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Abstract

The aim of this thesis is to cover the basics of Morse theory with an eye towards
understanding the flow category of a Morse function. Morse theory is classically a
branch of differential topology, and seeks to draw topological conclusions about a
manifold by studying the differentiable functions on them. In particular, the main
theorem in the unpublished preprint of Cohen, Jones, and Segal [CJS95b] states that
the topological structure of a manifold can be completely recovered (in some cases,
only up to homotopy) from the classifying space of the flow category of a Morse
function on that manifold. We begin with an overview of classical Morse theory, in-
cluding the Morse-Smale transversality condition and Morse homology, then proceed
to introduce the concepts needed to understand the Cohen-Jones-Segal theorem. We
conclude with an overview of the proof of this theorem and a few illustrative examples.

The first chapter of this thesis is based upon the first part of the book by Audin
and Damian [AD14]. The following chapters focus upon the work in [CJS95b], but
we have expanded upon and reformulated the content in some places. In particular,
our proof of the general case of the Cohen-Jones-Segal theorem in Section 4.2.1 fixes
an error in the original proof, using methods suggested to the author by Cohen.
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Introduction

Morse theory1 revolves around the idea that we can understand the topological struc-
ture of smooth manifolds by studying differentiable functions on them. In particular,
we can gain insight by examining the critical points of such a function. When the
critical points are non-degenerate, the function is said to be Morse. We can pair a
Morse function f with a pseudo-gradient flow X adapted to it, and then investigate
the structure of the manifold in terms of the flow lines between critical points. In cer-
tain cases, when the pair (f,X) satisfies the so-called Morse-Smale condition, we get
a well-formed chain complex called the Morse complex. As it turns out, the Morse
homology of this complex is isomorphic to the singular homology of the manifold,
and consequently information about the topology of a manifold can be completely
unlocked by understanding the structure of critical points of a Morse function and
flows between them.

We can also store information about critical flows and gradient flow lines in the
flow category Cf . The objects in this category are the critical points of f , and
the morphisms are the “broken” flow lines between critical points. We can turn
the flow category into a topological space via its classifying space (the geometric
realization of the nerve of Cf ). The main focus of this thesis is the following theorem of
Cohen-Jones-Segal in the unpublished preprint [CJS95b] that establishes a connection
between this classifying space and the original manifold:

Theorem. Let f : M → R be a Morse function on a manifold M and let Cf denote
the flow category of f . Then the classifying space of Cf is homotopy equivalent to M .
Moreover, in the Morse-Smale case, we have a homeomorphism.

The goal of this thesis is to give an overview of Morse theory, develop the simplicial
homotopy theory needed to understand the work of Cohen-Jones-Segal, and then
present of proof of this theorem. The original Cohen-Jones-Segal paper was never
published, due in part to errors in the proofs (discussed in Chapter 4), although the
result is widely cited. To the author’s knowledge, there is nothing in the literature
that address the error in the non-Morse-Smale case — although excellent progress
has been made in the Morse-Smale case — and we hope that our contribution will
fill this gap. To get a feel for the theory, we will present a simple example in the
following section, although this may be skipped without consequence.

1No known connection to Morse code.



2 Introduction

A Heuristic Example

Imagine you are a small bug on the surface of a mountainous landscape. As a bug,
you are very interested in reaching the lowest possible altitude (to get away from
those dastardly, hungry birds), but unfortunately you have little-to-no concept of the
global topography of the landscape. All you can do is look around your surrounding
area, figure out which direction will help you descend, and head that way.

c

d

a

b

7

Figure 1: A bug’s path. A bug’s path of steepest descent traces out a gradient
flow line on the alternate sphere. There are four critical points (places where the
surface appears flat nearby): a, b, c, and d.

Your path of steepest descent traces out a gradient flow line on the surface of the
landscape. It is only later that you learn that in fact you were crawling around on a
“dented sphere” (which the author is fond of calling the alternate sphere), illustrated
in Fig. 1. Since you are a bug who likes to dabble in pure mathematics, you are
interested in understanding the topological structure of your roaming grounds. There
are four critical points on this surface: the two peaks, the saddle point in the middle,
and the minimum on the bottom. The alternate sphere can be covered in gradient
flow lines, each of which connects two of the critical points. Morse theory provides
ways for us to deduce information about the topology of the surface by just knowing
about the structure of the critical points and gradient flow lines.

One way to store this information is in the flow category, the category whose
objects are the critical points and whose morphisms are flow lines between critical
points, including those “broken” flow that visit other critical points along the way.
This splits our space up into different pieces (formally, the homspaces), each piece
associated with a different pair of critical points, which is illustrated for the alternate
sphere in Fig. 2.

If we manipulate and glue these pieces together in a certain way, we get the clas-
sifying space of the flow category. The main result that this thesis is concerned with
says that this construction recovers much of the interesting topological information
about the surface you started out with. To get an intuition for this result, we shall
go through the construction for the alternate sphere (being a bit dishonest at times,
despite our good intentions).
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d

a
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a

c

b

c

d

d

b

Figure 2: Alternate sphere partitioned by flows. Every pair of critical points
can be associated with some portion of the alternate sphere, namely the collection of
points that lie on some gradient flow between the two critical points.

We begin with the our four critical points and draw a line segment between two
critical points for every flow that connects them. Thus there are two lines connecting
c, d, one apiece for a, c and b, c, and a one-parameter family of lines for each of a, d
and b, d. Now, for every pair of flows that can be composed, we complete and fill in
the triangle for their associated line segments, as shown in Fig. 3. In this case, there
is no interesting way for us to compose three or more flow lines, and so we stop at
this step. Hopefully the illustration makes it seem plausible that this space we have
arrived at is topologically “the same” as the alternate sphere.

A Brief History

Morse theory is the namesake of the American mathematician H. C. Marston Morse
(1892–1977) whose 1934 publication Calculus of Variations in the Large is widely
credited with introducing the techniques in differential topology that developed into
Morse theory. Working in the 1920s, Morse was well-aware of the work of Poincaré,
Brouwer, Birkhoff, and others in the fledgling field of “analysis situs,” a field which
is now known as topology. It was the insight of Morse to connect the new notions
of topology with analysis; his work was met with great acclaim, earning him numer-
ous accolades (an appointment at the Institute for Advanced Study, the National
Science Medal, over twenty honorary awards. . . ), but he was “in a sense a solitary
figure, battling the algebraic topology . . . [he] always saw topology from the side of
Analysis, Mechanics, and Differential Geometry” [Bot80, p.1, emphasis in original].
Nonetheless, the ideas of Morse theory — although essentially simple — have re-
mained resilient, often guiding the development of many areas of geometry, topology,
and even physics.
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c

d

a

b

;

c

d

a

b

Figure 3: The classifying space of the alternate sphere. Composable flows are
“glued in” to the classifying space. On the left, we show the single gradient flow lines
glued to their appropriate end points. On the right, we have glued in four triangles
(two for each triple a, c, d and b, c, d), corresponding to the “broken” flows that result
from composing two genuine gradient flows.

One of the early results of Morse theory was the work of the Raoul Bott (1923–
2005). Using Morse-theoretic techniques, Bott was able to make progress on under-
standing the homotopy theory of Lie groups, ultimately leading to a proof the Bott
Periodicity Theorem in 1957, which in turn played an important role in the devel-
opment of K-theory (cf. [Gue01]). Later, joint work of Bott and Michael Atiyah
(1929–2019) made use of Morse theory and the Yang-Mills equations to study the co-
homology of bundles over Riemann surfaces, and this collaboration laid out some of
the foundational ideas for mathematical gauge theory (cf. [Fre11]). The initial work
of Bott heralded the beginning of a new era of Morse theory, which was primarily
concerned with investigating the topology of manifolds. The book [Mil63] by John
Milnor (1931–) is often cited as the most important exposition on the subject; since
the publication of this book, Morse theory has become a standard topic in geometry
and topology curricula.

The “modern” approach to Morse theory involves the gradient flow lines of a Morse
function, and Bott also had a hand in influencing this next stage of Morse theory.
Bott’s Ph.D. student, the renowned Stephen Smale (1930–), had a particularly strong
impact on the theory via the development of the Palais-Smale compactness condition
and the Morse-Smale complex. This work led him to a proof of the Poincaré conjecture
for n ≥ 4 as well as a formulation of the h-cobordism theorem. Additionally, Bott’s
1979 lectures on his joint project with Atiyah inspired the theoretical physicist Edward
Witten (1951–) to engage with Morse theory, and subsequently find a new approach
in the 1980s, using the de Rham complex (cf. [Bot88]). These ideas, influenced and
motivated in part by physics, were then extended by Andreas Floer (1956–1991) and
involved Morse theory with new developments in symplectic geometry, mathematical
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gauge theory, topological quantum field theory.
These connections with advanced and deep mathematics exemplify the tendency

of Morse-theoretic ideas to be useful in unexpected places. Much of the current
research involves this “field-theoretic” approach to Morse theory, such as the work of
Cohen-Jones-Segal [CJS95a], Fukaya [FOOO09], and others.

Overview

Classical Morse theory has its roots in differential topology, and consequently as-
sumes familiarity with topological manifolds, calculus on manifolds, and basic al-
gebraic topology. We have provided a rather terse summary of some of the most
important ideas in Appendix A.1, however the conscientious reader may be better
served by picking up a differential topology textbook (for instance, the author found
[Hir76] particularly useful, in addition to the classical references [Mil56, Mun61]). In
the appendix, we also briefly review essential concepts from algebraic topology (Ap-
pendix A.2) and category theory (Appendix A.3), although more in-depth treatments
may be found in other sources, such as [Hat02] and [Rie16], respectively.

Chapter 1 follows the first part of the book by Audin and Damian [AD14] fairly
closely, covering the basics properties and techniques of classical Morse theory. After
presenting some of the most important definitions in Section 1.1, such as Morse
functions, the Morse index, and the flow of a Morse function, we then discuss the
stable and unstable manifolds of the flow and the subsequent decomposition of M .
The Morse-Smale condition, defined in Section 1.2, ensures that this decomposition
is reasonably well-behaved. The remainder of the chapter is dedicated to exploring a
few of the developments of Morse theory, including the topology of sublevel sets in
Section 1.3.1, Morse homology in Section 1.3.2, and applications of Morse homology
in Section 1.3.3.

Chapter 2 introduces the flow category of a Morse function f . The objects in
this category are the critical points of f , and the morphisms are the compactified
moduli spaces of flow lines discussed in Section 2.1.2. This category can be equipped
with a topological structure, and so is an example of a topological category (that is,
a category internal to Top); Section 2.2 discusses topological categories in general
before examining the flow category specifically.

In Chapter 3, we discuss some concepts from simplicial homotopy theory, building
up to the definition of the classifying space of a (small) category in Section 3.1.2. In
addition to the discussion of simplicial sets and their geometric realization, we also
examine the edgewise subdivision of a simplicial set and its relation to the twisted
arrow functor. In the latter half of the chapter, we seek to establish conditions
between topological categories that induce a homotopy equivalence on the classifying
spaces. Section 3.2.1 and Section 3.2.2 recall the basics of (co)fibrations and homotopy
pullbacks, respectively. Using the fact that geometric realization preserves homotopy
equivalence for Reedy cofibrant simplicial spaces, we show in Section 3.2.3 that a
continuous functor on topological categories that is an levelwise homotopy equivalence
(meaning we have homotopy equivalences at both the object and morphism level)
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induces a homotopy equivalence on the classifying spaces.
Finally, Chapter 4 presents the main theorem relating the classifying space of

the flow category to the original manifold. We detail some illustrative examples
in Section 4.1 before delving into the proofs in Section 4.2. While the proof of the
Morse-Smale case (Section 4.2.2) closely follows the original [CJS95b], the proof of the
general case given in Section 4.2.1 is original work of the author, following suggestions
shared by Cohen.

Notation and Conventions

Unless explicitly stated otherwise, we assumeM is a smooth, closed, finite-dimensional
Riemannian manifold and that f is a smooth function on M . A list of notation for
specific concepts and definitions can be found in the index preceding the table of con-
tents. As is the case with many mathematical papers, it is difficult to not quickly run
out of new letters to use. In any case, we typically follow these notational conventions:

a, b, c, . . . critical points of a Morse function
C ,D , . . . categories
f, g, . . . functions
H, h, . . . homotopies
i, j, k, . . . indices
M,N, . . . manifolds
n,m, k, . . . dimensions
p, q, r, . . . arbitrary points on a manifold
t, s, . . . times
v, w, . . . tangent vectors
V,W, . . . arbitrary vector fields
X, Y, Z, . . . pseudo-gradient vector fields, topological spaces

Luckily, we rarely need to talk about more than two or three of the same type of
thing at once. Although it is quite likely that the author has messed up her notational
consistency in some places, she hopes you will forgive her and read on.



Chapter 1

Morse Theory

A (smooth) function f : M → R on a (smooth, closed, finite dimensional Riemannian)
manifold M can be thought of as assigning a topography on M , where the values of f
define regions of constant elevation (known in mathematical language as level sets).
Requiring that such a function is Morse (Definition 1.1.4) imposes a sense of stability
on the critical points of f , places where the manifold is locally “flat.” Specifically,
a Morse function must have isolated critical points (Corollary 1.1.8), thus outlawing
any kind of “plateau” behavior. We can classify the critical points of f by their Morse
index (Definition 1.1.6), which roughly describes the number of directions we could
descend from the critical point. For instance, a local minimum will have Morse index
0 and a local maximum will have Morse index equal to dim(M).

To gain more geometric insight on M , we examine the (pseudo-)gradient flow
in Section 1.1.2. Again, if we imagine the Morse function f as prescribing some
notion of height or altitude on our manifold, the gradient flow describes the path
of steepest descent. This allows us to define the stable and unstable manifolds of a
critical point (Definition 1.2.1), which yield a “cell decomposition” of M . In order
for guarantee that this decomposition is well-behaved, we need to impose a further
notion of stability on f , known as the Morse-Smale condition (Definition 1.2.9).

Having developed these fundamental concepts, we devote the latter half of the
chapter to exploring the power of Morse theory. One of the original motivations of
Morse theory in [Mil63] is to understand how the structure of

Mα = {p ∈M | f(p) ≤ α}

changes as α changes. As long as α does not pass a critical value of f , there is no sig-
nificant topological change (Theorem 1.3.1, Theorem 1.3.4). We can gain even further
insight into the topological structure of M using the Morse complex and its result-
ing homology, defined in Section 1.3.2. Remarkably, the Morse homology depends
neither on the choice of Morse function nor pseudo-gradient (Theorem 1.3.7), and is
ultimately isomorphic to the cellular homology of M (Theorem 1.3.9). In this way,
information about the topology of M can be completely unlocked by understanding
the structure of critical points of a Morse function and flows between them. Using
Morse homology, we recover many familiar topological invariants, such as the Betti
numbers, Euler characteristic, and Poincaré polynomial. Finally, we state the infa-
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mous Morse inequalities, which bound the number of critical points a Morse function
on M in terms of the Betti numbers.

1.1 Definitions and Basic Properties

We begin, crucially, by building up to the definition of a Morse function. This al-
lows us to define the Morse index and Morse Lemma. We then cover the basics of
gradient flow and generalized pseudo-gradient flow, which are crucial to the more
modern perspective. Most of this preliminary material is drawn from the beginnings
of [AD14, Mil63], although the reader is also invited to see [CIN06, Mat02] for addi-
tional coverage.

1.1.1 Morse Functions

Given a (smooth) function f : M → R on a (smooth) manifold M , we can study the
critical points of this function to reveal structural information about the underlying
space. If we think of f as describing the topography of the manifold, critical points
are the places where manifold is locally “flat.”

Definition 1.1.1. A critical point of f : M → R is a point a ∈M such that (df)a = 0.
We denote the collection of critical points of f by Crit(f).

At a critical point of f , we can define the second-order derivative, usually called
the Hessian. In general, a function on a manifold may not have a second derivative
that is independent of a choice of chart; however the Hessian is well-defined (as a
bilinear form) on the vector subspace ker(df)a ⊆ TaM .

Definition 1.1.2. For a ∈ Crit(f), the Hessian of f is a symmetric, bilinear form
on TaM ,

(d2f)a : TaM × TaM → R.

To define (d2f)a on v, w ∈ TaM , we extend both v, w to local vector fields V,W in
some neighborhood of a. Then

(d2f)a(v, w) = (V (Wf))(a) = v(Wf).

We can think of v(Wf) as something akin to the directional derivative of the
smooth function Wf : M → R along the tangent vector v. To see that the form is
symmetric, note that

0 = (df)a([V,W ]a) = V (Wf)(a)−W (V f)(a) = v(Wf)− w(V f)

for a ∈ Crit(f).
The same computation shows that the form is well-defined on critical points:

Suppose that we had instead chosen different extensions Ṽ of v and W̃ of w. Then
Ṽa = v = Va, and moreover

v(W̃f) = w(V f) = v(Wf),
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since (df)a([V, W̃ ]a) = 0 = (df)a([V,W ]a). Hence the definition of the Hessian is
independent of the local extensions of v, w.

Remark 1.1.3. If we choose a local coordinate system φ = (x1, . . . , xn) in a neighbor-
hood U of a, the matrix

Hij =
∂2f

∂xi∂xj
(a)

represents (d2f)a with respect to the basis ∂
∂x1

∣∣∣
a
, . . . , ∂

∂xn

∣∣∣
a
.

We can use the language of bilinear forms to describe corresponding properties
of the Hessian. The most crucial notion for Morse theory is the non-degeneracy of
critical points.

Definition 1.1.4. A critical point is non-degenerate if its Hessian is non-singular. A
function is said to be a Morse function if all its critical points are non-degenerate.

In a sense, non-degeneracy imposes a notion of stability onto our critical points.
This idea is made more precise by the alternate perspective offered in [AD14, Exercise
2]. Recall (or see Appendix A.1) that the cotangent bundle T ∗M has a natural
manifold structure and the differential map df : M → T ∗M is a section of this bundle.
In this terminology, the collection of critical points of f is the pre-image of the zero
section under df . It follows that a point is a non-degenerate critical point of f exactly
when the submanifold df(M) is transverse (see Definition 1.2.5) to the zero section
at the point in question.

It is certainly easy to construct examples of functions with degenerate critical
points, so we might worry that Morse functions are few and far between. On the con-
trary, Morse functions are both abundant and generic (cf. [AD14, §1.2] and [Mil63]).
More specifically, every compact manifold M admits many Morse functions and ev-
ery smooth function on M can be approximated by Morse functions. Some common
examples of Morse functions include the square distance to a point and the height
function (cf. [AD14, §1.4]), the latter of which we will explore on the sphere.

Example 1.1.5 (The height function on Sn). Consider the n-sphere

Sn =

{
x = (x1, . . . , xn+1) |

n+1∑
i=1

x2
i = 1

}
⊆ Rn+1

under the height function f(x1, . . . , xn+1) = xn+1. Restricting to the sphere, we
can write f as a function of n variables, since xn+1 = (1 −

∑n
i=1 x

2
i )

1/2 (where the
square root is taken to be positive in northern hemisphere and negative in southern
hemisphere).

We naturally expect this function to have two critical points, namely the north
and south poles. To verify our intuition, we check the derivative, whose ith component
is

∂f

∂xi
=
−xi
xn+1
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N

S

xn+1

Figure 1.1: The height function on the n-sphere (when n = 2).

for 1 ≤ i ≤ n, where we think of xn+1 as a function of n variables. Thus (df)x vanishes
precisely when x1 = · · · = xn = 0. This implies that x2

n+1 = 1, which is to say that x
must be (0, . . . , 0,±1). Moreover, these critical points are nondegenerate, as is clear
by examining the Hessian, whose components are

∂2f

∂xi∂xj
=

{
−1
xn+1

+
x2i
x3n+1

i = j
xixj
x3n+1

i 6= j

for 0 ≤ i, j ≤ n. At either pole, the off-diagonal entries will vanish and we will be
left with −1

xn+1
down the diagonal. Therefore the second derivative matrix is either

the identity (at the south pole) or its negative (at the north pole), both of which are
certainly non-singular.

We are used to classifying different types of critical points based on the nearby
behavior of the space, and this information is typically gained by inspecting the
second derivative. For instance, in the example above, we know the north pole is a
maximum and the south pole is a minimum, which can be verified in lower dimensions
by checking the sign of the determinant of the second derivative matrix. We can
generalize this idea using the Morse index, which describes the number of linearly
independent directions in which f is decreasing.

Definition 1.1.6. The Morse index ind(a) of a critical point a is the index of (d2f)a,
that is, the maximum dimension of a subspace upon which the Hessian at a is negative-
definite.

The Morse index can be counted as the number of negative entries in the diag-
onalization of (d2f)a. A local minimum is thus a critical point with Morse index 0,
while a local maximum has index equal to the dimension of the manifold. When f is
a function of two variables, the critical points of index 1 are commonly called saddle
points. In addition to providing information about the manifold around a critical
point, the Morse index also completely determines the behavior of f at this point.



