ps ≥ 0). From (A.1), we immedi-
ately obtain

∂ R̂
∂ Pt

/
σ = (H(t) + R̂) exp(−σ Pt )

1 +
n−1∑
s=1

exp(−σ Ps)

.(A.2)

We will show that it is optimal to have only one prize if and only if ∂ R̂
∂ P1

≥ ∂ R̂
∂ P2

at
P1 = P:

(i) It is obvious that one can improve on the single-prize lottery by introducing
a second prize, if ∂ R̂

∂ P1
< ∂ R̂

∂ P2
.

(ii) Assume now that it is optimal to introduce k > 1 prizes Popt
s > 0 for all

s = 1, . . . , k. First note that for the interior optimum, it is necessary that
∂ R̂
∂ Pt

= ∂ R̂
∂ Pr

for all r , t = 1, . . . , k. Then (A.2) implies that Popt
1 > Popt

2 > · · · >

Popt
k as H(t) is decreasing in t.

Now consider the lotteries P(λ)[λ ∈ (0, 1)] given by Ps(λ) = λPopt
s for

s = 2, . . . , k and P1(λ) = λPopt
1 + (1 − λ)P. Obviously this lottery satis-

fies the budget constraint P = ∑k
s=1 Ps(λ). Furthermore, we obtain for the

derivative
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dR̂(P(λ))
dλ

/
σ =

∑k
s=1 [H(s) + R̂(P(λ))] exp [−σ Ps(λ)] (Ps(1) − Ps(0))

1 + ∑n−1
s=1 exp [−σ Ps(λ)]

d2 R̂(P(λ))
dλ2

/
σ = dR̂(P(λ))

dλ

2
∑n−1

s=1 exp [−σ Ps(λ)] (Ps(1) − Ps(0))

1 + ∑n−1
s=1 exp [−σ Ps(λ)]

−
∑k

s=1 [H(s) + R̂(P(λ))] exp[−σ Ps(λ)](Ps(1) − Ps(0))2

1 + ∑n−1
s=1 exp[−σ Ps(λ)]

.

Therefore, if dR̂(P(λ))
dλ

= 0, we obtain local concavity ( d2 R̂(P(λ))
dλ2 < 0). That

is, no local minimum exists. Since the assumed optimality of P(1) implies
dR̂(P(1))

dλ
= 0, it follows that 0 <

dR̂(P(0))
dλ

, or equivalently,

0 <

k∑
s=1

[H(s) + R̂(P(0))] exp[−σ Ps(0)](Ps(1) − Ps(0))

= [H(1) + R̂(P(0))] exp(−σ P)(Ps(1) − P) +
k∑

s=2

[H(s) + R̂(P(0))]Ps(1)

< [H(1) + R̂(P(0)] exp(−σ P)(Ps(1) − P) + [H(2) + R̂(P(0))]
k∑

s=2

Ps(1)

= {[H(1) + R̂(P(0)] exp(−σ P) − [H(2) + R̂(P(0))]}(Ps(1) − P).

Therefore, we obtain H(1) + R̂(P(0)) exp(−σ P) < H(2) + R̂(P(0)) which
is equivalent to ∂ R̂

∂ P1
< ∂ R̂

∂ P2
at P1 = P.

It is therefore optimal to provide only one prize if and only if

exp(−σ P) ≥ H(2) + R̂

H(1) + R̂
=

H(1) − 1
n − 1

+ H(1)[1 − exp(−σ P)]
n − 1 + exp(−σ P)

H(1) + H(1)[1 − exp(−σ P)]
n − 1 + exp(−σ P)

=
n − 1 − n − 1 + exp(−σ P)

n − 1
n − 1

⇔ exp(−σ P)((n − 1)2 + 1) ≥ (n − 1)2 − (n − 1)

⇔ exp(−σ P) ≥ n2 − 3n + 2
n2 − 2n + 2

⇔ σ ≤ σ ∗ = 1
P

log
[

n2 − 2n + 2
n2 − 3n + 2

]
.

Note that the critical CARA level σ ∗ is decreasing in the prize budget P and the
number of participants n.
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We finally show that for sufficiently large CARA level, the optimal lottery pays
n − 1 prizes. Assume to the contrary that the optimal lottery pays k < n − 1 prizes,
P1 ≥ · · · ≥ Pk > Pk+1 = · · · = Pn = 0. Then, ∂ R

∂ Pt
= ∂ R̂

∂ Pt
/σ as defined in (A.2)

converges for increasing risk-aversion, σ → ∞, to

∂ R
∂ Pt

→




0 for t ≤ k,

H(t)(n − k) +
k∑

s=1

H(s)

(n − k)2 for t > k.

From the definition of H(s) it follows that

H(k + 1)(n − k) +
k∑

s=1

H(s)

= n −
k∑

j=0

n − k
n − j

−
k∑

s=1

s−1∑
j=0

1
n − j

= n −
k∑

j=0

n − k
n − j

−
k−1∑
j=0

k − j
n − j

= n − k − 1 ≥ 0,

from which we obtain

∂ R
∂ Pk+1

→
H(k + 1)(n − k) +

k∑
s=1

H(s)

(n − k)2
> 0.