1.1. Definitions and Basic Properties 11

Theorem 1.1.7 (The Morse Lemma). Given a critical point a ∈ Crit(f), there exists
a neighborhood Ω(a) of a and a diffeomorphism φ : (Ω(a), a)→ (Rn, 0) such that

(f ◦ φ−1)(x1, . . . , xn) = f(a)−
ind(a)∑
i=1

x2
i +

n∑
i=ind(a)

x2
i .

The student of multivariable calculus will recall that a function is closely approxi-
mated in a small neighborhood by a quadratic function associated to its second order
derivative. The Morse Lemma yields a stronger result, declaring the two to be equal
after a possible change of chart. The neighborhood Ω(a) that appears in the lemma
statement is called a Morse chart ; these charts are discussed in far more detail in
[AD14, §2.1]. The following corollary is immediate:

Corollary 1.1.8. Critical points of a Morse function are isolated.

Proof. We offer two proofs of this corollary, one with the Morse Lemma and one
without. Let a ∈ Crit(f) and suppose that f(a) = c. Then, by the Morse Lemma,
there is a diffeomorphism φ such that (f ◦ φ−1)(x1, . . . , xn) = c−

∑
i x

2
i +

∑
i x

2
i . In

these coordinates, we have ∂(f◦φ−1)
∂xi

= ±2xi. So the Jacobian is 0 just when xi = 0 for
all i, which occurs only at 0 = φ(a).

We can also prove that a nondegenerate critical point of a function is isolated
without using the Morse lemma. As discussed previously, the zero section Z is
transverse to df(M) at any critical point of a Morse function. This implies (via
Proposition 1.2.8) that df−1(Z) = Crit(f) is a submanifold of M of dimension
dimM − dim(T ∗M) + dim(Z) = 0, which is to say Crit(f) is discrete.

In particular, this corollary implies that Morse functions on compact manifolds
have finitely many critical points.

1.1.2 Gradient Flow

In order to obtain information about the geometry of M from f , we can examine the
gradient vector field. On a Riemannian manifold (M, g), we can define the gradient
of f : M → R at p ∈M to be the unique vector field ∇f determined by

g(∇pf, v) = (df)p(v)

for every v ∈ TpM . When M = Rn, and g is the flat metric on Rn, the gradient is
precisely the first derivative matrix

∇f =

[
∂f

∂x1

, . . . ,
∂f

∂xn

]
,

where the xi give the standard coordinate system on Rn.

Definition 1.1.9. A gradient flow line is a curve

ϕ : J →M
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for an open interval J ⊆ R that satisfies the differential equation

dϕ

dt
+∇ϕf = 0.

The gradient flow lines are the integral curves of the vector field −∇f . As we
then expect, the flow lines tell us how to “descend” along f .

Proposition 1.1.10. The function f is non-increasing along gradient flow lines, and
is strictly decreasing along a gradient flow line that does not contain a critical point.

Proof. Let ϕ : J → M be a gradient flow line, and consider f ◦ ϕ : J → R. The
derivative of this composition is

d

dt
f(ϕ(t)) = (df)ϕ(t)

(
d

dt
ϕ(t)

)
=

〈
∇ϕ(t)f,

dϕ

dt
(t)

〉
=
〈
∇ϕ(t)f,−∇ϕ(t)f

〉
= −

∣∣∇ϕ(t)f
∣∣2 ≤ 0

with equality precisely when ϕ(t) is a critical point of f . This computation shows
that f is non-increasing along ϕ, and is strictly decreasing whenever the image of ϕ
does not contain any critical points.

Note that if the image of ϕ does contain a critical point a, then in fact it must
be the constant curve ϕ(t) = a. One can quickly verify that the constant curve
satisfies the necessary ordinary differential equation, and it follows that this curve is
the unique solution. Thus the above proposition shows that there are two kinds of
flow lines, the constant (or steady state) flow lines at critical points and the flow lines
that stay away from critical points (but may get arbitrarily close) along which f is
strictly decreasing.

Theorem 1.1.11. Given any p ∈M there is a unique gradient flow line

ϕp : R→M

such that ϕp(0) = p. The flow map Φ: M × R → M given by Φ(p, t) = ϕp(t) is
smooth.

We call this ϕp the minimal flow for p. The proof of this theorem involves some
standard technology from the theory of ordinary differential equations, as detailed in
the proof of [CIN06, Theorem 4.6].

Theorem 1.1.12. For any gradient flow line ϕ : R → M , there exist critical points
a, b ∈ Crit(f) such that

lim
t→−∞

ϕ(t) = a and lim
t→∞

ϕ(t) = b.

We say that a =: s(ϕ) is the starting point and b =: e(ϕ) is the ending point of ϕ.
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Proof. We will show that ϕ has a limit as t → ∞, and that this limit is a critical
point of f ; the proof for t→ −∞ is similar. We proceed by contradiction, supposing
that there is some time t0 at which ϕ leaves the (finite) union

Ω =
⋃

a∈Crit(f)

Ω(a),

never to return. Here Ω(a) is the Morse chart of a (given in Theorem 1.1.7). Since
M \Ω contains no critical points, the derivative d

dt
f(ϕ(t)) < 0 on M \Ω by Proposi-

tion 1.1.10, so there is some ε > 0 with d
dt
f(ϕ(t)) ≤ −ε. Then for all t ≥ t0,

f(ϕ(t))− f(ϕ(t0)) =

∫ t

t0

d

ds
(f ◦ ϕ)(s)ds ≤ −ε(t− t0).

However, this implies that f(ϕ(t)) ≤ −ε(t − t0) + f(ϕ(t0)) and so limt→∞ f(ϕ(t)) =
−∞, which is absurd since we are working on a compact manifold. Thus limt→∞ ϕ(t) ∈
Ω(a) for some a ∈ Crit(f). We wish to show that the limit is in fact a, which follows
from the same argument as above, taking arbitrarily small neighborhoods of a. That
is, for any neighborhood U ⊆ Ω(a) of a, we have limt→∞ ϕ(t) ∈ U , which is to say
limt→∞ ϕ(t) = a.

It can sometimes be useful to work within the context of a generalized gradient
vector field, often called a gradient-like or pseudo-gradient vector field. This type of
vector field has two essential properties: first, it points “in the same direction” as
−∇f , vanishing precisely on the critical points of f ; second, it is equal to −∇f close
to critical points.

Definition 1.1.13. A pseudo-gradient (field) adapted to f is a vector field X on M
such that

(i) (df)p(Xp) ≤ 0 with equality if and only if p ∈ Crit(f),

(ii) in a Morse chart (given by Theorem 1.1.7) in the neighborhood of a critical
point, X coincides with the negative gradient for the canonical metric on R.

Pseudo-gradients are good substitutes for gradients in that they exhibit the same
behavior without relying on an inner product. Moreover, any Morse function on any
manifold admits a pseudo-gradient field, and the two theorems above will also hold
for pseudo-gradients (see [AD14, §2.1]). The flow along the (pseudo-)gradient of a
Morse function allows us develop a very rich and fruitful theory, as we will see with
Morse homology in Section 1.3.2 and the flow category in Chapter 2.

1.2 The Morse-Smale Condition

The following subsection introduces the stable and unstable manifolds of a Morse
function, with respect to some pseudo-gradient flow. After a brief digression into
transversality, we can formulate the Morse-Smale condition. This material is pretty
standard for most discussions of Morse theory, and our primary references are [AD14]
and [CIN06].
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1.2.1 Stable and Unstable Manifolds

The stable and unstable manifolds help us formalize the idea of how the flow is
“attracted to” and “repelled from” critical points. These ideas, found more generally
in the study of dynamical systems, are of particular importance in the context of
Morse theory, providing a basis for formulating and proving essential subject material
surrounding Morse homology and the flow category.

Definition 1.2.1. Let a ∈ Crit(f) and ϕ be the flow of a pseduo-gradient adapted
to f . Define the stable manifold to be

W s(a) = {x ∈M | e(ϕx) = a},

and the unstable manifold to be

W u(a) = {x ∈M | s(ϕx) = a}.

Less formally, W s(a) is the collection of all points whose flow-lines “end up at”
a, and W u(a) is the collection of points whose flow-lines “emanate from” a. These
manifolds are sometime referred to as the ascending and descending manifolds of a,
respectively.

Example 1.2.2. Picking up where Example 1.1.5 left off, we will find the stable an
unstable manifolds of Sn under the height function f(x1, . . . , xn, xn+1) = xn+1. The
flow lines are the lines of longitude (flowing from the north to the south) and the
constant flow at the north pole N and the south pole S. The stable and unstable
manifolds are

W s(N) = {N} W u(N) = Sn \ {N}
W s(S) = Sn \ {S} W u(S) = {S}.

We can make these computations more explicit in the n = 2 case, using spherical
coordinates. The spherical coordinate mapping (for a sphere of radius 1) is

(θ, φ) 7→ (x, y, z) = (cos θ sinφ, sin θ sinφ, cosφ),

where θ ∈ [0, 2π] is angle from the positive x-axis to the xy-projection of the point
and φ ∈ [0, π] is the angle from the positive z-axis to the point. Recall that (for
a sphere of fixed radius 1) the gradient in spherical coordinates is given by ∇f =
(∂f
∂θ
, 1

sinφ
∂f
∂φ

) (assuming we are away from a critical point). The height function is thus

f(θ, φ) = cosφ, with −∇f = (0, 1). Therefore the unique solution to the initial value
problem

dϕ

dt
+∇ϕf = 0, with ϕ(0) = (θ0, φ0)

is just ϕ = (θ0, t+φ0). That is, we keep the longitude constant and increase the polar
angle φ steadily as time increases. Translating back into (x, y, z)-coordinates, we see
ϕ precisely describes a meridian line at the longitude θ0, flowing towards the south
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z

Figure 1.2: Gradient flow lines on the sphere. Every point besides the north
a south pole lies on meridian line, which flows towards the south pole.

pole. It is not hard to believe that such a meridian line has s(ϕ) = N and e(ϕ) = S,
and this fact can be quickly verified via limit computations. We have shown that
the gradient flow consists of a one-parameter family of integral curves in addition to
the constant solutions idN and idS. Moreover, for every p ∈ Sn besides N or S, the
minimal flow ϕp belongs to this one-parameter family. This observation implies that
the stable and unstable manifolds are exactly as stated above.

In this example, the stable and unstable manifolds are nice submanifolds of M ,
topologically equivalent to open disks. This behavior holds in general, via the follow-
ing important theorem from dynamical systems.

Theorem 1.2.3 (Stable Manifold Theorem). The stable and unstable manifolds of
a ∈ Crit(f) are submanifolds of M that are diffeomorphic to open disks, with

dim(W u(a)) = codim(W s(a)) = ind(a).

Moreover, every p ∈ M lies on some flow line (which has its limit as t → −∞ at
some critical point) and unstable manifolds of distinct critical points will be disjoint,
so we can decompose M in terms of these submanifolds.

Theorem 1.2.4. The unstable manifolds partition M into disjoint sets

M =
⋃

a∈Critf

W u(a).

This decomposition in terms of unstable manifolds roughly resembles a CW com-
plex, with one (open) k-cell for each critical point of index k. We would hope that
this decomposition describes M as a bonafide CW complex, but unfortunately this is
not always the case. The next subsection develops a condition we can impose on f
to ensure that we get an appropriately nice decomposition.
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Figure 1.3: Examples of intersecting curves. The curves are transverse in the
left-most plot, are tangent (not transverse) in the center plot, and are vacuously
transverse in the right-most plot.

1.2.2 The Morse-Smale Condition

Before formulating the Morse-Smale condition, we take a brief interlude to discuss
transversality. Transversality formalizes the notion of “general position” in differential
topology, and can be seen as the complementary notion to tangency. For instance,
as illustrated in Fig. 1.3, two curves on a surface intersect at a point transversely
if and only if the point is not a tangent point, meaning the tangent lines (in the
tangent plane to the surface) are distinct. Two submanifolds that do not intersect
are vacuously transverse.

Definition 1.2.5. Let N and N ′ be submanifolds of M . We say that N and N ′ are
transverse at p ∈M if either p /∈ N ∩N ′ or

p ∈ N ∩N ′ and TpN + TpN
′ = TpM,

Two submanifolds N and N ′ are transverse, denoted N t N ′, when this property
holds for all p ∈M .

Remark 1.2.6. Transversality is both a generic and a stable notion, which is to say
that it can be attained through a small deformation and, once attained, is preserved by
small deformations. We can see this in the illustrations above, where two submanifolds
of R2 that are not transverse become so after a tiny deformation.

Proposition 1.2.7 ([AD14, Theorem A.3.1]). If N t N ′, then N ∩N ′ is a subman-
ifold of M whose codimension is equal to codim(N) + codim(N ′).

If dim(N) + dim(N ′) < dim(M), then transversality means the absence of inter-
section. For example, two curves in R3 intersect transversely precisely when they do
not intersect at all.

We can extend transversality to smooth maps. If f : M → N is a differentiable
map and N ′ ⊆ N is a submanifold, then f is transverse to N ′ at p ∈ N if either
p /∈ f(M) ∩N ′ or

p = f(q) ∈ f(M) ∩N ′ for some q ∈M , and (Tqf)(TqM) + TpN
′ = TpN.

As before, if f and N ′ are transverse at all p ∈ N , we say they are transverse and
denote the relation by f t N ′. We say two maps f and f ′ are transverse, written
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f t f ′, if their images (seen as smooth submanifolds of a common ambient manifold)
are transverse.

Proposition 1.2.8 ([AD14, Proposition A.3.5]). If f t N ′ and f−1(N ′) is non-
empty, then f−1(N ′) ⊆M is a submanifold of dimension dim(M)−dim(N)+dim(N ′).

With this understanding of trasversality, we can now define the Morse-Smale
condition. Essentially, this additional stipulation imposes a degree of stability on
the stable and unstable manifolds. While the unstable manifolds always partition M ,
this decomposition may not be a CW complex, as we shall see in Example 1.2.13;
requiring that the Morse-Smale condition is satisfied fixes this issue.

Definition 1.2.9. A pseudo-gradient field X adapted to a Morse function f : M → R
satisfies the Smale-condition (sometimes called the transversality condition) if

W u(a) t W s(b) for all a, b ∈ Crit(f).

We say the pair (f,X) is Morse-Smale. If X = −∇f with respect to some metric g,
we might instead say (f, g) is Morse-Smale.

Remark 1.2.10. Smale [Sma61] showed that Morse-Smale pairs not only exist, but
are dense in the sense that every Morse function f with psuedo-gradient X can be
replaced by a Morse-Smale pair (f ′, X ′) that is ‘close’ to (f,X) in a C1 sense, as
explained in [AD14, §2.2.c].

Certain stable and unstable manifolds always intersect transversely; for example,
W u(a) t W s(b) when a = b or when f(a) ≤ f(b) for a 6= b. In the first scenario, the
claim follows from the Stable Manifold Theorem and the fact that W u(a) ∩W s(b) =
{a}; in the second, the manifolds are vacuously transverse since f decreases along
flow lines. By Proposition 1.2.7, if the pseudo-gradient satisfies the Smale condition,
then for all a, b ∈ Crit(f), we have

codim(W u(a) ∩W s(b)) = codim(W u(a)) + codim(W s(b)),

and so dim(W u(a)∩W s(b)) = ind(a)− ind(b). Thus a Morse-Smale pair will not flow
from a to b if ind(a) < ind(b).

In any case, we denote the intersection W u(a)∩W s(b) by W (a, b), which consists
of all points on the trajectories connecting a to b,

W (a, b) = {x ∈M | s(ϕx) = a and e(ϕx) = b}.

In the Morse-Smale case, W (a, b) is a submanifold of M . The group R acts on W (a, b)
by translations in time, and this action is free (meaning all the stabilizers are trivial)
when a 6= b. Consequently, the quotient

M(a, b) := W (a, b)/R.

is a manifold of dimension ind(a) − ind(b) − 1. Note then that the Morse-Smale
condition also prohibits flow lines between points with the same Morse index. We
think ofM(a, b) as the collection of flow lines from a to b, although we can also view
M(a, b) as a submanifold of M by identifying it with the following space.
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Definition 1.2.11. Let α ∈ (f(b), f(a)) and define W (a, b)α = W (a, b) ∩ f−1(α).

If a 6= b, then W (a, b)α is a submanifold of dimension dim(M) − 1. To see
this is the case, note that α is a regular (non-critical) value of f |W (a,b) and so
f |−1
W (a,b)(α) = W (a, b)α is a submanifold of codimension 1 by the regular value theorem

(see [AD14, §A.2.c]). Furthermore, if α, β ∈ (f(b), f(a)), then W (a, b)α is diffeomor-
phic to W (a, b)β. This is just to say that the diffeomorphism type of W (a, b)α does
not depend on α.

Theorem 1.2.12. For critical points a 6= b, the map W (a, b)α × R→ W (a, b) given
by (p, t) 7→ ϕp(t) is a diffeomorphism. Moreover, we have W (a, b)α ∼=M(a, b).

Proof. We prove the second part of the theorem, pointing the reader to [CIN06,
Proposition 7.7] for proof of the first part. Note that R acts on both the domain (on
the right factor by addition) and the codomain (by flow) and the map (p, t) 7→ ϕp(t)
is R-equivariant— meaning that s · (p, t) = s · ϕp(t)— we may quotient out by R on
both sides to get the desired result.

Although it can be helpful to viewM(a, b) as a submanifold of M , with an induced
topology, we can also topologize this space as a subspace of continuous maps; this
approach will prove more fruitful in developing the flow category in Chapter 2.

To conclude this section, we examine a prototypical example in topology: the
torus.

Example 1.2.13 (Morse functions on T 2). We present three different “height” func-
tions on the 2-dimensional torus, illustrated in Fig. 1.4. The first of these height

p1

p4

p2

p3

p1

p4

p2

p3

Figure 1.4: Height functions on the 2-dimensional torus. The first height
function is not a Morse function, the second is Morse but not Morse-Smale, and the
third is Morse-Smale.

functions is not a Morse function, as is evident by the circles of critical points on the
top and bottom of the torus. However, if we stand the torus on its end, then the
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height function is a Morse function.1 This embedding is given by

(θ, φ) 7→ (x, y, z) = (b cos(φ), (a+ b sin(φ)) cos(θ), (a+ b sin(φ)) sin(θ))

with 0 < b < a. Thus the height function is f(θ, φ) = (a + b sin(φ)) sin(θ), with
gradient

∇f = [(a+ b sin(φ)) cos(θ), b cot(φ) sin(θ)] .

We can see we have four critical points at (θ, φ) = (±π
2
,±π

2
). We will say p1 = (π

2
, π

2
),

p2 = (π
2
,−π

2
), p3 = (−π

2
, π

2
), and p4 = (−π

2
,−π

2
), in descending order of height.

Examining the picture (or the Hessian), we see that ind(p1) = 2, ind(p2) = ind(p3) =
1, and ind(p4) = 0. There are two flows from p1 to p2, two from p2 to p3, and two
flows from p3 to p4. There are also two one-parameter families of flows from p1 to p4.
However, we note that this set-up is not Morse-Smale, since there are flows between
critical points of the same index.

We can see how the absence of the Morse-Smale condition affects the decomposi-
tion of M into unstable manifolds. Since we have a flow between two critical points
both of the same index, we are in the awkward situation of having to attach an edge
in the middle of another edge.

p2

p3

p1

p4

Figure 1.5: Decomposition of the vertical torus into unstable manifolds.
Since the vertical torus is not Morse-Smale, the decomposition of T 2 into unstable
manifolds is not a CW complex.

To fix the issue, we tilt the torus slightly, so that it is not standing on its edge,
as illustrated in the rightmost torus of Fig. 1.4. Although the unstable manifolds
do not change their diffeomorphism type (as the index of the critical points has not
changed), there are no longer any flow lines between p2 and p3. Instead, the flows
from both p2 and p3 end at p4, and so we attach both edges to this singular vertex,
yielding a true CW complex.

1For the sake of visualization, we talk about using the “same” height function and “moving” the
torus. The more accurate way to think about this shift is to keep the underlying space the same—
the torus— and change the function. The value that the points take under this new function is then
the “height” they are prescribed in the picture.
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1.3 A Survey of the Theory

The first part of this section covers the classical material from Milnor [Mil63], specif-
ically the cellular decomposition of M understood in terms of sublevel sets. We then
turn to the Morse complex and its resulting homology, as in [AD14, Chapters 3–4]
and [Hut02, Chapters 2–4]. Given this homology theory, we have access to a plethora
of applications, including the Euler characteristic, the Poincaré polynomial, and the
Morse inequalities. We end by exploring these concepts via the sphere, torus, and
projective space.

1.3.1 Sublevel Sets

Recall that the level set of a function f : M → R for some value α ∈ R is the set of
all p ∈M such that f(p) = α. We define the sublevel set of f at α to be

Mα = {p ∈M | f(p) ≤ α}.

One of the original results of classical Morse theory is that the topology of the
(sub)level sets does not change, so long as we do not cross a critical value of f .

Theorem 1.3.1. Let α, β ∈ R and suppose that f does not attain a critical value in
[α, β]. If f−1([α, β]) is compact, then Mβ is diffeomorphic to Mα.

Proof. The idea of the proof is to push Mβ down to Mα along the trajectories per-
pendicular to the level sets f−1(c) for α ≤ c ≤ β. These trajectories are described by
the flow of a pseudo-gradient vector field X. Let ρ : M → R map

p 7→ − 1

(df)p(X)
for p ∈ f−1([α, β]),

and vanish outside of a compact neighborhood of f−1([α, β]). Then Y = ρX is a
vector field with compact support, so its flow ϕ is complete. For p ∈M , consider the
function ψp : R → R which sends t 7→ f ◦ ϕp(t). This function, given a moment in
time, checks where a buoyant grain dropped at point p (at time 0) has flowed to under
ϕ, and evaluates f at that point. We can think of ψp as describing the “altitude” of
the flow line ϕp over time. If ϕp(t) ∈M is in f−1([α, β]), then the derivative of ψp is

d

dt
(f ◦ ϕp(t)) = (df)ϕp(t)

(
d

dt
ϕp(t)

)
chain rule,

= (df)ϕp(t)

(
Yϕp(t)

)
definition of flow,

= Yϕp(t)(f) definition of differential,

= ρ(ϕp(t))Xϕp(t)(f) definition of Y ,

= −1 since ϕp(t) ∈ f−1([α, β]).

Thus f ◦ ϕp(t) = f(p)− t. Now for any p ∈ f−1([α, β]), we have f ◦ ϕp(β − α) ≤ α,

thus the diffeomorphism ϕβ−αY : p 7→ ϕp(β − α) sends Mβ to Mα.
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A similar diffeomorphism shows that Mα is a deformation retract of Mβ. Specif-
ically, we define the retraction r : Mβ × [0, 1]→Mβ which maps

(p, t) 7→
{

p if f(p) ≤ α;
ϕp(t(f(p)− α)) if α ≤ f(p) ≤ β.

To see that r indeed defines a deformation retraction, observe that r(p, 0) = ϕp(0) = p,
r(Mβ, 1) = Mα, and r|Mα = idMα . The previous theorem (in conjunction with the
Morse Lemma) yields Reeb’s theorem.

Theorem 1.3.2 (Reeb’s theorem). Let M be a compact manifold of dimension n. If
there is a Morse function on M with only two critical points, then M is homeomorphic
to Sn.

Remark 1.3.3. Reeb’s theorem does not entail that M is diffeomorphic to a sphere.
The classic reference for this remark is [Mil56], where Milnor constructs a manifold
that is homeomorphic but not diffeomorphic to S7.

On the other hand, when [α, β] does contain a critical point of f , the sublevel sets
Mα and Mβ differ in their topology.

Theorem 1.3.4. Suppose that f(a) = α and ind(a) = k for a ∈ Crit(f). For ε > 0
sufficiently small, suppose that f−1([α− ε, α+ ε]) is compact and contains no critical
points of f other than a.2 Then (for ε sufficiently small) the space Mα+ε has the
homotopy type of Mα−ε with a k-cell attached (namely, W u(a)).

In combination with Theorem 1.3.1, this theorem tells us that the topology of
Mα does not change until α passes the value of a critical point, and when α passes
the value of a critical point with index k, we attach a k-cell to Mα. We thus get a
handlebody of M in terms of unstable manifolds, with a k-cell for each critical point
of index k, as discussed in Theorem 1.2.4.

1.3.2 Morse Homology

One important development of classical Morse theory is Morse homology, which uses
information about the critical points and flows on a compact manifold equipped with
a Morse-Smale pair (f,X) to develop a homology theory. Given the discussion in the
previous subsection, it is perhaps unsurprising that Morse homology of M turns out to
be isomorphic to its cellular homology, thus yielding information about the topology
of the underlying manifold. Morse homology begins as all homology theories do, by
constructing a chain complex.

Definition 1.3.5 (Morse complex). Let Critk(f) denote the set of critical points of
f with index k, and define the vector space over Z/2Z

Ck(f) =

 ∑
a∈Critk(f)

maa | ma ∈ Z/2Z

 .

2It may be the case that f has two critical points with the same critical value. However, we can
often resolve this situation by a slight perturbation of f (see [AD14, §2.2.c]).
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We define the boundary operator ∂Xk : Ck(f)→ Ck−1(f) by specifying its behavior on
the basis elements. Given a critical point a ∈ Critk(f), the operator ∂Xk sends a to a
linear combination of points in Critk−1(f),

∂Xk (a) =
∑

b∈Critk−1(f)

mX(a, b)b,

where mX(a, b) ∈ Z/2Z is the number (mod 2) of trajectories of X going from a to
b. In other words, mX(a, b) is the modulo 2 cardinality of W (a, b).

Of course, to verify that we indeed have a complex, we must show that ∂2
X = 0.

For a ∈ Critk(f), we calculate

∂Xk−1(∂Xk (a)) =
∑

c∈Critk−2(f)

 ∑
b∈Critk−1(f)

mX(a, b)mX(b, c)

 c.

Therefore it suffices to show that the inner sum is zero. The heart of the proof is to
think of this number as the cardinality of the disjoint union∐

b∈Critk−1(f)

W (a, b)×W (b, c),

and show that this set of points is the boundary of a manifold of dimension 1. Since the
boundary of a 1-manifold consists of an even number of points, and we are computing
modulo 2, the desired result follows. We point the reader to [AD14, §3.1–3.2] for more
details.

Remark 1.3.6. We have defined the chain complex over Z/2Z since it is sometimes
useful to work over a field (see, for instance, the proof of Proposition 1.3.13). More-
over, taking coefficients in Z/2Z simplifies our considerations since we can ignore
the signs, which are often algebraic representations of orientation. (To paraphrase
Hatcher [Hat02], Z/2Z homology is a natural tool in the absence of orientability.)

We can also define a Morse complex over Z, yielding integral homology, so long
as we are careful about orientation. Roughly, if we fix an orientation on the spaces
of trajectories (by choosing orientations of the stable manifolds), then M(a, b) is an
oriented compact manifold of dimension 0 whenever ind(a)− ind(b) = 1, and so is a
finite number of points each with some ± orientation. We now define mX(a, b) to be
the sum of these signs, noting that this sum modulo 2 is the coefficient in the Z/2Z
definition, and define the chain complex and boundary operator just as above. Essen-
tially the same proofs work to show that we get a well-defined homology. Although we
will not discuss integral Morse homology much further in this thesis, we will denote
it by HM∗(M ;Z) to distinguish it from the modulo 2 homology HM∗(M ;Z/2Z).

The chain complex clearly depends on our choice of a Morse-Smale pair (f,X),
but remarkably the resulting homology groups are independent of this choice.

Theorem 1.3.7. The homology of the Morse complex depends neither on the function
nor the vector field.
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More precisely, this theorem says that for any two Morse-Smale pairs (f,X) and
(f ′, X ′) on a (compact) manifold M , there is a morphism of complexes (C∗(f), ∂X)→
(C∗(f

′), ∂X′) that induces an isomorphism on the homology. The proof relies on choos-
ing a suitable deformation of f into f ′. Henceforth we denote the boundary operator
for the Morse homology by merely ∂, unless the vector field provides additional im-
portant context.

Remark 1.3.8. This result can be extended to manifolds with boundary provided that
the critical points and flows between them stay sufficiently far from the boundary. For
instance, given a cobordism M whose boundary decomposes as ∂M = ∂+M ∪ ∂−M ,
we can define the Morse complex (C∗(f), ∂) in the same way as in the case with-
out boundary, given appropriate conditions on X (although ultimately the homol-
ogy is not dependent on X). This allows us to define the relative Morse homology
HM∗(M,∂+M ;Z/2) using the complex (C∗(f), ∂) (see [AD14, §3.2.d, §3.5, and §4.1]).

Given a homology theory, the natural question to ask is whether it is isomorphic to
any homology theories we are familiar with. In any case, the answer will be interesting:
either we have discovered a new way of thinking about something we already knew,
or Morse homology contains some new information that other homology theories do
not. As it turns out, the Morse homology of M is isomorphic to the cellular homology
of M (see Appendix A.2). This isomorphism result is perhaps less surprising given
the decomposition we saw in Theorem 1.2.4. In fact, a Morse-Smale pair (f,X)
yields a cellular composition in terms of the unstable manifolds, from which we get
a cellular complex (K∗(f), ∂X). The proof in [AD14, §4.9] takes the cells to be the
compactification of the unstable manifolds W

u
(a) for each a ∈ Crit(f).

Theorem 1.3.9. There is an isomorphism F : C∗(f)→ K∗(f) with ∂X ◦ F = F ◦ ∂.
Consequently, the Morse homology of M is isomorphic to its cellular homology.

More specifically, F is the map that sends a 7→ W u(a). We may take coefficients
in Z/2Z or in Z (so long as we are mindful of orientations). It is well-known that
cellular homology is isomorphic to singular homology, and so Morse homology agrees
with the latter as well.3 Thus manifolds of the same homotopy type will have the
same Morse homology groups.

Morse homology can also yield information about the homotopy groups of a man-
ifold. For instance, if M admits a Morse function with no critical points of index 1,
then M is simply connected, since the fundamental group will be trivial. We can see
this phenomenon in our example of the height function on Sn.

Example 1.3.10 (The n-sphere). As we saw in Example 1.1.5, the height function
on Sn has two critical points: the north pole N with index n and the south pole S
with index 0. One can verify that indeed (f,−∇) is Morse-Smale, and so we have a
well-defined Morse complex, with Cn(f) = Z/2Z[N ], C0(f) = Z/2Z[S], and Ck = 0

3One can also show directly that Morse homology is isomorphic to singular homology, without
going through cellular homology, as in [Hut02, §3]. The idea here is to flow a given simplex along
X, then send it to the sum of the critical points that it “hangs on.”
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for k 6= 0, n, and all ∂k are trivial.4 Thus the homology groups are

HMk(S
n;Z/2) =

{
Z/2 k = 0, n

0 otherwise.

Of course, there are many other Morse functions on the sphere that will have more
critical points of differing indices. For instance, on S2, we can imagine “denting” the
sphere so that it has two peaks with a valley in the middle, so that we get a new
“height” function which looks something like the illustration in Fig. 1.6. Although this

p3

p4

p1

p2

Figure 1.6: The alternate sphere.

manifold is still diffeomorphic to the sphere, the function now has two local maxima
p1, p2 (of index 2), a saddle point p3 (of index 1), and a minimum p4 of (index 0).
Now, our chain complex is comprised of C2 = Z/2Z[p1] ⊕ Z/2Z[p2], C1 = Z/2Z[p3],
C0 = Z/2Z[p4], and Ck = 0 for all k ≥ 3. To understand the behaviors of the
boundary operators, we can count the flow lines by hand to see that

∂2(p1) = ∂2(p2) = p3 and ∂1(p3) = 2p4 = 0.

Thus we have ker(∂1) = im(∂2) = Z/2Z[p3], ker(∂2) = Z/2Z[p1 + p2], ker(∂0) =
Z/2Z[p4] and all other images and kernels are trivial, so that

HMk =

{
Z/2Z k = 0, 2

0 otherwise.

As we expect, the Morse homology of the alternative sphere matches the homology
of S2, even though the complexes are quite different.

Example 1.3.11 (The tilted torus). Recall from Example 1.2.13 that if we tilt the
torus slightly, the gradient flow of the height function f becomes Morse-Smale. There
are four critical points of this function: p1 of index 2, p2 and p3 of index 1, and p4 of
index 0. We can compute the Morse homology of the torus using the following chain
complex:

· · · → 0
∂3−→ Z/2Z[p1]

∂2−→ Z/2Z[p2]⊕ Z/2Z[p3]
∂1−→ Z/2Z[p4]

∂0−→ 0.

4Triviality is immediate except when k = 1, but one can quickly verify that in this case there are
two flow lines from N to S, and so indeed ∂1(N) = 0.
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By counting the trajectories connecting the critical points naively, with reference to
Fig. 1.4, we find

∂2(p1) = 2p2 + 2p3 = 0, and ∂1(p2) = ∂1(p3) = 2p4 = 0,

so the resulting homology groups are

HMk =


Z/2Z k = 0, 2;

Z/2Z⊕ Z/2Z k = 1;
0 k ≥ 3.

This is indeed the homology of the torus T 2 (cf. [Hat02, §2.1]).

In the next and final part of this chapter, we will see how truly powerful Morse
homology is in uncovering structural information about the underlying manifold.

1.3.3 The Morse Inequalities and Other Applications

In this final section of the chapter, we present some general results using Morse
homology. Since this theory is well known, we do not provide proofs but instead
direct the interested reader to [AD14, §I.4].

We saw in the previous subsection that Morse homology is an invariant not only
under homotopy type, but diffeomorphism type as well. This idea can be restated in
the language of category theory.

Theorem 1.3.12. Morse homology is a covariant functor from Diff , the category of
differentiable manifolds and smooth maps, into Ab∗, the category of graded Abelian
groups and graded homomorphisms.

More precisely, a smooth map u : M → N induces a morphism

u∗ : HM∗(M)→ HM∗(N),

that satisfies the functorality axioms. Furthermore, Morse homology is a so-called
homotopy functor, meaning that if we have a smooth map

u : I ×M → N

with u(t, x) = ut(x), then (u0)∗ = (u1)∗. Thus Morse homology sends homotopy
equivalences to isomorphisms.

Homology theory is motivated in part by the topologist’s desire to develop topo-
logical invariants. One particularly well-known invariant is the Euler characteristic,
defined for a finite CW complex C∗ as the alternating sum

χ(C∗) =
∑
k

(−1)kck,

where ck = dim(Ck), that is, the number of k-cells in Ck. There are plenty of well-
known results relating the Euler characteristic to homology groups, and now we can
state some such results in the Morse context.
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Proposition 1.3.13. The number of critical points of a Morse function (modulo 2)
depends only on the manifold M , not the function. Moreover,∑

k

(−1)kck =
∑
k

(−1)k dimHMk(M ;Z/2).

Proof. Let M be a manifold of dimension n with a Morse-Smale pair (f,X). Consid-
ering our Morse complex (whose homology is independent of f and X), we have

#Crit(f) =
n∑
k=0

ck

=
n∑
k=0

dim(Ck)

=
n+1∑
k=0

dim ker ∂k + dim im ∂k by rank-nullity,

=
n∑
k=0

dim ker ∂k + dim im ∂k+1 since dim ker ∂n+1 = dim im ∂0 = 0,

≡
n∑
k=0

dim ker ∂k − dim im ∂k+1 computing modulo 2,

=
n∑
k=0

dimHMk(M ;Z/2).

by rank-nullity again. Our applications of rank-nullity give dimCk = dim ker ∂k +
dim im ∂k and dim ker ∂k = dim im ∂k+1 +dimHMk(M ;Z/2), and so by a substitution
and multiplication by (−1)k,

(−1)k dim(Ck) = (−1)k dimHMk(M ;Z/2) + (−1)k(dim im ∂k + dim im ∂k+1).

Summing over k = 0, . . . , n gives the desired equality.

This result allows us to define the Euler characteristic of a manifold.

Definition 1.3.14. The kth Betti number of M is the integer

βk(M) = dimHMk(M ;Z/2Z),

and the Euler characteristic of M is

χ(M) =
∑
k

(−1)kβk(M).

We can also define the more general Poincaré polynomial as PM(t) =
∑

k βk(M)tk.
The Künneth formula in [AD14, §4.2] tells us that PM1×M2(t) = PM1(t)PM2(t). Note
that taking t = −1 recovers the Euler characteristic, and hence χ(M1 × M2) =
χ(M1)χ(M2) as well. We can consider these polynomials for some examples we saw
at the end of Section 1.3.2:
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• PSn(t) = 1 + tn and χ(Sn) = 1 + (−1)n,

• Writing T n = S1 × · · · × S1 (n times), we have PTn(t) =
∑n

k=0

(
n
k

)
tk and

χ(T n) = 0,

More examples are given in [AD14, Chapter 4]. We can make Proposition 1.3.13 more
precise by comparing the number or critical points to the Betti numbers directly,
rather than the dimension of the homology groups. Restating the proposition in this
way, we have #Crit(f) ≥

∑n
k=0 βk. This result is known as the Morse inequalities.

Theorem 1.3.15 (Morse Inequalities). The number of critical points of a Morse
function on a manifold M is greater than or equal to the sum of the dimensions of
the Morse homology groups HM∗(M ;Z/2Z) of this manifold. More precisely, we have

βk ≤ ck

for all k ≥ 0.

When the Morse inequalities are true equalities, the function is said to be a perfect
Morse function.5 The Morse inequalities have some interesting consequences; for
instance, every Morse function on Sn must have at least two critical points (with one
of index n and one of index 0).

There are many more beautiful applications of Morse homology, including the
Poincaré duality, connections with the fundamental group, and proofs of the Brouwer
Fixed Point Theorem and Borsuk-Ulam Theorem. There is undoubtedly more to be
said about the remarkable tools that Morse theory bestows upon us, but this thesis
is too small to contain it all.

5The archetypal example of a perfect Morse function (on complex projective space CPn) appears
in Milnor [Mil63, §4].





Chapter 2

The Flow Category

The flow category Cf of a Morse function f : M → R is the category whose objects
are the critical points of f and whose morphisms are pieced-together “broken” flow
lines between them. The idea is that Cf encodes information about the underlying
manifold, which we can recover via various procedures that we will explore in following
chapters. The goal of this chapter is to just define the flow category, and most of the
work will be to precisely describe the morphisms of Cf .

In Section 1.2.2, we defined the moduli space of flow lines as the quotient space
M(a, b) = W (a, b)/R, where W (a, b) consists of the points of M residing upon a
flow line ϕ “starting” at a and “ending” at b. Of course, what we really mean is
that ϕ(t) has its limit at a (respectively b) as t → −∞ (respectively t → ∞), which
places us in a rather unfortunate situation of being unable to concatenate flow lines
in a way that makes sense. To remedy this situation, we reparametrize ϕ to obtain
the height-parametrized gradient flow γ (Definition 2.1.1), which we can then glue
together as desired. For instance, if γ1 connects critical points a to c, and γ2 connects
critical points c to b, then we can form the broken flow γ1 ◦ γ2 from a to b that is
the natural concatenation of the two. Assembling all such broken flow lines, we get
the moduli space of broken flow M(a, b) (Definition 2.1.4), the compactification of
M(a, b). These M(a, b) give the morphisms between the objects a and b in Cf .

To record information about the topology of M in the flow category, we equip Cf

with a bit more structure, namely, by viewing it as a topological category (a category
internal to Top, see Definition 2.2.2). This additional structure amounts to endowing
the objects and morphisms with a topology and ensuring certain maps (composition,
source, target, and identity) are continuous. By viewing the objects as a (discrete)
subspace of M , and the morphisms as subspaces of Map([f(b), f(a)],M) under the
compact open topology, we can define the flow category as a genuine topological
category (Definition 2.2.7).

2.1 Broken Flow

Following [CJS95b], we reparameterize the flow so that we may glue flow lines together
and so form the moduli space of broken flow lines. The space of broken flow is
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also discussed in [AD14] (albeit without the reparameterization, under a different
topology, and with other motivations), and the details of the height-parameterized
flow perspective are outlined in [CIN06, §4.5, §8.4–8.5, §9.1].

2.1.1 Reparameterizing the Flow

Let ϕ be a flow from points a to b (for some critical points a 6= b). Then h(t) := f(ϕ(t))
is strictly decreasing, so we can think of h like the height. Note that

dh

dt
=

d

dt
(f ◦ ϕ) = ∇ϕf

dϕ

dt
= − |∇ϕf |2 .

Moreover, h is a diffeomorphism R → (f(b), f(a)) and so we may talk about the
smooth curve h−1. The reparameterized flow lines we will consider are those

γ(t) = ϕ(h−1(t)) : (f(b), f(a))→M.

Note that f(γ(t)) = t since f ◦ γ = f ◦ (ϕ ◦ h−1) = h ◦ h−1. Thus γ has the same
image as ϕ, but now the parameter represents the value of f , which we can think of
as the height. Furthermore, we can extend γ to a continuous map on [f(b), f(a)] by
setting γ(f(b)) = b and γ(f(a)) = a. To see that this map is continuous, note that

lim
t→f(b)+

γ(t) = lim
t→f(b)+

ϕ(h−1(t))

= lim
t→f(b)+

ϕ(ϕ−1f |−1
im(ϕ))(t)

= lim
t→f(b)+

f |−1
im(ϕ)(t)

= f |−1
im(ϕ)(f(b))

= b,

and similarly limt→f(a)− γ(t) = a.