It is clear that under these conditions, the k < n − 1 prize lottery is not optimal
and (at least) one additional prize should be introduced. Iterating this argument,
it follows immediately that a n − 1 prize lottery is optimal if agents’ CARA level
exceeds a certain threshold. �

PROOF OF PROPOSITION 4. Each contributing player maximizes expected utility

EUi = w − bi + hi (B − P) + P1
bi

B
+ P2

bi

B

∑
j �=i

bj

B − bj

by choosing contribution bi according to

0 ≥ −1 + h′
i (B − P) + P1

B − bi

B2
+ P2

B − bi

B2

∑
j �=i

bj

B − bj
− P2

bi

B

∑
j �=i

bj

(B − bj )2

(A.3)

with equality if bi > 0, which leads to
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0 = −k +
∑
j∈S

h′
j (B − P) + P1

k − 1
B

+ P2
k − 2

B

∑
j

bj

B − bj
− P2

B
,(A.4)

where S is the set and k the number of agents with positive contribution level
(or first-order condition holding with equality). To explore the set of contributing
agents S, consider the one-prize lottery (P1 = P, P2 = 0). Here, let us first or-
der the agents according to the maximum of contribution levels, Bi, of opponents
for which an agent i still would contribute (0 = −1 + h′

i (Bi − P) + P/Bi):B1 ≥
B2 ≥ · · · ≥ Bn. Now consider Sk = {1, . . . , k} and the resulting the total con-
tribution level B(Sk) determined by (A.4). As B(Sk) is increasing in k and
B(S1) ≤ B1, there exists a maximal k for which B(Sk∗) ≤ Bk∗ . It only remains
to show that Bk∗+1 ≤ B(Sk∗): Assuming the contrary, we would obtain 0 <

−(k∗ + 1) + ∑
j∈Sk∗+1

h′
j (B(Sk∗)) + P k∗

B(Sk∗ ) and, hence, we could increase B(Sk∗)
to B(Sk∗+1), whereas still B(Sk∗+1) ≤ Bk∗+1 would hold. This, however, contradicts
the maximality assumption on k∗.

Hence, Sk∗ forms the set of agents who participate in the one-prize lottery in
equilibrium. From (A.3) we immediately obtain 1 − h′

1(B − P) > 0, which implies
that the public good provision level exceeds the VCM level GN .

To see, when contributions increase if one shifts prizes from P1 = P and P2 =
0 to P1 = P − ε and P2 = ε, implicitly differentiate (A.4) by ε at ε = 0:

B′(ε = 0) = B

−k∗ + (k∗ − 2)
∑
j∈Sk∗

bj

B − bj

(k∗ − 1)P − B2
∑
j∈Sk∗

h′′
j (B − P)

,

where from the first-order condition we have

bi = −(1 − h′
i (B − P))

B2

P
+ B,

B = k∗ − 1∑
i∈Sk∗

1 − h′
i (B − P)

P,

bi

B − bi
= −1 + 1

1 − h′
i (B − P)

P
B

,

∑
i∈Sk∗

bi

B − bi
= −k∗ + P

B

∑
i∈Sk∗

1
1 − h′

i (B − P)
,

and hence,

B′ > 0 ⇔ −k∗ + (k∗ − 2)
∑
i∈Sk∗

bi

B − bi
> 0

⇔
[

1
k∗

∑
i∈Sk∗

1 − h′
i (B − P)

] [
1
k∗

∑
i∈Sk∗

1
1 − h′

i (B − P)

]
>

(k∗ − 1)2

k∗(k∗ − 2)
(> 1).

�
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A.2. Risk Aversion Decision Sheet and Implied Cara Risk Preference

Decision Sheet

OPTION A OPTION B DECISION

1/10 of $8.00, 9/10 of $6.40 1/10 of $15.40, 9/10 of $0.40
2/10 of $8.00, 8/10 of $6.40 2/10 of $15.40, 8/10 of $0.40
3/10 of $8.00, 7/10 of $6.40 3/10 of $15.40, 7/10 of $0.40
4/10 of $8.00, 6/10 of $6.40 4/10 of $15.40, 6/10 of $0.40
5/10 of $8.00, 5/10 of $6.40 5/10 of $15.40, 5/10 of $0.40
6/10 of $8.00, 4/10 of $6.40 6/10 of $15.40, 4/10 of $0.40
7/10 of $8.00, 3/10 of $6.40 7/10 of $15.40, 3/10 of $0.40
8/10 of $8.00, 2/10 of $6.40 8/10 of $15.40, 2/10 of $0.40
9/10 of $8.00, 1/10 of $6.40 9/10 of $15.40, 1/10 of $0.40
10/10 of $8.00, 0/10 of $6.40 10/10 of $15.40, 0/10 of $0.40

CARA Risk Preference

Number of Implied CARA Classification of
Safe Choices Risk Preference Risk Posture

0–3 CARA < 0.00 Not risk averse
4 CARA = 0.00 Not risk averse
5 CARA = 0.03 Not risk averse
6 CARA = 0.08 Risk averse
7 CARA = 0.13 Risk averse
8 CARA = 0.20 Risk averse
9–10 CARA = 0.30 Risk averse
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