Definition 2.1.1. Let ϕ be a (non-constant) gradient flow line of f , and define
h(t) = f(ϕ(t)). The height-reparameterized flow is

γ = ϕ ◦ h−1 : [f(b), f(a)]→M.

If ϕ is a constant flow on a critical point a, we define its reparameterization
γ : {f(a)} →M to be the constant flow γ(f(a)) = a. As before, we let γp denote the
minimal unbroken flow-line through p ∈M .

Remark 2.1.2. Note that this parametrization reverses the direction of the original
flow line ϕ, since h is decreasing. So if ϕ is a flow from a to b, the height-parameterized
γ is a flow from b to a. This is an aesthetic choice of the authors in [CJS95b] adopt
as well. However, for the sake of conceptual consistency, we will still talk about some
concepts in terms of the original ϕ parameterization. For instance, we will still say
that γ “starts at” a = s(γ) and “ends at” b = e(γ), although strictly speaking the
opposite is true; this well-intentioned untruth allows us to keep many of the same
definitions from Chapter 1, and ultimately the moduli spaceM(a, b) does not depend
on the parameterization of the flow.
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We can find the new ordinary differential equation that such a reparameterized
flow line will satisfy. Differentiating, we have

dγ

dt
=

d

dt
(ϕ ◦ h−1)

=
dϕ

dt
(h−1)

dh−1

dt

= ∇ϕ◦h−1f
1

dh
dt

(h−1)

= ∇γf
1

|∇ϕf |2 (h−1)

=
∇γf

|∇γf |2
,

assuming ∇γf 6= 0. Away from critical points, we may consider the vector field

Xp = ∇pf
|∇pf |2

. The integral curves of X, those that satisfy the differential equation

dγ

dt
− ∇γf

|∇γf |2
= 0, (2.1.3)

are precisely the height-parameterized curves (see [CIN06, Lemma 4.8]), and so X and
∇f have the same integral curves under different parametrizations. The advantage of
reparameterizating is that we can now “glue” flow lines together in a coherent way,
as we will see in the following discussion.

2.1.2 The Space of Broken Flow Lines

There is a partial ordering on the critical points via flow lines. We say a � b if W (a, b)
is non-empty— or equivalently if there is a flow γ that starts at a and ends at b—
and a � b if a � b and a 6= b. We call a sequence of critical points c = {c1, . . . , ck}
ordered if ci � ci+1 for all i. We will mostly be interested in ordered sequences of
critical points from a to b, and so we let c(a, b) denote such a chain of critical points,
that is, c(a, b) = {a, c1, . . . , ck, b} with a � c1 � · · · � ck � b, and say that the length
of this sequence is l(c(a, b)) = k.1 Define l(a, b) to be the maximum length of such
a sequence c(a, b). If l(a, b) = 0, meaning that there is no critical point c such that
a � c � b, then we call b a successor of a. Finally, we define the moduli space of an
ordered sequence c = {c1, . . . , ck} to be

M(c) =M(c1, c2)× · · · ×M(ck−1, ck).

Definition 2.1.4. Let M(a, b) be the moduli space of (height-parameterized) flows
between critical points a, b, viewed as a subset of Map([f(b), f(a)],M). Define the

1Note that this definition of length results in the slightly awkward convention that an arbitrary
chain c = {c1, . . . , ck} has length k − 2.
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moduli space of broken flow lines from a to b by

M(a, b) =
⋃

c(a,b)

M(c(a, b))

=
⋃

c(a,b)

M(a, c1)× · · · ×M(ck, b),

where the union is over ordered sequences of critical points c(a, b) = {a, c1, . . . , ck, b}.
The curves inM(a, b) are thus smooth on M \Crit(f), hence referred to as broken

flow lines (or sometimes piecewise flow lines). As is suggested by the notation, this
space is meant to be the compactification ofM(a, b) (asserted in [CJS95b] and proved
in [Qin10]).

Theorem 2.1.5. The space M(a, b) is compact.

Moreover, when (f, g) is Morse-Smale (Definition 1.2.9), the compactified moduli
space carries the structure of a manifold with corners (cf. [Coh19, Proposition 2]).2

This result, also in [Qin10], is crucial to the proof of the Morse-Smale case of the
Cohen-Jones-Segal theorem which we will discuss in Chapter 4.

Remark 2.1.6. As discussed in Theorem 1.2.12, we could instead choose to view
M(a, b) with topology induced by the topology of M , and it turns out that com-
pactness holds in this case as well (see [AD14, §3.2]).

There is a natural associative composition law

M(a, c)×M(c, b)→M(a, b)

given by the concatenation of curves. We denote the composition of two broken flows
γ1 ∈M(a, c) and γ2 ∈M(c, b) by γ1 ◦ γ2 ∈M(a, b).

Proposition 2.1.7. The composition of broken flows (γ1, γ2)→ γ1 ◦γ2 is continuous.

Proof. Consider two broken (height-parameterized) flow lines, γ1 ∈M(a, c) and γ2 ∈
M(c, b). The composition is given by

(γ1 ◦ γ2)(t) =

{
γ2(t) t ∈ [f(b), f(c)];
γ1(t) t ∈ [f(c), f(a)].

Note that γ1 ◦ γ2 is indeed a well-defined broken flow, since γ2(f(c)) = c = γ1(f(c))
and the composition satisfies the defining differential equation (Equation (2.1.3)) away
from critical points. Recall that the compact open topology on M(a, b) is generated
by the subbasis

D(K,U) = {γ ∈M(a, b) | γ(K) ⊆ U}
for compact K ⊆ [f(b), f(a)] and open U ⊆ M . We can decompose K = K1 ∪ K2

with K2 ⊆ [f(b), f(c)] and K1 ⊆ [f(c), f(a)], so that the preimage is

◦−1(D(K,U)) = D(K1, U)×D(K2, U),

that is, a product of subbasis elements.
2A manifold with corners is a (second countable, Hausdorff) space such that each point has

neighborhood U and homeomorphism φ : U → Rn−k × [0,∞)k for some k, such that the transition
maps are smooth.
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2.2 Topology of the Flow Category

The following discussion introduces the flow category, as defined in [CJS95b]. We can
view the flow category as a topological category (a category internal to Top) as in
[ML71]. We give a general overview of the basic definitions for topological categories
before turning to the flow category specifically.

2.2.1 Categories Internal to Top

When working with a small category, meaning that the collections of objects and
morphisms are sets, we can equip the objects and morphisms with some additional
structure. While the general theory merely requires that the fixed ambient category
is finitely complete3 (cf. [ML71, §XII.1]), we will restrict our attention to categories
internal to Top, which we shall call topological categories.

Remark 2.2.1. The term ‘topological category’ is somewhat ambiguous. A category
internal to Top should not be confused with the topologically enriched categories in
[Rie14, §3] nor the topological concrete categories of [rAHS04, S VI.21]. In this thesis,
topological categories shall be understood to be categories internal to Top.

Definition 2.2.2. A category C internal to Top consists of space of objects C0 and
a space of morphisms C1 in Top, together with four continuous maps:

C0

C1

idom cod , C1 ×C0 C1 C1
◦ .

• The domain map dom: (f : X → Y ) 7→ X,

• The codomain map cod: (f : X → Y ) 7→ Y ,

• The identity map i : X 7→ idX ,

• The composition map ◦ sends a pair of morphisms (f, g) to their composite
g ◦ f = gf . Here ◦ is defined on the pullback of C1 ×C0 C1:

C1 ×C0 C1 C1

C1 C0

π2

π1 cod

dom

.

These maps must satisfy a variety of compatibility conditions, expressed as diagrams
in Top:

3A finitely complete category has all finite products, pullbacks, and a terminal object.
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C0 C1

C0

i

coddom ,

C1 C1 ×C0 C1 C1

C0 C1 C0

cod ◦

π1 π2

dom

cod dom

.

These two diagrams specify the domain and codomain of the identity map i and the
composition map ◦, respectively. The following two diagrams assert that composition
is unital (with identity i) and associative:

C0 ×C0 C1 C1 ×C0 C1 C1 ×C0 C0

C1 C1 C1

π2

i×id

◦ π1

id×i

C1 ×C0 C1 ×C0 C1 C1 ×C0 C1

C1 ×C0 C1 C1

id×◦

◦×id

◦

◦

.

Of course, any small category is a topological category under the discrete topology,
but there is often more than one way to do it. Many familiar notions from category
theory have internal counterparts, such as functors and natural transformations.

Definition 2.2.3. A continuous functor is a map F : C → D between two topological
categories that consists of two continuous maps,

F0 : C0 → D0 and F1 : C1 → D1,

which are compatible with the four structure maps. That is, such that the following
diagrams commute:

C1 ×C0 C1 D1 ×D0 D1

C1 D1

◦C

F1×F1

◦D

F1

C1 C0 C1

D1 D0 D1

F1

cod

dom

F0

i

F1

cod

dom

i

.

We then assemble the category TopCat whose objects are topological categories
and whose morphisms are continuous functors.

Definition 2.2.4. A continuous natural transformation η : F → G between a pair
of continuous functors F,G : C ⇒ D consists of a continuous map η : C0 → D1 such
that the following diagrams commute in Top:

C0 D1

D0

η

F
dom

C0 D1

D0

η

G
cod .
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That is, the map η assigns every X ∈ C0 a morphism ηX : FX → GX. The
naturality condition on η requires that the following diagram also commutes:

C1 D1 ×D0 D1

D1 ×D0 D1 D1

(η◦cod,F )

(G, η◦dom)

◦

◦

.

Note that the commutativity of this diagram implies the usual naturality condition.
That is, if f : X → Y ∈ C1, the diagram above maps

f (Gf, ηX)

(ηY , Ff) ηY ◦ Ff = Gf ◦ ηX

which is precisely the desired condition.

Remark 2.2.5. It is equivalent to require that η is a continuous functor

η : C × [1]→ D

such that η(−, 0) = F and η(−, 1) = G. Here [1] is the poset category 0 < 1.

Definition 2.2.6. A continuous equivalence of categories internal to Top consists
of two continuous functors F : C � D :G together with two continuous natural
isomorphisms η : idC → GF and ε : FG→ idD .

2.2.2 The Flow Category as a Topological Category

We can now define the flow category of a Morse function f : M → R, which records
information about critical points and the flows between them. Moreover, we can
endow the spaces of objects and morphisms with topologies, giving the flow category
the structure of a topological category. In Chapter 4, we will see that we can recover
the topological structure of M from the topology of the flow category.

Definition 2.2.7. The flow category of f is the category Cf whose objects are the
critical points of f and whose morphisms are broken flow lines between these critical
points. That is, for each a, b ∈ Ob Cf ,

Cf (a, b) =M(a, b).

Composition in this category is given by composition of broken flows.

To endow Cf with topological structure, we consider the objects, (Cf )0 = Crit(f),
under the subspace topology. However, since critical points of a Morse function are
isolated (Corollary 1.1.8), this is equivalent to a discrete topology. Each homspace
M(a, b) is topologized as a subspace of Map([f(b), f(a)],M), continuous maps under
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the compact open topology. The space of morphisms (Cf )1 is the disjoint union of
all the homspaces, over all pairs of critical points a, b ∈ Crit(f). Note that whenever
a = b, the only possible flow is the steady solution, so Cf (a, a) = {ida}. We claim that
the flow category is indeed a topological category, and so must show the structure
maps are continuous. Recall that the four maps are

• the identity map i : a 7→ ida ∈ Cf (a, a) for a ∈ (Cf )0,

• the domain map dom: γ 7→ a for γ ∈ Cf (a, b),

• the codomain map cod: γ 7→ b for γ ∈ Cf (a, b),

• the composition map ◦ : (γ1, γ2)→ γ1 ◦ γ2 for γ1 ∈ Cf (a, b) and γ2 ∈ Cf (b, c).

Proposition 2.1.7 takes care of composition, and the identity is clearly continuous
since its domain is a discrete space. To see that the domain and codomain maps are
continuous, it suffices to consider the pre-image of a single critical point a, which will
be disoint unions of homspaces and so open in (Cf )1.

Example 2.2.8. Let us determine the flow category for a simple but instructive
example. Recall the alternative sphere from Example 1.3.10, whose height function
has four critical points: two maxima p1, p2, a saddle point p3, and a minimum p4.
Thus our flow category has four objects, Ob Cf = {p1, p2, p3, p4}, and the homspaces
are as illustrated in Fig. 2.1.

p4

p1
p3

p1

p3

p2

p3

p4

p4

p2

Figure 2.1: Homspaces of the flow category for the alternate sphere. The
compactified moduli space M(pi, pj) consists of all broken and unbroken flows con-
necting pi and pj. In the illustration above, we have shown the compactified moduli
spaces (in a darker color) sitting inside the pieces of the alternate sphere that their
flows cover. For instance, there are only two flow lines connecting p3 and p4 (up to
composition by steady state flows), so M(p3, p4) consists of two points.

We can see that both M(p1, p4) and M(p2, p4) consist of a one-parameter family
of unbroken flowlines, in addition to the broken flows going through p3. The other
non-empty homspacesM(p1, p3),M(p2, p3), andM(p3, p4) are just the usual moduli
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spaces of unbroken flows. Finally, we also have M(pi, pi) = {idpi} for each i. All
other homspaces are empty.





Chapter 3

The Classifying Space of the Flow
Category

Before examining the classifying space of the flow category Cf , we first discuss the
classifying space of an arbitrary small category C . Despite its name, it is difficult to
say precisely what a classifying space of a category “classifies” (but for one answer to
this question, see [Wei05]). Intuitively, the classifying space records information about
the way that we can “move” through the category via morphisms. This information
about composable morphisms is recorded in a simplicial set known as the nerve of
C (Definition 3.1.12). We can then turn the simplicial set into a topological space
via the geometric realization (Definition 3.1.13); the resulting space is what is known
as the classifying space of C , denoted BC . If we carefully adjust our definitions to
respect the topological structure, we can form the classifying space for any topological
category. Examples for particular flow categories are presented later in Section 4.1.

As is typical in algebraic topology, we are interested in this classifying space up
to homotopy. It is perhaps unsurprising that an equivalence of categories induces a
homotopy equivalence of their classifying spaces (Theorem 3.1.17). The second half
of this chapter is devoted to developing and understanding different relationships be-
tween categories that yield an equivalence on their classifying spaces. One relatively
well-known construction is the twisted arrow category of C (Definition 3.1.22), de-
noted tw(C ). By relating the twisted arrow category with Segal’s edgewise subdivision
of a simplicial space (Definition 3.1.19), we get that BC ∼= Btw(C ) (Corollary 3.1.24).

The final part of the chapter is dedicated to proving that a continuous functor
between topological categories that is an levelwise homotopy equivalence induces a
homotopy equivalence on the classifying spaces (Theorem 3.2.12) Fix. That is, we
show that C0 ' D0 and C1 ' D1 implies BC ' BD . The homotopies on the objects
and morphisms induce homotopy equivalences on every level of the nerve, and these
levelwise homotopies assemble into a map of simplicial spaces (Theorem 3.2.7). The
crucial piece of the argument is that the nerve is a good simplicial space,1 which
implies that the geometric realization preserves equivalence (Theorem 3.2.12). This
work sets us up to prove the first part of the main theorem in Chapter 4, which

1Here, “good” is a technical term, see Definition 3.2.8.
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establishes a homotopy equivalence BCf ' M for an arbitrary Morse function f on
M .

3.1 Some Simplicial Homotopy Theory

The following section covers some basic notions in simplicial homotopy theory, such
as simplicial sets and their geometric realization, following classic references such as
[May67] and [GJ99]. The discussion of simplicial sets is primarily based on [Rie08],
and a more detailed exposition can be found in [Fri11]. The author also enjoyed read-
ing [Bae18] for a less formal introduction to these concepts. Since we are particularly
interested in categories internal to Top, we then generalize these definitions slightly
to respect the topological structure, as in [ML71, §XII.1]. We can then define the
classifying space for both categories and topological categories. Finally, we relate the
edgewise subdivision of a simplicial set to the twisted arrow functor, as described in
[Bar13, BR, Seg73].

3.1.1 Simplicial Sets

Simplicial sets generalize the geometric simplicial complexes found in algebraic topol-
ogy. The following exposition introduces key notions and basic examples, the most
important example being the nerve.

Let ∆ be the standard simplex category whose objects are finite, non-empty
ordinals

[n] = {0, 1, . . . , n}

and whose morphisms are order-preserving maps. We can also regard the objects of
∆ as categories themselves, more specifically as posets, so [n] is the category with
n+ 1 objects (the elements of the set above) and morphisms i→ j whenever i ≤ j.

Definition 3.1.1. A simplicial set is a (set-valued) presheaf on ∆, that is, a con-
travariant functor ∆→ Set.

As is standard, we write Xn for the set X[n], and call its elements n-simplicies.
More generally, a simplicial object in a category C is a functor X : ∆op → C . We will
be particularly concerned with simplicial objects in Top, which are called simplicial
spaces.

The simplicial sets form a category, sSet, which is just the functor category
Set∆op

.2 More specifically, a map X → Y between simplicial sets is a natural trans-
formation, and consists of maps Xn → Yn that commute with the morphisms of ∆.
In fact, as given by Proposition 3.1.5, it suffices to show that these maps between
n-simplices commute with a smaller selection of maps, which we introduce presently.

For each n ≥ 0, there are n + 1 injective coface maps di : [n − 1] → [n], where
the superscript indicates which object is not contained in the image. Similarly, there

2In general, the category of simplicial objects in a category C is denoted sC . For example, the
category of simplicial spaces is sTop.
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are n + 1 surjective codegeneracy maps sj : [n + 1]→ [n], where now the superscript
indicates which object in the image is mapped onto twice. Explicitly,

di(k) =

{
k k < i;

k + 1 k ≥ i,
and sj(k) =

{
k k ≤ j;

k − 1 k > j,

for 0 ≤ i, j ≤ n. It is straightforward to verify that these morphisms satisfy the
following cosimplicial relations :

didj = djdi−1 i < j, (3.1.2)

sisj = sjsi+1 i ≤ j, (3.1.3)

sidj =


id i = j, j + 1,

djsi−1 i < j,
dj−1si i > j + 1.

(3.1.4)

Proposition 3.1.5. The morphisms of ∆ are generated by composing the coface and
codegeneracy maps. In fact, any morphism f : [n] → [m] in ∆ can be expressed
uniquely as a composite

f = dik . . . di1sj1 . . . sjk′

for 0 ≤ i1 < · · · < ik ≤ m and 0 ≤ j1 < · · · < jk′ ≤ n such that n+ k − k′ = m.

Proof. An order-preserving function f : [n] → [m] is determined by its image in [m]
and those elements of [n] on which f does not increase. Take i1, . . . , ik ∈ [m] in unique
increasing order to be those elements not in the image of f and j1, . . . , jk′ ∈ [n] (again
in unique increasing order) to be the elements on which f does not increase. A quick
verification proves the desired equality.

The opposite category ∆op has corresponding face maps di and degeneracy maps
sj. If X is a simplicial set, we have

di := Xdi : Xn → Xn−1 and sj := Xsj : Xn → Xn+1,

for 0 ≤ i, j ≤ n. Every morphism in ∆op can similarly be expressed as a composition
of face and degeneracy maps. These maps satisfy the dual relations to those given
above, namely

djdi = di−1dj j < i, (3.1.6)

sjsi = si+1sj j ≤ i, (3.1.7)

djsi =


id i = j, j + 1,

si−1dj i < j,
sidj−1 i > j + 1.

(3.1.8)

These relations are called the simplicial relations.
The standard way to write down the data of a simplicial set is to provide the

sets of n-simplicies Xn and the face and degeneracy maps that satisfy the necessary
relations. In this way, the data of a simplicial set is entirely specified by the sets Xn

and the di, sj maps, prompting the following, alternative definition.
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Definition 3.1.9. A simplicial set X is a collection of sets Xn for each integer n ≥ 0
together with maps di : Xn → Xn−1 and sj : Xn−1 → Xn for 1 ≤ i, j ≤ n that satisfy
the simplicial relations (3.1.6), (3.1.7), and (3.1.8).

Given an n-simplex x ∈ Xn, we can visualize it as an n-dimensional tetrahedron
whose n+1 vertices are ordered by 0, 1, . . . , n and whose faces are labeled by simplices
of the appropriate dimension. The image di(x) of x under the ith face map is the
(n−1)-simplex that does not include the ith vertex of x. Each of the (n+1)-simplices
s0(x), s1(x), . . . , sn(x) represent the same simplex geometrically, each with a different
degeneracy; the image sj(x) is the simplex such that collapsing the edge between
the jth and (j − 1)th vertices to a single point gives the n-simplex x. Accordingly,
a simplex is called degenerate if it is the image of some sj, and is non-degenerate
otherwise. Unlike in a simplicial complex, we allow simplices to be degenerate.

Example 3.1.10 (The standard n-simplex). The simplicial set called the standard
n-simplex is the functor represented by [n] ∈ ∆. Letting y : ∆ ↪−→ sSet denote the
Yoneda embedding (see Appendix A.3.2), the standard n-simplex is just the image of
[n]. That is,

∆n := y[n] = ∆(−, [n]),

so ∆n
k = ∆([k], [n]) by definition. The face and degeneracy maps are given by pre-

composition in ∆ by di and sj, so

di : ∆n
k → ∆n

k−1 sj : ∆n
k → ∆n

k+1

([k]
f−→ [n]) 7→ ([k − 1]

di−→ [k]
f−→ [n]) ([k]

f−→ [n]) 7→ ([k + 1]
sj−→ [k]

f−→ [n]).

Non-degenerate k-simplices correspond to the injective maps [k] → [n] in ∆;
there is a unique non-degenerate n-simplex in ∆n corresponding to the identity on
[n]. There are many degenerate simplicies in this data as well: for instance, ∆0

contains one element in each ∆0
k, the zero function [k]→ [0], which is degenerate for

k > 0.

This perspective allows us to better understand the key role that ∆n plays in sSet.
Since the Yoneda embedding is full and faithful, the maps f : ∆n → ∆m of simplicial
sets are in bijection with the maps f : [n] → [m] in ∆. The maps fk : ∆n

k → ∆m
k are

given by post-composition by f . The Yoneda Lemma implies that simplicial maps
∆n → X correspond bijectively to the n-simplices in X, which is to say

sSet(∆n, X) ∼= Xn.

An n-simplex x ∈ X can thus be regarded as a map x : ∆n → X that sends the
unique non-degenerate n-simplex in ∆n to x. Lower-dimensional simplicies in X can
be seen as a composition of maps in ∆n, post-composed by x.

Example 3.1.11 (Total singular complex). Perhaps unsurpisingly, one standard ex-
ample of a simplicial set is related to the topological notion of a simplex. Letting
|∆n| denote the standard n-simplex in Top,

|∆n| =

{
(x0, . . . , xn) ∈ Rn+1

∣∣∣∣∣
n∑
i=0

xi = 1, xi ≥ 0

}
⊆ Rn+1,
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there is a natural covariant functor ∆→ Top given by [n] 7→ |∆n|. A map f : [n]→
[m] induces a map f∗ : |∆n| → |∆m| given by (x0, . . . , xn) 7→ (y0, . . . , yn) where

yi =

{
0 f−1(i) = ∅;∑

j∈f−1(i) xi otherwise.

Thus the ith coface map inserts a 0 in the ith coordinate and the jth codegeneracy map
adds the xj and xj+1 coordinates. Geometrically, the former inserts |∆n−1| as the ith

face of |∆n| and the latter projects |∆n+1| onto the topological n-simplex orthogonal
to its jth face.

Given a topological space Y , the total singular complex (or singular set) is the
simplicial set SY given by [n] 7→ Top(|∆n| , Y ). Elements of SYn are the singular
n-simplices of Y familiar to algebraic topologists. The face and degeneracy maps are
given by pre-composition by di and sj. This functor S is essential to the definition of
the singular homology of the space Y .

One might be confused by the notation |∆n| for the topological simplex, since
this object is more commonly denoted by ∆n or ∆n. We have chosen this notation
in order to distinguish the standard n-simplex as a simplicial set from the standard
n-simplex as a topological space. We implore the reader who remains unconvinced
to reassess after we define the geometric realization functor (Definition 3.1.13); the
observation

|∆n| = |∆n| ,

while both amusing and infuriating, is perhaps also reassuring that our notation is
well-chosen.3

3.1.2 Classifying Spaces

The most crucial example of a simplicial set, for our purposes, is that of the nerve
of a category (which is sometimes itself called the classifying space, as in [GJ99]).
Ultimately, we wish to understand the nerve of a category internal to Top as a
simplicial space, rather than a simplicial set, but first we lay out the more traditional
definitions.

Definition 3.1.12. The nerve of C is the simplicial set NC given by

NCn = Cat([n],C ),

where Cat denotes the category of small categories and functors between them.

In other words, an n-simplex is a string of n composable arrows in C . Thus
NC0 = Ob C , NC1 = Mor C , and NCn = {strings of n composable arrows in C }
more generally. In this sense, we can think of the n-simplices of the nerve as the
commutative diagrams in the category that “look like” a standard n-simplex.

3The expression on the left side of the equality is the geometric realization of the standard
n-simplex as a simplicial set, and the expression on the right is the topological n-simplex.
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c0

NC0

∈ c1c0

NC1

∈

c2

c1c0

NC2

∈

c2

c3

c1c0

NC3

∈
. . .

. . .

Figure 3.1: Some n-simplices of the nerve. The black arrows indicate the string
of n morphisms, while the gray arrows are the morphisms induced by composition.

Given a string of n composable arrows,

c0 → c1 → · · · → ci−1 → ci → ci+1 → · · · → cn,

the face map di : NCn → NCn−1 returns the string of n− 1 composable arrows

c0 → c1 → · · · → ci−1 −→ ci+1 → · · · → cn,

where the arrow ci−1 → ci+1 is the composition of the ith and (i+ 1)th arrows. In the
cases that i = 0, n, we instead omit that ith arrow. Similarly, the degeneracy map
sj : NCn → NCn+1 returns the string of n+ 1 composable arrows

c0 → c1 → · · · → cj−1 → cj
id−→ cj → cj+1 → · · · → cn.

From the definition above, we can see that the nerve is a functor N : Cat→ sSet.
Given a map C → D , the induced map NC → ND is given by post-composition.
This functor can also be seen as the right adjoint of an embedding ∆ ↪→ Cat, and
for more details on this perspective, we refer the reader to [Rie08, §4].

To build a topological space out of a simplicial set, we use the geometric realization
functor |−| : sSet→ Top.4 This space is constructed by interpreting each n-simplex
as a copy of |∆n| and using information from the face and degeneracy maps to obtain
gluing and collapsing instructions. The resulting space is fairly well-behaved, and the
geometric realization of any simplicial set is a CW complex (cf. [GJ99, Proposition
I.2.3]).

Definition 3.1.13. The geometric realization of a simplicial set X is

|X| = colim

 ∐
f : [n]→[m]

Xm × |∆n|
f∗
⇒
f∗

∐
[n]

Xn × |∆n|


4Technically, the geometric realization lands in CGHaus, the category of compactly generated

Hausdorff spaces, as discussed in [GJ99, §I.2].
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The map f∗ : Xm × |∆n| → Xm × |∆m| includes the faces as described in Ex-
ample 3.1.11, and the map f ∗ : Xm × |∆n| → Xn × |∆n| collapses degeneracies via
the simplicial structure Xf : Xm → Xn. In practice, it is often useful to use a more
concrete description of the geometric realization, which is given by(∐

n≥0

Xn × |∆n|

)
/ ∼,

where (x, sjy) ∼ (sjx, y) and (x, diy) ∼ (dix, y). Here, the equivalence relation does
the work of the commutativity of the cone diagram. The first relation ensures that
the degeneracies are “glued in” in a compatible way, and the second relation does the
same for the faces.

Finally, composing the nerve and geometric realization functors, we get the clas-
sifying space of a category. This trick, first due to Segal [Seg68], generalizes the idea
of classifying spaces for topological groups (see [May99, §16.5]).

Definition 3.1.14. The classifying space of a small category C is BC = |NC | .

In the context of a topological category, the nerve is a simplicial space rather than
a simplicial set. Recall that a category C internal to Top consists of a space of objects
C0 and a space of morphisms C1. The nth level of the nerve is given inductively by
the iterated pullback with n factors,

NC n = C1 ×C0 C1 ×C0 · · · ×C0 C1,

where each C1 ×C0 C1 is the limit of C1
cod−−→ C0

dom←−− C1. As before, the 0th level
of the nerve is the objects, NC0 = C0. The degeneracy map sj for NCn inserts the
appropriate identity map in the jth position, and di omits the outermost morphism
when i = 0, n and otherwise composes the ith and (i+1)th morphisms. The definition
of geometric realization does not change for a topological category, except now we
must also take the topology on the Xn into consideration. We would hope that the
resulting classifying space map would retain its functorial properties, and indeed we
may rest easy thanks to the following result from [Seg68].

Theorem 3.1.15. A continuous functor F : C → D induces a continuous map
BF : BC → BD , hence B : TopCat→ Top is a functor.

To conclude this section, we present a few more results about classifying spaces
for topological categories. We point the interested reader to Segal’s original paper
[Seg68] for proofs, or [Lai13] for more in-depth treatments.

Proposition 3.1.16. Given topological categories C , D , at least one of which has
finitely many objects, there is a homeomorphism B(C ×D) ∼= BC ×BD .

Applying this proposition to D = [1] (the poset category) and pondering Re-
mark 2.2.5, we get the following theorem.
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Theorem 3.1.17. Let F,G : C → D be continuous functors with a continuous nat-
ural transformation η : F → G. Then the induced maps BF,BG : BC → BD are
homotopic.

Remark 3.1.18. Note that this theorem implies that if C has an initial object, then the
classifying space BC is contractible, induced by the continuous natural transforma-
tion between idC and the constant functor on the initial object (cf. Example A.3.7).

Another corollary of the theorem is that equivalent topological categories will have
homotopy equivalent classifying spaces. A primary concern of this thesis is under-
standing when maps between topological categories induce homotopy equivalences on
the classifying spaces of those categories, but the requirements of Theorem 3.1.17 are
rather stringent. Later work, in particular Section 3.2.3, will establish slightly weaker
conditions where we can reach the same conclusion.

3.1.3 Edgewise Subdivision

The category ∆ has a (non-symmetric) monoidal structure via the join ?. Given
linearly ordered sets I, J , their join I ? J is the set I q J with the original orderings
on I and J , along with the additional condition that i < j for all i ∈ I, j ∈ J . For
example, we can think of [n] ? [m] as

0 < 1 < · · · < n < 0 < 1 < · · · < m,

where the overline is merely meant to distinguish between the elements of [n] and
those of [m]. Now, let ε : ∆→∆ be given by op? id, so ε([n]) = [n]op ? [n] ∼= [2n+ 1],
where [n]op is meant to indicate [n] with reversed ordering. Hence we can think of
ε([n]) as

n < n− 1 < · · · < 1 < 0 < 0 < 1 < · · · < n− 1 < n.

Definition 3.1.19. Given a simplicial set X, the edgewise subdivision of X is the
simplicial set sd(X) = X ◦ ε, with each component sd(X)n ∼= X2n+1. The vertices of
sd(X) are the edges of X, and an edge of sd(X) from a→ b to c→ d can be viewed
as a commutative diagram,

a c

b d

.

The edgewise subdivision is thus a functor sd: sSet → sSet specified by sd(X)n =
X2n+1 and the structure maps sd(di) = dn−i ◦ dn+1+i : sd(X)n → sd(X)n−1 and
sd(sj) = sn−j ◦ sn+1+j : sd(X)n → sd(X)n+1.

Example 3.1.20. The edgewise subdivision of a standard k-simplex sd(∆k) will
divide ∆k into 2k non-degenerate k-simplicies. For k = 2, 3, we get the pictures
in Fig. 3.2. A quick check verifies that we do indeed have the correct number of
simplicies.
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Figure 3.2: The edgewise subdivision of the standard k-simplex, for k = 2, 3.
A collection of vertices {vi0,j0 , . . . , vik+1,jk+1

} determines a simplex when i0 ≥ · · · ≥
ik+1 and j0 ≤ · · · ≤ jk+1 (and each of the numbers 0, . . . , k appears at least once).

As the illustration above indicates, there is a homeomorphism between the geo-
metric realization of a simplicial set and its edgewise subdivision. This result is due
to Segal in [Seg73, Appendix 1], and a more in-depth proof is given in [Ber09, §5.3].

Theorem 3.1.21 (Segal). For any simplicial space X, we have |X| ∼= |sd(X)|.

In the case where X is the nerve of some category, the edgewise subdivision is
related to a construction known as the twisted arrow category.

Definition 3.1.22. Given a small category C , the twisted arrow category of C ,
denoted tw(C ), the category whose objects are morphisms of C , written vertically,
and whose morphisms are commutative squares. That is, a morphism from a→ b to
c→ d is given by

a c

b d

For example, the twisted arrow category of the poset category [n] has objects (i, j)
for every 0 ≤ i ≤ j ≤ n, and morphisms (i → j) � (i′ → j′) whenever i ≥ i′ and
j ≤ j′.

This definition strongly resembles the edgewise subdivision of a simplicial set,
except in this case we consider a category. To link the two concepts together, we turn
a category into a simplicial set via the nerve functor.

Proposition 3.1.23. If C is a small category, then sd(NC ) ∼= Ntw(C ).

Proof. Starting small, we can see that sd(NC )0
∼= NC1 = Mor C = Ob tw(C ) =

Ntw(C )0. Similarly,

sd(NC )1
∼= NC3 = {· → · → · → ·} =


· ·

· ·

 = Ntw(C )1
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and so on. It suffices to show that Ntw(C )n ∼= NC2n+1. An element of NC2n+1 looks
like a diagram of 2n+ 1 composable morphisms between 2n objects of C

0 1 . . . n− 1 n

0 1 . . . n− 1 n

but, composing arrows, this is the same as the diagram

0 1 . . . n− 1 n

0 1 . . . n− 1 n

which is just an element of Ntw(C )n. A quick inspection shows that this correspon-
dence is compatible with the face and degeneracy maps as well.

Thus we get a commutative diagram of functors,

Cat Cat

sSet sSet

N

tw

N

sd

Stringing together Theorem 3.1.21 and Proposition 3.1.23 yields the following
corollary.

Corollary 3.1.24. BC ∼= Btw(C ).

Note that when C is a topological category, tw(C ) inherits topological structure
as well. The objects of tw(C ) are the space C1 and the morphisms are homeomor-
phic to the iterated pullback C1 ×C0 C1 ×C0 C1, as explained above in the proof of
Proposition 3.1.23.

In particular, when considering the flow category Cf , the twisted arrow category
records the ways we can “break up” a broken flow line. The objects are all broken flow
lines, and there is a morphism γ → γ′ precisely when the image of γ is contained in
the image of γ′; that is, there are other broken flow lines α, β such that γ′ = β ◦γ ◦α.
It is straightforward to show that such a decomposition, if it exists, is unique (up to
composing with the identities on critical points). Consequently, if there is a morphism
γ → γ′, then that morphism is unique.

3.2 Homotopy Invariance

This section is concerned with establishing conditions between topological categories
that induce a homotopy equivalence on their classifying spaces. After recalling the
basics of fibrations and cofibrations (available in classics such as [Hat02, May99]), we
establish some crucial properties of the nerve using homotopy pullbacks, as described
in [BK72, May72, Seg74]. The author also enjoyed reading selections from [Dug08]
for an additional, more modern perspective.
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Figure 3.3: Decomposing flow lines. There is a morphism γ → γ′ in tw(Cf ) if
and only if γ′ = α ◦ γ ◦ β for some α, β ∈ Cf .

3.2.1 Fibrations and Cofibrations

Recall (or see Appendix A.1) that a fiber bundle is a structure F → E
π−→ B where π

locally behaves like the projection map from F ×B. Fibrations essentially behave like
fiber bundles from the point of view of homotopy theory, where now the fibers may
merely be homotopy equivalent rather than homeomorphic (when B is connected).

Definition 3.2.1. A map p : E → B is said to have the homotopy lifting property
with respect to a space X if for every homotopy ht : X → B and map h̃0 : X → E
such that ph̃0 = h0, there exists a homotopy h̃t : X → E such that ph̃t = ht. The
homotopy h̃t is said to lift ht. A map is a (Hurewicz) fibration if it has the homotopy
lifting property with respect to all spaces.

Fibrations are particularly well-known for their relation to the long exact sequence
of homotopy groups (see, for instance, [May99, §9.3]), which in turn yields a nice test
for homotopy equivalence between well-behaved spaces.

Theorem 3.2.2. A fibration between CW complexes with contractible fibers is a ho-
motopy equivalence.

Idea of proof. Let p : E → B be a fibration such that each fibre Fb is contractible.
By the long exact sequence of homotopy groups, we have

· · · → πn(F )→ πn(E)→ πn(B)→ πn−1(F )→ · · · → π0(F )→ π0(E).

But each fiber is contractible, so πk(F ) = 0 for all k ≥ 0. Thus we get a series of very
short exact sequences

0→ πk(E)→ πk(B)→ 0

which tells us that the homotopy groups are isomorphic, hence we have a weak ho-
motopy equivalence. If E and B are CW complexes, then Whitehead’s theorem (cf.
[Hat02, Theorem 4.5]) gives the desired result.

Dualizing fibrations, we arrive at the notion of cofibrations. Cofibrations can be
thought of as a “nice” sort of inclusion, where the subspace has some room to wiggle.
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Definition 3.2.3. The dual notion of the homotopy lifting property is called the
homotopy extension property, where now a map i : B → E has this property if for
every homotopy ht : B → X and map h̃0 : E → X with h̃0i = h0, there is a homotopy
h̃t : E → X such that h̃ti = ht. A map is a (Hurewicz) cofibration if it has the
homotopy extension property with respect to all spaces.

In practice, it may be easier to recognize cofibrations using different criteria. While
there are multiple equivalent conditions, given in [May99, §6.4], we will primarily use
the following one.

Proposition 3.2.4. An inclusion B ↪→ E is a cofibration precisely when B×I ∪E×
{0} is a retract of E × I.

The retract requirement means there is a map r : E × I → B × I ∪E × {0} with
a section i : B × I ∪ E × {0} → E × I. The map r is called a retraction.

Fibrations and cofibrations feature heavily in the study of homotopy, (co)homology,
and model categories. We have presented only the most basic definitions and proper-
ties that will be crucial in the following subsections, but we encourage the interested
reader to pursue these topics in [Hat02], [May99], and others.

3.2.2 Homotopy Pullbacks

This subsection is concerned with developing sufficient conditions on topological cat-
egories that will yield a homotopy equivalence on the nerves. Since the nerve NC
is the simplicial space with NCn = C1 ×C0 · · · ×C0 C1, an n-fold iterated pullback, it
makes sense that we should first seek to understand the homotopy theory surrounding
pullbacks.

We are familiar with the pullback X ×Z Y as the limit of X
f−→ Z

g←− Y , however,
these strict pullbacks do not necessarily preserve homotopy equivalences. To address
this issue, we look to the homotopy pullback. Homotopy pullbacks are an example of
homotopy limits as described in [BK72, §XI.3], and are dual to the homotopy pushout
squares discussed in [Lur09, §A.2.4].

Definition 3.2.5. A homotopy pullback consists of a diagram

W Y

X Z

g

f

which commutes up to homotopy, and such that for any other diagram

W̃ Y

X Z

g

f
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which commutes up to homotopy, there is a morphism W̃ → W (unique up to homo-
topy) such that the triangles in the following diagram commute up to homotopy:

W̃

W Y

X Z

g

f

.

A concrete example of a homotopy pullback is given by

X ×hZ Y := X ×Z ZI ×Z Y = {(x, γ, y) | f(x) = γ(0), γ(1) = g(y)}

(see [Dug08, Example 5.1]). We can think of an element of the homotopy pullback as
a point x ∈ X, a point y ∈ Y , and a path γ connecting f(x) and g(y) in Z.

This construction preserves homotopy equivalence in the sense that if we have a
map of diagrams that is an objectwise-homotopy equivalence

X ×hZ Y Y

X Z

X̃ ×h
Z̃
Ỹ Ỹ

X̃ Z̃

'? '

'
'

then the induced map in question is also a homotopy equivalence, meaning X×hZ Y '
X̃ ×h

Z̃
Ỹ completes the cube above.

Of course, we are interested in filling out the cube for NCn
cod−−→ C0

dom←−− C1

and NDn
cod−−→ C0

dom←−− D1, which we thus far understand as strict pullbacks.5 The
following proposition establishes key conditions under which this strict pullback is in
fact a homotopy pullback.

Proposition 3.2.6. If f or g is a fibration, then the strict pullback diagram is a
homotopy pullback.

Thus, for our purposes, it suffices to show that either the dom (source) or cod
(target) map is a fibration. The argument we give below only considers dom, but the
argument for cod is almost identical.

5Technically, we mean NCn
cod−−→ C0 to be NCn

◦−→ C1
cod−−→ C0 where ◦ denotes the composition

of the n morphisms from NCn. We will omit this finer detail in the following discussion for the sake
of simplicity.
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Suppose we have a homotopy ht : X → C0 and a map h̃0 : X → C1 such that
domh̃0 = h0. Then, since the identity map i : C1 → C0 is a section of the source map,
we get a homotopy h̃t : X → C1 given by h̃t = iht. Diagrammatically,

C1 C0

X

dom

i

h̃0h̃t
ht

Clearly h̃t is continuous as a composition of two continuous maps, and moreover
domh̃t = ht by construction. Hence the source map is a fibration, and so the following
proposition is immediate.

Theorem 3.2.7. Suppose F : C → D is a continuous functor. If F0 : C0 ' D0 and
F1 : C1 ' D1, then NF : NC → ND is a map of simplicial spaces that is a levelwise
homotopy equivalence, meaning that NFn : NC n ' NDn for all n ≥ 0.

Proof. Since NCn is the pullback over NCn−1
cod−−→ C0

dom←−− C1 for n ≥ 2, the inductive
claim follows by the argument above. We know NF is a map of simplicial spaces since
N : TopCat→ sTop is a functor.

3.2.3 Inducing Equivalence on Classifying Spaces

Recall that a map of simplicial spaces X → Y is a continuous natural transformation
of functors. We call such a map an levelwise homotopy equivalence if each Xn → Yn is
a homotopy equivalence. Unfortunately, it is not always the case that an objectwise
homotopy equivalence X → Y yields a homotopy equivalence |X| → |Y |. We discuss
certain conditions where this is the case, as developed by [May72, Chapter 11] and
[Seg74, Appendix A].

Definition 3.2.8. A simplicial space X is good if every degeneracy map sj : Xn →
Xn+1 is a closed cofibration, and is Reedy cofibrant (or proper) if every latching map
LnX ↪→ X is a cofibration, where

LnX =
n−1⋃
i=0

si(Xn−1)

is the nth latching object.

We can think of LnX ⊆ Xn as the set of degenerate n-simplices, which gives a
natural inclusion LnX ↪→ Xn (this is the nth latching map in the definition above).
It is well known that every good simplicial space is Reedy cofibrant (this follows from
the fact that cofibrations are preserved under pushouts— namely, unions). In either
case, we ensure that geometric realization preserves homotopy equivalence.

Theorem 3.2.9. Let f : X → Y be a map of Reedy cofibrant simplicial spaces. If
fn : Xn → Yn is a homotopy equivalence for all n, then |f | : |X| → |Y | is a homotopy
equivalence.
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Our statement of this result follows [May72, Theorem 11.13], although the reader
familiar with model categories may be interested in the approach of [RV14] (see their
Corollary 10.6 for a statement of the theorem above).

Having established necessary conditions on topological categories to induce a ho-
motopy equivalence on the nerves in Theorem 3.2.7, we hope that geometric realiza-
tion preserves such a homotopy. The following lemma describes a sufficient condition.

Lemma 3.2.10. If the image of the identity map i : C0 → C1 is closed, then the nerve
is a good simplicial space.

Proof. Consider sj : NCn → NCn+1 for some n and some 0 ≤ j ≤ n. Recall that this
map sends a string of n composable morphisms

c0 → c1 → · · · → cj−1 → cj → cj+1 → · · · → cn

to the string of n+ 1 composable morphisms

c0 → c1 → · · · → cj−1 → cj
idcj−−→ cj → cj+1 → · · · → cn.

Thus the image of sj is

C1 ×C0 · · · ×C0 {idc | c ∈ C0} ×C0 · · · ×C0 C1 ⊆ NCn+1

where the funny business happens in the (j + 1)th factor. Thus sj(NCn) and NCn+1

agree as products on all but one of the factors, namely the (j + 1)th. So to conclude
that sj(NCn) is closed, it suffices to check that

{idc | c ∈ C0} ⊆ C1

is a closed subspace, which follows by our assumption.
To see that sj is a cofibration, we observe that im(sj) × I ∪ NCn+1 × {0} is a

retract of NCn+1 × I, since the jth face map dj is a section of sj.

Remark 3.2.11. Suppose we have C1 =
∐

c,d∈C0
C (c, d) (as holds, for example, for the

flow category). Then

{idc | c ∈ C0} =
∐
c∈C0

C (c, c)

is a disjoint union of homspaces, and each homspace is closed in C1, implying that
the nerve is good.

It is well-known that an equivalence of categories induces a homotopy equivalence
on their classifying spaces. By combining Lemma 3.2.10 and Theorem 3.2.12, we see
that it is sufficient in some cases to merely require that the spaces of objects and
morphisms are homotopy equivalent.

Theorem 3.2.12. Suppose that F : C → D is a continuous functor between topolog-
ical categories such that F0 : C0 ' D0 and F1 : C1 ' D1. Then, if the images of the
identity maps i of C and D are closed, the classifying spaces are homotopy equivalent.
That is, the map |NF | : BC → BD is a homotopy equivalence.

Proof. By Lemma 3.2.10, the nerve is a good simplicial space under the given condi-
tions, and hence Reedy cofibrant. Thus Theorem 3.2.9 applies, yielding a homotopy
equivalence on the geometric realization of the nerves.





Chapter 4

The Cohen-Jones-Segal Theorem

The goal of this thesis is to understand and prove the main results appearing in
[CJS95b], and the work of the previous chapters gives us the language to do so.
These results relate the flow category of a Morse function to the underlying manifold
via its classifying space.

Theorem 4.0.1. Let f be a Morse function on a closed Riemannian manifold (M, g).
Then

(1) there is a homotopy equivalence M ' BC f ,

(2) if (f, g) is Morse-Smale, then there is a homeomorphism M ∼= BCf .

Although widely cited, the original preprint by Cohen, Jones, and Segal was never
published. As explained by Cohen, quoted below, the key piece of missing informa-
tion was the “folk theorem” that (in the Morse-Smale case) the compactified moduli
spaces are manifolds with corners and that the gluing maps between these spaces are
associative.

The fact that [CJS95b] was never submitted for publication was due to the
fact that the “folk theorem” mentioned above, as well as the associativity
of gluing, both of which the authors of [CJS95b] assumed were “well known
to the experts,” were indeed not in the literature, and their proofs which
were eventually provided in [Qin11], were analytically more complicated
than the authors imagined. [Coh19, p.16]

In any case, the efforts of [Qin11] and later [Weh12] remedy the issue, and the proof
of part (2) of the theorem can now be completed using these results. Indeed, such a
proof is supplied in [CIN06, §12.2], and will be discussed in Section 4.2.2.

The work in Section 4.2.1 provides a fix to another, more minor error in the original
proof of part (1). In [CJS95b, §6], the authors produce two functors, Θ: C̃f �M : Γ

(where C̃f and M are variants on the flow category and the manifold M , respectively)
whose induced maps BΘ, BΓ are inverse homotopy equivalences. Unfortunately, Γ is
not a continuous functor, and this failure of continuity essentially boils down to the
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fact that the “assignment” map p→ γp is not continuous.1 However, if we expand the
flow category to a slightly larger category (Definition 4.2.1), then we can extend Γ to
be a continuous local section of Θ, and the desired result follows. This adjustment was
suggested in an email correspondence between Cohen and Segal, which was generously
shared with the author by Cohen.

Before getting into the nitty-gritty aspects of the proofs, we provide some simple
examples to see the theorem in action. While these examples have appeared in other
places (see [CIN06, HD10, Rot10] and even the original [CJS95b]), we hope that these
examples will help the reader gain some intuition for how everything pieces together.

4.1 Examples

We present a series of examples that illustrate Theorem 4.0.1, many of which are
continuations of examples from previous chapters. In particular, we will examine the
(Morse-Smale) height function on the sphere as well as few different functions on the
torus. The reader is also invited to revisit the alternate sphere, whose classifying
space we illustrated in the Introduction.

4.1.1 The Sphere

Continuing Example 1.1.5, Example 1.2.2, and Example 1.3.10, we consider the n-
sphere Sn embedded in Rn+1 under the height function f(x0, . . . , xn) = xn. This
function has two critical points— namely the north and south poles, N and S—
and under the standard flat metric in Rn+1 restricted to Sn, the pair (f,−∇f) is
Morse-Smale. Note that M(N,S) = W (N,S)/R ∼= Sn−1, and moreover M(N,S) =
M(N,S) since there are only the two critical points.

N(Cf )0 =
N
S

N(Cf )1 =

idN

idS

M(N,S)

N

S

Figure 4.1: The classifying space of Sn (when n = 2). The non-degenerate
simplices of the nerve are displayed on the left and are “glued in” on the right. The
identity maps are sent to their respective critical points and the non-trivial morphisms
M(N,S) are glued in around the equator.

1For instance, if some Cf (a, b) (which is open in Mor Cf ) contains unbroken flow lines, then its
preimage under this assignment map is W (a, b), which is not necessarily open in M .



4.1. Examples 57

The flow category has the two objects N,S and morphisms M(N,S) as well as
the identities on N and S. Hence the only non-degenerate simplices in the nerve are
the 0-simplices N,S and the 1-simplices that are the elements ofM(N,S). Thus the
classifying space looks like

BCf
∼= ({N,S} × {∗} qM(N,S)× I) / ∼

with the gluing instructions (N, ∗) ∼ (ϕ, 0) and (S, ∗) ∼ (ϕ, 1). (We also glue the
identities (N, ∗) ∼ (t, idN) and (S, ∗) ∼ (t, idS) for all t ∈ I.) This describes BCf as
a suspension2 of M(N,S) ∼= Sn−1, hence BCf

∼= Sn.

4.1.2 The Vertical Torus

The torus is often the prototypical example used to illustrate the ideas of Morse
theory, as it is a topologically interesting space that is simple enough to visualize.
Recall from Example 1.2.13 that we view the vertical torus as embedded in ordinary
three-space, standing on one end. The function f is the ordinary height function.
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Figure 4.2: Flow lines on the vertical torus, seen as the quotient R2/Z2. On
the left we show the vertical torus embedded in R3. There are four critical points of
the height function (p1, p2, p3, p4). Any point on the torus lies on a flow line between
critical points: either a constant flow at a critical point, a distinguished flow γkij, or
a flow from p1 to p4. There are two open intervals worth of flows from p1 to p4. On
the right, we have illustrated these flows on the torus, seen as the standard quotient
of R2 by the lattice Z2.

There are four critical points of f : p1 of index 2, p2 and p3 of index 1, and p4

of index 0. As illustrated in Fig. 4.2, the moduli spaces M(p1, p2), M(p2, p3), and
M(p3, p4) each consist of two distinct points which we denote by γ∗ij ∈M(pi, pj) (for

2For a space X, the suspension SX of X is the quotient of X× I obtained by collapsing X×{0}
to one point and X × {1} to another. It is well known (cf. [Hat02, Chapter 0]) that SSn−1 = Sn,
with the two suspension points being precisely the north and south poles.
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∗ = 1, 2). Any point on the vertical torus not in the image of one of these γ∗ij lies on a
flow inM(p1, p4). The moduli spaceM(p1, p4) is one dimensional, and is the disjoint
union of two open intervals; its compactification M(p1, p4) is the disjoint union of
two closed intervals.

We saw in Example 1.2.13 that the the height function on the vertical torus is not
Morse-Smale, namely because of the γk23 (recalling that the Morse-Smale condition
prohibits flows between critical points of the same index), and Fig. 1.5 shows how
the presence of these flows prevented the decomposition into unstable manifolds from
being a CW complex. Similarly, we expect that the classifying space to reflect the
absence of the Morse-Smale condition. Namely, we should expect the classifying
space to be homotopic to the torus, but not homeomorphic. In fact, if we consider
the simplicial description of the classifying space, we see that BCf will be three-
dimensional (given the existence of the triples of composable flows (γ∗112 , γ

∗2
23 , γ

∗3
34)).

Therefore we cannot hope for a homeomorphism.

Figure 4.3: Simplicial description of the classifying space for the vertical
torus, as the quotient R2/Z2. This figure illustrates three stages of the simplicial
description of BCf . In the upper left square (labeled like the square in Fig. 4.2),
we have added one-simplices for every morphism of Cf , attached to the appropriate
vertices. When we glue in the two-simplices, illustrated in the upper right square,
each quadrant contains four overlapping triangles.

The vertices of the classifying space correspond to the objects of Cf , the critical
points of f , so there are four vertices. There is an edge (a one-simplex) for every
morphism (flow) of Cf , where the endpoints of the edge are glued to the start and
end of the flow. The morphisms of M(p1, p4) will index two one-parameter families
of edges attached to the vertices for p1 and p4. Even at this first stage, the classifying
space can no longer be embedded in two-dimensions— the one-simplices in the left
illustration of Fig. 4.3 have four intersection points which are not vertices. Now,
we add in the two-simplices for every pair of twice-composable flows. There are
sixteen of these pairs, eight of which come from the choices of pairs (γ∗1ij , γ

∗2
jk) for

1 ≤ i < j < k ≤ 4, and the other eight of which come from the composition of some
broken flow and some γ∗ij. A two-simplex associated with a pair of flows, say (γ, γ′),
will have its three faces (edges) identified with the one-simplices labeled by γ, γ′, and
γ ◦ γ′.
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Figure 4.4: Classifying space of the vertical torus, embedded in R2/Z2×R/Z.
We glue in eight tetrahedra for the eight thrice-composable flows. To be able to draw
this space, we have raised p4 to the top of the box. All the simplices connect to p4

because all the thrice-composable flows end at p4. The floor of the box, tiled by the
square from Fig. 4.3, is the two-dimensional shadow of this space. In an attempt to
make the illustration clearer, we have separated the eight simplices to groups of four:
the “inner” simplices are displayed on the lower left (along with the one-parameter
families of edges from M(p1, p4)) and the four “outer” simplices on the right. The
bottom illustration puts the two pieces together. The color of the triangle corresponds
to the quadrant that the base of the simplex is on; this color is determined by the
choice of two flows connecting p1 to p3. For example, the inner bright yellow-green
tetrahedron corresponds to the triple (γ2

12, γ
2
23, γ

2
34), while the outer bright yellow-green

triangle corresponds to (γ2
12, γ

2
23, γ

2
34). Note that there is no way for us to draw all

eight simplices over one square from Fig. 4.3 without self-intersections. The additional
presence of the gluing instructions (inherited from the original torus) means that we
cannot embed the classifying space in R3.

The final step is to add in the three-simplices associated with triples of composable
morphisms. Any higher-dimensional simplex in the nerve NCf is degenerate, and
so does not contribute to the classifying space. The triples must come from the
product of moduli spaces M(p1, p2) × M(p2, p3) × M(p3, p4), and there are eight
possible choices of (γ∗112 , γ

∗2
23 , γ

∗3
34) given by the 23 possible choices for the ∗’s. Fig. 4.4
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illustrates how we might glue these eight tetrahedra together along the appropriate
two-dimensional faces. We leave it up to the reader to imagine the effect of the
identifications and gluings that would turn our illustration into the “true” classifying
space.

4.1.3 The Tilted Torus

By tilting the torus slightly, we change the gradient flow so that p2 and p3 are no
longer connected by any flow lines, as shown in Fig. 4.5. We saw in Example 1.2.13
that this adjustment puts us in the Morse-Smale case. In fact, the tilted torus is the
example in [CJS95b] used to illustrate the Morse-Smale case of the main theorem.
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Figure 4.5: Flow lines on the tilted torus, seen as the quotient R2/Z2. The
height function on the tilted torus still has four critical points (p1, p2, p3, p4), but now
there are no flows connecting p2 and p3. In addition to the γ∗12 and γ∗34 from the
vertical torus example, there are now flows γ∗13 and γ∗24 as well as four open intervals
worth of flows from p1 to p4. On the right, we have illustrated these flows on the
torus, seen as the standard quotient of R2 by the lattice Z2.

As for vertical torus, the height function f on the tilted torus has four critical
points: p1 of index 2, p2 and p3 of index 1, and p4 of index 0. However, M(p2, p3)
is now empty. Instead we have two distinct points in each of M(p1, p2), M(p1, p3),
M(p2, p4), and M(p3, p4), which we will denote by γ∗ij (for ∗ = 1, 2) as before. Any
point of the tilted torus not on one of the γ∗ij must be on a flow in M(p1, p4). Now

the compactification M(p1, p4) consists of four disjoint closed intervals.
We go through the same process as before to build the classifying space for the

tilted torus. Since any composition in Cf involving three or more morphisms will
be degenerate, we only need to worry about the zero-, one-, and two-dimensional
simplices. Once again, there are four vertices, corresponding to the four objects of
Cf , and one edge for every morphism in Cf , including four one-parameter families
connecting p1 and p4. The last step is gluing in triangles for every pair of composable
morphisms. There are eight pairs, coming from the four points in the products
M(p1, pi)×M(pi, p4) for i = 2, 3. The left illustration in Fig. 4.6 shows the resulting
simplicial structure, which fits nicely into the quotient R2/Z2. In this case, we can
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Figure 4.6: Classifying space of the tilted torus. The left portion of the figure
illustrates the classifying space in the quotient R2/Z2, and the right portion follows
the gluing instructions to reconstruct the torus. There are four one-parameter families
of edges between p1 and p4; two of which form the “outer sides” of the torus, and the
other two of which wrap around the torus by passing through the center hole. There
are eight triangles corresponding to the eight (non-degenerate) pairs of composable
morphisms in Cf .

follow the gluing instructions to reconstruct the torus; the resulting figure illustrates
the Morse-Smale case of Theorem 4.0.1 that the classifying space is homeomorphic
to the underlying manifold.

4.2 Proof of the Theorem

The remainder of this chapter is dedicated to proving Theorem 4.0.1. We divide the
work into two subsections, dealing first with the general case and second with the
Morse-Smale case.

4.2.1 Part 1: The General Case

Given any Morse function f on a compact Riemannian manifold M , we can show that
there is a homotopy equivalence M ' BCf . We record information about M in a
constant topological category M , so that BM ∼= M . Instead of comparing M to Cf

directly, we introduce an enlarged version of the flow category Cf that allows gradient
flows to have endpoints nearby critical points. This increased flexibility allows us to
define a continuous functor Θ between a variation on the twisted arrow category of Cf
and M , and this functor admits a continuous local section Γp. We can then show that
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the induced map BΘ is a fibration with contractible fibers, which yields a homotopy
equivalence on the classifying spaces. Roughly, the work of this section is to establish
the following chain:

Cf Cf twCf C̃f Mtw '
Θ

Γp

Here, the ' and ∼= relations are meant to be taken on the spaces of objects and
morphisms separately. The work of the previous chapters then tells us that we have

M ∼= BM ' BC̃f ' BtwCf ∼= BCf ' BCf

whenever f : M → R is a Morse function on M .

In more detail now, define M to be the topological category whose objects are the
points of M and whose morphisms are only the identity functions on the points. That
is,

M0 = M and M1 = {idp | p ∈M} ∼= M,

where the topology is inherited from M . It is straightforward to verify that BM ∼=
M .3

To reach the desired result, we will show that there is a homotopy equivalence be-
tween BM and the classifying space of another category that is homotopy equivalent
to the flow category.

Definition 4.2.1. The almost-flow category Cf is an enlarged version of the flow cat-
egory. Suppose Crit(f) = {a1, . . . , am} and choose disjoint neighborhoods U1, . . . , Um
of these critical points. Since (M, g) is a Riemannian manifold, we may take Ui to
be an open ball BRi(ai) around the critical point ai of radius Ri (with respect to the
metric induced by g, see Appendix A.1.5). Moreover, by the compactness of M , we
may choose one radius R for all the neighborhoods. Our space of objects for Cf is
the union U =

⋃m
i=1 Ui, under the subspace topology.

The morphisms are broken gradient flow lines with endpoints in U which are
height-parameterized flows (satisfying Equation (2.1.3)) away from critical points.
That is, a morphism in Cf looks like a broken flow line whose endpoints may not be
critical points but are within R of some elements of Crit(f). In order to give this
morphism space a nice topology, we reparameterize these almost-flow lines to share a
common domain. Since M is compact, the image of f is compact and moreover is of
the form [f(ai), f(aj)] for some ai, aj ∈ Crit(f). We will denote this interval by If .
If γ : [f(q), f(p)]→M is an almost-flow from p to q, we reparameterize

γ̃(t) =


p t ∈ [f(p), f(aj)];
γ(t) t ∈ [f(q), f(p)];
q t ∈ [f(ai), f(q)].

3In general, given a topological space S and defining S to be the topological category whose
objects S0 are the points of S and whose morphisms S1 are the identity maps on those points,
we get a homeomorphism BS ∼= S. This result follows because all non-degenerate sequences have
length 0 and so

BS ∼= ∆0 ×N0S ∼= ∗ ×S0
∼= S.
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To extend the domain of γ to If , the newly parameterized γ̃ only “moves” in the in-
terval [f(q), f(p)] ⊆ If , staying constant at the endpoints for the appropriate amount
of time. If γ̃1 ∈ Cf (p, q) and γ̃2 ∈ Cf (q, r), their composition is given by

γ̃1 ◦ γ̃2(t) =

{
γ̃1(t) t ∈ [f(q), f(aj)];
γ̃2(t) t ∈ [f(ai), f(q)].

We can then topologize the morphisms of Cf as a subspace of Map(If ,M) under the
compact open topology.

a

b

Figure 4.7: The almost-flow category Cf . The morphisms in Cf are height-
parameterized gradient (broken) flows that share a common domain If . These “al-
most” flow lines may have their endpoints anywhere in the neighborhood, not neces-
sarily at the critical points a or b.

Note that if γ̃1 and γ̃2 are composable, then γ̃1 ◦ γ̃2 is another genuine almost-flow
line. That is, we will not have any flow lines that are “broken” at any points other
than critical points. As in the flow category, an almost-flow γ̃ from p to q is said to
start at s(γ̃) = p and end at e(γ̃) = q, although in fact the parameterization has γ̃
flowing in the opposite direction.

Proposition 4.2.2. The almost-flow category Cf is a topological category.

Proof. We need to check that the four structure maps are continuous (as discussed in
Definition 2.2.2). The argument for composition is almost identical to the one given
in Proposition 2.1.7. To see that the identity map i : (Cf )0 → (Cf )1 is continuous,
observe that the pre-image of any subbasis element

D(K,V ) = {γ̃ ∈ (Cf )1 | γ(K) ⊆ V }

for compact K ⊆ If and open V ⊆M will be precisely the intersection V ∩U , which
is open in M . As for the domain map dom: (Cf )1 → (Cf )0 which sends a flow γ̃ ∈
Cf (p, q) to p, given any open set V ⊆ M , we can write dom−1(V ) = D({f(ai)}, V ).
Since every almost-flow “starts” at f(ai) (the right endpoint of If ), this subbasis
element is precisely the collection of flows that start at some point in V . Continuity
of the codomain map follows similarly.
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We work in a larger category for technical reasons, as suggested in the corre-
spondence between Cohen and Segal that was generously shared with the author by
Cohen. The method of proof is similar to the one in the original preprint [CJS95b],
but working in this larger category fixes the issue of the continuity of the functor Γ
discussed at the beginning of this chapter.

Lemma 4.2.3. BCf ' BCf .

Proof. The inclusion of the flow category as a subcategory of Cf induces homotopy
equivalences on the objects and morphisms. On the object level, we can contract each
Ui to the critical point ai. On the morphism level, the idea is that we will send a
flow in Cf that passes through the neighborhoods of some sequence of critical points
a1 � · · · � ak to a broken flow that connects a1, . . . , ak.

Since f is strictly decreasing along the non-constant gradient flow lines (Proposi-
tion 1.1.10), once the flow leaves some Ui it cannot return. Note that if the almost-flow
stays entirely within some Ui, then the contraction of Ui to ai will take this flow to the
steady state solution. It suffices to consider an almost-flow γ̃ that has its end points
in some Ui and Uj (for i 6= j) and passes through no other Ui neighborhoods, since
we can repeat the procedure for each piece of the longer flow. By the construction
of Cf , there is some genuine gradient flow that γ̃ follows. The continuity of the flow
guarantees that there is some nearby γ which starts at ai and ends at aj, and we
can continuously deform γ̃ to this flow, yielding a levelwise homotopy equivalence of
topological categories.

In order to conclude the classifying spaces are equivalent using Theorem 3.2.12,
we must verify that the image of i : (Cf )0 → (Cf )1 is closed. Equivalently, we will
show that its complement, the collection of non-constant flows, is open in (Cf )1. It
suffices to produce a neighborhood for an arbitrary non-constant flow γ̃ ∈ Cf (p, q).
We can exclude constant flows by considering an intersection of subbasis elements
containing γ̃ whose open sets are disjoint. For instance, if dg(p, q) = ε, we could take
the neighborhood D({f(p)}, Bε/2(p)) ∩D({f(q)}, Bε/2(q)). This shows the image of
i is closed, and so combining Lemma 3.2.10 and Theorem 3.2.12, we get the desired
result.

Remark 4.2.4. Note that the argument we have used above (and will use again in
Lemma 4.2.6) requires that the spaces of objects and morphisms of both Cf and Cf
are sufficiently well-behaved, that is, homotopy equivalent to CW complexes. While
the spaces of objects clearly satisfy this condition, we could not find anything about
the spaces of morphisms. We suspect that this fact is one of those notorious things
that does not appear in the literature but is “known to the experts.”

To establish a connection between Cf and M , we turn to the twisted arrow cat-
egory of Cf (Definition 3.1.22). However, we extend to a slightly larger category to
keep track of a bit more information.

Definition 4.2.5. The pointed twisted almost-flow category C̃f is the twisted arrow
category tw(Cf ) with some additional structure. Namely, the objects of C̃f are pairs
(γ̃, p) where γ̃ ∈ Ob tw(Cf ) and γ̃ flows through p ∈ M . The morphisms of C̃f are
commutative squares
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· ·

· ·
(γ̃,p) (γ̃′,q)

α

β

where there is a morphism between (γ̃, p) and (γ̃′, q) if and only if p = q ∈ M . We
denote such a morphism by (α, β)p. This topological category inherits its topology
as a subspace of tw(Cf )×M .

The original [CJS95b] considers the similarly “pointed” version of tw(Cf ). The
authors then define Γ to be the functor from M into this pointed flow category that
maps p 7→ (γp, p). As explained in the beginning of this chapter, it turns out that
this functor is not continuous, requiring us to expand to C̃f .

Lemma 4.2.6. BC̃f ' Btw(Cf ).

Proof. The forgetful functor induces a fibration with contractible fibers between the
objects and morphisms of the two topological categories. The proof of this fact follows
from the observation that C̃f can be seen as a subcategory of tw(Cf )×M and that
the image of every morphism γ̃ ∈ Cf is contractible (as a subset of M).

Define Θ: C̃f →M to be the functor that maps

(γ̃, p) 7→ p and (α, β)p 7→ idp.

Note that Θ is just the projection map on Ob C̃f and the composition of a projection
with the domain (or codomain) map on morphisms, and so is continuous on both
levels. A quick check against the functorial diagrams in Definition 2.2.3 verifies that
Θ is indeed a continuous functor.

The benefit of working in the somewhat ad hoc category C̃f is that we can now
find a local section of Θ. For p ∈M , we denote this section by Γp, in the spirit of the
original preprint. The idea is that Γp will take a point q nearby p to an almost-flow
line that stays “close” to the minimal flow γp for all times t ∈ If . We claim that, for
q sufficiently close, we can use the flow line γq which is allowed to be non-constant
only on [f(b), f(a)]. We denote this restricted version of γq by γpq .

Lemma 4.2.7. Let p ∈ M , and suppose the minimal flow γp goes between critical
points a ∈ Ua and b ∈ Ub. Then there is a neighborhood Vp of p such that for all
q ∈ Vp, the truncated flow line γpq : If →M given by

γpq (t) =


γq(f(a)) t ∈ [f(a), f(aj)]
γq(t) t ∈ [f(b), f(a)]

γq(f(b)) t ∈ [f(ai), f(b)],

also flows between Ua and Ub, meaning that γpq (f(b)) ∈ Ub and γpq (f(a)) ∈ Ua. The
local assignment τp : q 7→ γpq is continuous on Vp.
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Proof. Recall that we have Ua = BR(a) and Ub = BR(b) by the construction of Cf .
Since the flow assignment Φ(p, t) = γp(t) is smooth, there is a δ > 0 such that

dg(γp(t), γq(t
′)) < R whenever dg(p, q) + |t− t′| < δ.

In particular, if t = t′, it is sufficient to require dg(p, q) < δ. Set Vp = {q ∈
M | dg(p, q) < δ} ⊆ M . Then at time f(a), we have dg(γp(f(a)), γq(f(a))) =
dg(a, γ

p
q (f(a))) < R. In other words, γpq (f(a)) ∈ Ua, and similarly γpq (f(b)) ∈ Ub.

Now we will show that the assignment q 7→ γpq is continuous. Since If is compact
and M is equipped with a metric dg, the compact-open topology is metrizable, with
the metric

d̃(γ, γ′) = sup
t∈If
{dg(γ(t), γ′(t))}.

Now consider some neighborhood of τp(q) = γpq , without loss of generality of the form

Bε(γ
p
q ) for some ε > 0 (where Bε(γ

p
q ) is given with respect to d̃). Once again, the conti-

nuity of the flow gives us a δ > 0 such that dg(γp(t), γq(t)) < ε whenever dg(p, q) < δ,
for all times t that make sense. Take the neighborhood of q given by Bδ(q) and
consider its image under the assignment map. We can see that τp(Bδ(q)) ⊆ Bε(γ

p
q )

since

τp(Bδ(q)) =
{
γpq | dg(p, q) < δ

}
⊆
{
γpq | d(γp(t), γq(t)) < ε for all t ∈ If

}
⊆
{
γpq | d̃(γp, γq) < ε

}
,

which shows that τp is continuous on Vp.

We let Vp denote the topological subcategory of M which is given by the constant
category on Vp. Now define Γp : Vp → C̃f to be the functor that takes

q 7→ (γpq , q) and idq 7→ id(γpq ,p).

It is straightforward to verify that Γp is both a functor and a local section of Θ.

Proposition 4.2.8. The section Γp is continuous.

Proof. Note that Γp on morphisms is the composition of i ◦ (Γp)0 ◦ dom (where (Γp)0

is Γp on objects), so it suffices to show that Γp is continuous on objects. The fact
that Γp is continuous on objects follows from the observation that Γp = (τp, id) ◦∆,
where ∆ is the continuous diagonal map q 7→ (q, q).

Since this section is only local, we cannot produce a homotopy inverse to Θ as
the original authors claimed in [CJS95b]. However, we can use Γp to show that the
induced map BΘ is a homotopy equivalence.

Proposition 4.2.9. The induced map BΘ is a fibration with contractible fibers.
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a

b

Vp

q

γp

γq

Figure 4.8: The truncated flow γpq . The minimal flow γq of a point q ∈ Vp passes
through the neighborhoods of the critical points associated with γp. Restricting the
flow γq to be non-constant only on the domain [f(b), f(a)] gives the truncated flow
γpq .

Proof. That fact that BΘ is a fibration follows from the observation that we can
lift any homotopy into BM to a homotopy into BΘ using the map induced by the
continuous section Γp. By the functorial properties of B, the induced map BΓp will
be a local section of BΘ.

It remains to show that the fibers (BΘ)−1(p) are contractible. Consider Θ−1(p),
the subcategory of C̃f which consists of flows through p, pointed by p. By the argu-
ment in Lemma 4.2.3, this subcategory is homotopy equivalent to its restriction to
tw(Cf ). Note that this identification entails that whenever p is in one of the distin-
guished neighborhoods Ui, we have Θ−1(p) ' Θ−1

twCf
(ai), where the fiber on the left

lives in C̃f and the fiber on the right lives in twCf . Otherwise, Θ−1(p) ' Θ−1
twCf

(p),
where both subcategories are pointed by the same point p. In any case, the subcate-
gory Θ−1

twCf
(p) has an initial object (the constant flow idai if p ∈ Ui, and the minimal

flow γp otherwise), which implies that B(Θ−1
twCf

(p)) ' B(Θ−1(p)) = (BΘ)−1(p) is

contractible (see Remark 3.1.18).

Assuming that the homotopy type of BCf is sufficiently nice (see Remark 4.2.4),

this proposition implies that BΘ: BCf
'−→ M is a homotopy equivalence, which

finishes our proof of the general case.

4.2.2 Part 2: The Morse-Smale Case

In the special case that f is Morse-Smale, there is a homeomorphism M ∼= BCf . The
technical heart of the proof is the existence of an associative gluing map

µ : (0, ε]×M(a, c)×M(c, b)→M(a, b).
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This gluing map can be thought of as deforming broken flow lines γ1 ◦ γ2 into smooth
ones γ1 ◦s γ2 that “stay s away from” the critical point c, for any s ∈ (0, ε]. We then
consider the subspace K(a, b) ⊆M(a, b) that consists of all smooth flow lines from a
to b that stay at least ε far away from all other critical points. It turns out that we
can redefine the homspaces of the flow category in terms of these K(a, b) spaces. We
can build an intermediary space between M and the flow category, denoted by Rf ,
that is built out of products of K(a, b) with cubes that describe how to glue the flow
lines together. The link between Rf and M is given by the evaluation map

Rf ∈(t, (s1, . . . , sm), (γ0, . . . , γm)) 7→ (γ0 ◦s1 · · · ◦sm γm)(t) ∈M,

along with certain equivalence relations. Turning the cubes in Rf into simplices, we
get another space R̃f which is homeomorphic to the classifying space BCf . We can
then establish a chain of homeomorphisms

BCf
∼= R̃f

∼= Rf
∼= M.

We follow the original proof from [CJS95b] (replicated in [CIN06, §12.2]), at times
skimming over some of the more technical details. Our exposition should serve to
familiarize the reader with the general method of proof, and convince the reader that
this approach works.

Recall from Section 2.1.2 that we can define a partial ordering on critical points,
where a � b when M(a, b) is non-empty for a 6= b. In general, the moduli spaces
M(a, b) are not compact, but have a canonical compactification given by

M(a, b) =
⋃

a�c1�···�ck�b

M(a, c1)× · · · ×M(ck, b),

where the union is taken over all ordered sequences of critical points from a to b.
Essentially, we form M(a, b) from M(a, b) by formally adjoining broken flow lines.
The composition map

M(a, c)×M(c, b)→M(a, b)

is just the concatenation of curves. The issue is that these broken flows are not them-
selves flow lines, and so we must rethink how we can associate a pair of composable
flows (γ1, γ2) with an actual flow line. In the Morse-Smale case, this can be done by
deforming “patched curves” γ1#εγ2 to genuine flows γ1 ◦ε γ2.

First, we choose ε > 0 so that for any two points p, q ∈M with geodesic distance
δ < ε, there is a unique geodesic gp,q : [− δ

2
, δ

2
]→M joining p and q, parameterized by

arclength. Now, suppose we have a sequence of critical points a � c � b connected
by (unbroken) flow lines γ1, γ2. For 0 < s < ε

3
, let p be the last point on the curve γ1

whose distance from c is s and q be the first point on γ2 whose distance from c is s.
We define the patched curve by

(γ1#sγ2)(t) =


γ1(t) t ≤ − δ

2
;

gp,q(t) t ∈ [− δ
2
, δ

2
];

γ2(t) t ≥ δ
2
.
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While these patched curves are not exactly flow lines, they are “close” to flow
lines in such a way that every patched flow γ1#sγ2 can be suitably associated with
a bona fide flow γ1 ◦s γ2. The specifics of this “closeness” is discussed in more detail
in [CIN06, §9.2]. The parameter s can be thought of as a measure of how close the
flow γ1 ◦s γ2 comes to the critical point c (where γ1 ends and γ2 begins). Note that
we do not yet allow s = 0, although we can think of γ1 ◦0 γ2 as the familiar broken
flow from Chapter 2; these flows will be formally adjoined later in the proof.

The crucial piece of the proof is the existence of certain associative gluing maps,
and this is the moment when the Morse-Smale condition becomes necessary. To get
these maps, the authors of [CJS95b] relied on a certain “folk theorem” regarding the
structure of the compactified moduli spaces of a Morse-Smale flow, as discussed at
the beginning of this chapter. The exact nature of the interplay between the Morse-
Smale condition and the gluing maps is beyond our scope, but we point the interested
reader to [Qin10, Qin11, Weh12].

Theorem 4.2.10. There is some ε > 0 with a gluing map

µ : (0, ε]×M(a, c)×M(c, b)→M(a, b)

given by (s, γ1, γ2) 7→ γ1 ◦s γ2 that is a diffeomorphism onto its image. Moreover, µ
is associative, in the sense that

(γ1 ◦s γ2) ◦s′ γ3 = γ1 ◦s (γ2 ◦s′ γ3)

for all s, s′ ≤ ε.

a

b

c

γ1

γ2

γ1 ◦s γ2
s

Figure 4.9: The glued flow γ1 ◦s γ2. The gluing map µ takes (s, γ1, γ2) to the flow
line that stays at least s away from c.

These gluing maps give us a way to associate a pair of flows (whose direct concate-
nation is a broken flow) with a genuine flow line. Recall that we use c(a, b) to denote
an ordered sequence of critical points a � c1 � · · · � ck � b, and say the length of
c(a, b) is k. To save ourselves from notational headaches, we shall now denote such
a sequence by merely c. The associativity condition given above allows us to extend
the gluing maps to products of moduli spaces

M(c) =M(a, c1)× · · · ×M(ck, b).
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Corollary 4.2.11. For any ordered sequence c of length k ≥ 1, the gluing map

µc : (0, ε]k ×M(c)→M(a, b)

given by (s1, . . . , sk; γ0, . . . , γk) 7→ γ0 ◦s1 · · · ◦sk γk is a diffeomorphism onto its image.

By rescaling the metric, we can take ε = 1 (cf. [CIN06, §12.2]). The image of
µc consists of flow lines from a to b that come within 1 of each of the critical points
c1, . . . , ck. The space we are interested in is M(a, b) with these flows that “come too
close” removed.

Definition 4.2.12. Define K(a, b) ⊆M(a, b) by

K(a, b) :=M(a, b)−
⋃
c

µc

(
(0, 1)k ×M(c)

)
.

Since the gluing maps are diffeomorphisms onto their images, we can think of
K(a, b) as the space of flow lines connecting a and b that stay at least 1 away from
all other critical points. As it turns out, there is a homeomorphism between K(a, b)
andM(a, b). We can see that the ends of the moduli spaceM(a, b) consist of spaces
of half-open cubes (0, 1]k parameterized by the composable sequences of flow lines in
M(c); if we remove the open cubes (0, 1)k, we arrive at K(a, b), and if we formally
close the cubes, we arrive at M(a, b).

1

a

c

b

K(a, b) M(a, b)

γ1 ◦1 γ2

γ1 ◦ γ2

Figure 4.10: Comparing the spaces K(a, b) and M(a, b). The space M(a, b) is
formed by adjoining the broken flow γ1 ◦ γ2 that passes through the critical point c
centered in the ball of radius 1. The space K(a, b) is formed fromM(a, b) by removing
all the flows that pass through the interior of that ball. The flow γ1 ◦1 γ2 lies on the
boundary of K(a, b). Both M(a, b) and K(a, b) are compact, and we can imagine
continuously deforming one to the other. The triangular region between γ1 ◦1 γ2 and
γ1 ◦ γ2 (including the former but not the latter) is the image of the gluing map µ.

Theorem 4.2.13. The space K(a, b) is compact and homeomorphic to

M(a, b) := colimc

(
M(a, b) ∪µc [0, 1]k ×M(c)

)
.
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The expression in the parentheses is the pushout of [0, 1]k ×M(c) ←↩ (0, 1]k ×
M(c)

µc−→M(a, b), and the colimit is taken over all ordered sequences c from a to b.
This theorem allows us to redefine the homspaces of the flow category using K(a, b).
The benefit of this perspective is that K(a, b) ⊆ M(a, b) is a collection of bona fide
flow lines, whereasM(a, b) includes the piecewise smooth broken flows. Composition
in the flow category (previously given by (γ1, γ2) 7→ γ1 ◦ γ2) can now be given by
(γ1, γ2) 7→ γ1 ◦1 γ2.

By defining γ1 ◦0 γ2 to be the broken flow line γ1 ◦ γ2, we extend µc to a map

µc : [0, 1]k ×M(c)→M(a, b).

The space M(a, b) has a filtration given by

K(a, b) = K(0)(a, b) ⊆ · · · ⊆ K(i−1)(a, b) ⊆ K(i)(a, b) ⊆ · · · ⊆ M(a, b) =
⋃
i

K(i)(a, b)

where K(i)(a, b) consists of those flows γ that come within distance 1 of at most i
intermediary critical points. In other words, γ can be decomposed as

γ = γ0 ◦s1 · · · ◦sk γk

for some k ≤ i, with the sj ∈ [0, 1] and the γj ∈ K(cj, cj+1) (with the understanding
that c0 = a and ck+1 = b). More precisely,

K(i)(a, b) =
⋃
k≤i

⋃
c

µ
(
[0, 1]k ×K(c)

)
where K(c) is the product

K(c) = K(a, c1)× · · · × K(ck, b).

At each step, the piece we “add on” to K(i)(a, b) are those flows that come within 1
of i intermediary critical points. That is,

K(i)(a, b)−K(i−1)(a, b) =
∐

c

µc

(
[0, 1)i ×K(c)

)
,

where the disjoint union is taken across all ordered sequences c of length i connecting
a and b. Since µc is a diffeomorphism onto its image andM(a, b) =

⋃
iK(i)(a, b), the

map ∐
k

∐
c

l(c)=k

[0, 1]k ×K(c)→M(a, b)

(s1, . . . , sk; γ0, . . . , γk) 7→ γ0 ◦s1 · · · ◦sk γk

is surjective. In order to turn this map into a homeomorphism, we just need to define
the appropriate equivalence relations. Now, the only places where the map may not
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be injective are those places where some γi−1 ◦si ◦γi is already in some K(cj, cj+1),
which can happen if and only if si = 1. Thus if we declare

(s1, . . . , si−1, 1, si+1, . . . , sk;γ0, . . . , γk)

∼ (s1, . . . , si−1, si+1, . . . , sk; γ0, . . . , γi−1 ◦1 γi, . . . , γk),

we will get the desired homeomorphism.

Theorem 4.2.14. The compactified moduli space of broken flows M(a, b) is homeo-
morphic to ∐

k

∐
c

l(c)=k

[0, 1]k ×K(c)

/
∼,

where ∼ is the relation defined above.

We will make use of this homeomorphism soon to build the intermediary space
Rf , but first we establish a connection betweenM(a, b) and M using evaluation maps
of flow lines, namely, the maps

[f(b), f(a)]×M(a, b)→M

which send (t, γ) 7→ γ(t). Note that the image of this map is the closure of W (a, b),
since the images of the broken height-parameterized flows γ include all the critical
points that γ passes through, as discussed in Section 2.1.1. By considering all ordered
sequences of critical points c = {c0, c1, . . . , ck, ck+1}, we get a map∐

c

[f(ck+1), f(c0)]× [0, 1]k ×K(c)→M

which evaluates (t; s1, . . . , sk; γ0, . . . , γk) 7→ (γ0 ◦s1 · · · ◦sk γk)(t). It is clear that this
map is onto, since every point p ∈ M is in the image of its minimal flow γp. We
will use the same trick as before to turn this map into a homeomorphism, namely, by
defining the appropriate equivalence relation.

Definition 4.2.15. Let c = {c0, . . . , ck+1} denote an arbitrary ordered sequence of
critical points, with length l(c) = k. Let Jc = [f(ck+1), f(c0)] and Ic = [0, 1]k. Then
define

Rf =
∐

c

Jc × Ic ×K(c)

/
∼,

where ∼ is the equivalence relation given by an adjustment of the previous relation

(t; s1, . . . , si−1, 1, si, . . . , sk;γ0, . . . , γk)

∼ (t; s1, . . . , si−1, si, . . . , sk; γ0, . . . , γi−1 ◦1 γi, . . . , γk)

in addition to

(t; s1, . . . , si−1, 0, si, . . . , sk;γ0, . . . , γk)

∼
{

(t; s1, . . . , si−1; γ0, . . . , γi−1) t ∈ [f(ci), f(c0)];
(t; si, . . . , sk; γi, . . . , γk) t ∈ [f(ck+1), f(ci)].
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The first relation takes care of the overlap between Ic and K(c), as before. The
second relation takes care of the broken flow lines, allowing us to identify a piece-
wise flow γ1 ◦0 γ2 with one of its pieces, γ1 or γ2, depending on where (γ1 ◦0 γ2)(t)
lands. The point (γ1 ◦0 γ2)(t) is either a joining point (that is, when t = f(ci) in
Definition 4.2.15) and so we may associate with either segment, or else (γ1 ◦0 γ2)(t)
lies in the image of either γ1 or γ2. In any case, the only identifications that may
take place when some si is 0 can be reached by that set of relations. Imposing these
relations turns the evaluation map (t; s1, . . . , sk; γ0, . . . , γk) 7→ (γ0 ◦s1 · · · ◦sk γk)(t) into
a homeomorphism.

Theorem 4.2.16. The evaluation map Rf →M is a homeomorphism.

Finally, we need to show Rf
∼= BCf . Comparing the definitions of Rf and BCf

(particularly considering the concrete description of the geometric realization after
Definition 3.1.13), we see that there is quite a bit of similarity, the essential difference
being that Rf is built out of cubes while BCf is built out of simplices. We can
establish a homeomorphism between the two spaces via an intermediary space R̃f

which is built out of Rf in two steps: we first collapse the cubes into simplices, and
then we impose relations that glue the simplices together to make BCf .

We want to turn the cubes Jc × Ic into a simplex without changing their image
in the quotient space Rf . Looking at the identifications made in Rf under ∼, we are
motivated to give a name to the ordered sequence c with a critical point ci removed;
define ci = {c0, . . . , ci−1, ci+1, . . . , ck+1} to be this sequence. Now we will define a
relation ∼ so that the space

Jc × Ic/ ∼

is naturally homeomorphic to a simplex. If si = 0 for some 1 ≤ i ≤ k (implying that
Jc = Jci), then we say

(t; s1, . . . , si−1, 0, si+1, . . . , sk)

∼
{

(t; s1, . . . , si−1, 0, s
′
i+1, . . . , s

′
k) t ∈ [f(ci), f(c0)];

(t; s′1, . . . , s
′
i−1, 0, si+1, . . . , sk) t ∈ [f(ck+1), f(ci)],

for any s′j ∈ [0, 1]. If i = 0, k + 1, then we have

(t; 0, s2, . . . , sk) ∼ (t; 0, s′2, . . . , s
′
k) t ∈ [f(c1), f(c0)],

(t; s1, . . . , sk−1, 0) ∼ (t; s′1, . . . , s
′
k−1, 0) t ∈ [f(ck+1), f(ck)];

and finally we collapse {f(ci)} × Ic (for i = 0, k + 1) to a point, imposing

(f(ck+1); s1, . . . , sk) ∼ (f(ck+1); s′1, . . . , s
′
k),

(f(c0); s1, . . . , sk) ∼ (f(c0); s′1, . . . , s
′
k).

Note that if two points are identified by this relation, then they have the same image
in Rf . The point is that these quotiented cubes are homeomorphic to simplices, and
so we can build Rf (or at least something homeomorphic to it) out of simplices rather
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than cubes. To define the appropriate gluing together of these simplices, we need the
“face inclusion maps”

δi : Jci × Ici → Jc × Ic,

for 0 ≤ i ≤ k + 1, defined by

δi(t; s1, . . . , sk−1) =


(t; 0, s1, . . . , sk−1) i = 0;

(t; s1, . . . , si−1, 1, si, . . . , sk−1) 1 ≤ i ≤ k;
(t; s1, . . . , sk−1, 0) i = k + 1.

Lemma 4.2.17. There are homeomophisms φc : Jc × Ic/ ∼ →
∣∣∆k+1

∣∣ such that the
following diagrams commute:

Jc × Ik/ ∼
∣∣∆k+1

∣∣
Jci × Ik−1/ ∼

∣∣∆k
∣∣

φc

φci

δi di .

Up to this point, we have used the second set of relations in Definition 4.2.15. Us-
ing this lemma and imposing the first set of relations onRf , we get a homeomorphism
between Rf and the following space.

Definition 4.2.18. Define

R̃f =
∐

c

∣∣∆k+1
∣∣×K(c)

/
∼,

where ∼ is the relation given by

(s0, . . . , si−1, 0,si+1, . . . , sk; γ0, . . . , γk)

∼


(s1, . . . , sk; γ0, . . . , γk) i = 0;

(s0, . . . , si−1, si+1, . . . , sk; γ0, . . . , γi−1 ◦1 γi, . . . , γk) 1 ≤ i ≤ k − 1;
(s0, . . . , sk−1; γ0, . . . , γk−1) i = k.

The definition of R̃f is almost identical to that of the classifying space BCf ,
except R̃f only uses the space of non-degenerate simplices, rather than the space of
all simplices. Thus we have

Rf
∼= R̃f

∼= BCf ,

which implies that BCf
∼= M .



Suggested Further Reading

There is only so much one can say in a thesis without being in danger of writing a
book. While we have attempted to give a substantive overview of classical Morse
theory, there are undoubtedly areas of the field that we have unfairly skimmed over
or skipped entirely. The aim of this final portion of the thesis is to briefly outline
a few areas of mathematics related to Morse theory that the interested reader may
pursue.

More Morse Theory

One interesting way to extend Morse theory is to loosen our requirements on the
functions we consider. For instance, Morse-Bott theory considers functions whose
critical set may be a closed submanifold of M , such as the height function on the
horizontal torus we saw in Example 1.2.13.4 Morse functions become a special case of
Morse-Bott functions, where the critical sets are zero dimensional. Many of the ideas
of Morse theory can be extended to Morse-Bott theory, including Morse homology
(see [AB95, §3] or [Hut02, §6]).

Rather than changes the types of functions under consideration, we might change
the types of spaces. This is precisely the approach of stratified Morse theory, which
generalizes Morse theory to certain spaces with singularities; the classical reference
for this theory is the work of Mark Goresky and Robert MacPherson, particularly
[GM88]. In particular, results about the topology of sublevel sets (Section 1.3.1)
can be extended to (Whitney) stratified spaces, that is, spaces X that admit a finite
filtration

∅ ⊆ X0 ⊆ X1 ⊆ · · · ⊆ Xn = X

which satisfies certain nice properties.
A more combinatorial generalization of Morse theory is discrete Morse theory,

which considers simplicial complexes under so-called discrete Morse functions that
(roughly) assign higher numbers to higher-dimensional simplicies. This field, devel-
oped by Robin Foreman [For02], has found many practical uses in computational
homology, topological data analysis, and other areas of applied math and computer
science. Many of the basic results of standard Morse theory generalize to discrete
Morse theory, such as the Morse inequalities, the Morse complex, and Morse homol-
ogy. In fact, there is a result for the flow category for a discrete Morse function

4In fact, this example belongs to a special class of Morse-Bott functions, known as round functions.
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analogous to the main theorem of this thesis, formulated and proved in [NTT16].
In addition to these topics we have mentioned, there is plenty more to say about

Morse theory, its spin-offs, and its relations to other areas of mathematics. The
expositions [Bot80, Bot88] and [Gue01] give good overviews of some aspects of Morse
theory that escape the scope of this thesis.

Floer Homology and Homotopy Theory

Floer homology is a tool used in modern symplectic geometry and low-dimensional
topology, and can be seen as an infinite-dimensional analogue of Morse homology.
Andreas Floer introduced the first version of Floer homology in his proof of the
Arnold conjecture (see [AD14, Part II] for a thorough treatment). Roughly, the
Arnold conjecture proposes that the number of periodic trajectories of a Hamiltonian
vector field on a symplectic manifold W is bounded below by∑

k

dimHMk(W ;Z/2).

The connection between the Arnold conjecture and the Morse inequalities (Theo-
rem 1.3.15) was key to Floer’s proof strategy. Variations of Floer homology have
played important roles in many other areas of mathematics and physics.

In finite-dimensional Morse theory, it is geometrically clear why the homotopy
type of a manifold M is reflected in the structure of critical points and gradient flows
between them, as captured by Morse homology. A program of Cohen, Jones, and Segal
[CJS95a] seeks to develop a comparable Floer homotopy theory. The recent paper of
Cohen [Coh19] summarizes some recent applications of ideas from Floer homotopy
theory, including the work of Lipshitz and Sarkar related to Khovanov homotopy
theory [LS11]. With many unanswered questions, this area of mathematics provides
a fertile ground for further research in the intersection of homotopy theory, symplectic
geometry, and low-dimensional topology.



Appendix A

Some Things to Know

When the author began working on this thesis, she quickly realized how much she
did not know. The hope is that this appendix will provide you, the reader, with a
relatively succinct account of Some Things to Know in order to understand this thesis.
The three main areas discussed are differential topology (Appendix A.1), algebraic
topology (Appendix A.2), and category theory (Appendix A.3), appearing roughly in
the order that the material is used in the main body of the thesis.

A.1 A Bit of Differential Topology

We first cover some background material from differential geometry and differential
topology. This section is essentially a retelling of [AD14, Appendix A], with some bits
skipped and some bits expanded upon. While the reader could likely get away with
imagining everything taking place in familiar Euclidean space, replacing “manifold”
with “Rn” and invoking the notions of tangent vector and derivative from multi-
variable calculus, we encourage examining the definition of tangent vectors and the
tangent space (Definition A.1.8), the definition of the tangent map (Definition A.1.9),
and the discussion of vector bundles (Appendix A.1.3). Both [Mor01] and [Küh15]
provide a more detailed exposition of these basic concepts, the classic [Lee71] is an ex-
cellent reference for all things related to topological manifolds, and the author found
[Hir76, War71] helpful for the more technical aspects of calculus on manifolds.

A.1.1 Manifolds

Intuitively, manifolds are abstract topological spaces that locally resemble Rn. The
concept of manifold allows us to describe complicated spaces in terms of the simpler
and well-understood structure of Euclidean space.

Definition A.1.1. A topological manifold M of dimension n is a Hausdorff space
such that every point has a neighborhood U that is homeomorphic to an open subset
of Rn via a map φ. The pair (U, φ) is called a (coordinate) chart. An atlas is a family
{Ui, φi}i∈I for which the Ui constitute a covering of M .
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Remark A.1.2. In some cases, a second countability condition1 is also included in the
definition of a topological manifold. However, we will primarily consider compact
manifolds, for which this property automatically holds.

Given a chart {U, φ}, a point p ∈ U is determined by φ(p), and we often identify
the two. The components of φ(p) ∈ Rn are called the local coordinates of p.

Definition A.1.3. Two charts (Ui, φi), (Uj, φj) are compatible if the chart transition

φj ◦ φ−1
i : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj)

is differentiable of class C∞ (just in case Ui ∩ Uj is non-empty). An atlas is dif-
ferentiable if all its chart transitions are compatible, and we say that such an atlas
determines a smooth (or differentiable) structure on M . A manifold with a smooth
structure is aptly called a smooth (or differentiable) manifold.

Two differentiable atlases are said to be equivalent if their union is also differen-
tiable. The maximal atlas determined by a differentiable atlas {Ui, φi}i∈I is the union
of all differentiable atlases equivalent to {Ui, φi}i∈I . Hence two atlases are equivalent
if and only if they determine the same maximal atlas.

Example A.1.4 (Examples of differentiable manifolds). We present some examples
of manifolds that may be familiar from other areas of mathematics.

• Euclidean n-space is of course an example of a smooth manifold.

• The n-sphere Sn admits a smooth structure via stereographic projection.

• The n-dimensional torus T n = S1× · · · ×S1 can also be seen as the quotient of
Rn by the lattice Zn acting by vector addition.

• Projective real space,
RPn = Sn/(x ∼ −x)

has a smooth structure given by the collection of open sets Ui ⊆ Sn whose
points have a non-zero ith coordinate. Each Ui is homeomorphic to an open ball
in Rn. We can also think of projective space as the collection of lines passing
through the origin in Rn+1.

• Similarly, we have complex projective space

CPn = (Cn+1 \ {0})/C∗,

where C∗ = C \ {0} acts by multiplication on each coordinate of Cn+1. This
space is covered by Ui = {z | zi 6= 0}, where now each Ui is homeomorphic to
a complex open ball of dimension n, and so has real dimension 2n. The chart
transitions are given by linear fractional transformations.

1This condition asserts that there is a base of countably many elements for the system of open
sets.



A.1. A Bit of Differential Topology 79

Manifolds can have many different qualities and characteristics. A manifold is
orientable if it admits an orientation, meaning that (in the case of a differentiable
manifold) there is an atlas on M whose transition functions have positive Jacobians.
For instance, the circle S1 is orientable but the Möbius strip is not. This thesis
primarily considers closed manifolds, that is, manifolds which are both compact (as
topological spaces) and without boundary.2 All of the manifolds in the example above
are closed and orientable.

Definition A.1.5. A map f : M → N between differentiable manifolds with charts
{Ui, φi} and {Vj, ψj} is smooth (or differentiable) if all the maps ψj ◦ f ◦ φ−1

i are
differentiable (where defined). A smooth bijective map with a smooth inverse is said
to be a diffeomorphism, and the manifolds are then diffeomorphic.

In the case where N = R, the map f is called a function on M . We let C∞(M)
denote the set of all smooth functions on M , and we note that C∞(M) has the
structure of an algebra3 over R.

Certain special types of maps get their own names, such as immersion, embedding,
and submersion (we will define these qualities more precisely in Definition A.1.10 after
introducing tangent maps). Roughly, immersions and embeddings can be thought of
as inclusions of spaces, and the prototypical example of a submersion is a projection
map.

immersion embedding submersion

Definition A.1.6. Let M be an n-dimensional smooth manifold. A subset N ⊆
M is a submanifold of M if the inclusion map i : N ↪→ M is an immersion (see
Definition A.1.10).

Intuitively, this means we may allow N to self-intersect within M , but N cannot
be “squished” in such a way that we lose information about the tangent space of a

2Our definition of manifold excludes many objects that we might naturally wish to study, partic-
ularly spaces with “edges” such as the closed ball Dn ⊆ Rn. To extend our studies to such objects,
we allow charts to map U to an open subset of the half-space

Hn = {x ∈ Rn | xn ≥ 0}, with ∂H = {x ∈ Hn | xn = 0}.

The boundary of M , denored ∂M , is the collection of all points in φ−1(∂H) for some φ. If ∂M 6= ∅,
then we call M a manifold with boundary, otherwise M is called a manifold without boundary.

3An algebra over a field is a vector space over that field along with a product operation that plays
nice with addition and scaling (see, for example, [Mor01, §1.3]).
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point. Aside from the definition above, there are other equivalent characterizations
of a submanifold (see, for example, [AD14, Theorem A.1.1]). Somewhat surprisingly,
every compact manifold can be embedded in Euclidean space of a sufficiently large
dimension (see [Hir76, Theorem 3.5]).

Theorem A.1.7 (Whitney Embedding Theorem). Every n-dimensional compact
manifold M can be embedded as a submanifold in R2n+1.

A.1.2 Tangent Vectors

In Euclidean space, a vector v = (v1, . . . vn) at p ∈ Rn can be thought of as an
operator on differential functions. Given a function f : Rn → R that is differentiable
on a neighborhood of p, v : f 7→ v(f) “returns” the directional derivative of f along
v at p. That is,

v(f) =
n∑
i=1

vi
∂f

∂xi

∣∣∣∣
p

∈ R,

where xi is understood to be the ith standard coordinate vector. This operator satisfies
two properties:

(i) v is linear: v(f + λg) = v(f) + λv(g),

(ii) v is a derivation: v(fg) = f(p)v(g) + g(p)v(f),

for all f, g ∈ C∞(Rn) and λ ∈ R. It is with these properties in mind that we define
tangent vectors on a manifold, where a tangent vector should be independent of a
choice of particular chart.

Definition A.1.8. Given a smooth manifold M and a point p ∈M , a tangent vector
to M at p is any map vp : C∞(M) → R that satisfies conditions (i) and (ii) above.
The tangent space at p is just the collection of all such vp, and is denoted TpM .

By defining (vp+wp)(f) = vp(f)+wp(f) and (λvp)(f) = λ(vp(f)) for vp, wp ∈ TpM
and λ ∈ R, we give TpM the structure of a real vector space.

There is another perspective from which we can view tangent vectors, namely
as an equivalence class of curves, which is related to the more intuitive notion of a
tangent vector as a velocity vector of a curve. From this point of view, a tangent
vector at p is the collection of curves c : (−ε, ε)→M with c(0) = p under the relation
c1 ∼ c2 if for a chart φ centered at p, we have

(φ ◦ c1)′(0) = (φ ◦ c2)′(0).

Given such a class of curves, we can associate it to the derivation v ∈ TpM with

v(f) =
d

dt
f(c(t))|t=0,

where c is a representative of the equivalence class.
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Definition A.1.9. The tangent map at p is the map Tpf : TpM → Tf(p)N associated
with f : M → N , and sends the equivalence class of a curve γ to that of the curve
f ◦ γ. The differential at p is the special case when N = R, and is denoted by (df)p.

From the perspective of derivations, the tangent map is the linear map f∗ : v 7→ f∗v
where f∗v is the derivation that maps h 7→ v(h ◦ f) for h ∈ C∞(M). The tangent
map can also reveal information about the behavior of f .

Definition A.1.10. Consider a smooth map f : M → N .

(i) We call f an immersion if Tpf : TpM → TpN is injective for all p ∈M ,

(ii) We call f an embedding if f is an immersion and also a homeomorphism onto
its image,

(iii) We call f a submersion if f is surjective and Tpf is surjective for all p ∈M .

A point q ∈ N is called a regular value of f if f is submersive— meaning the
tangent map Tpf is surjective— for all p ∈ f−1(q). The following theorem, which will
be generalized in Proposition 1.2.8, says that the preimage of such points is in fact a
submanifold of M .

Theorem A.1.11 (Regular Value Theorem). If q ∈ N is a regular value of f : M →
N , then f−1(q) is a submanifold of M of dimension dim(M)− dim(N).

A.1.3 Vector Bundles

A vector bundle is a formal way of thinking of a family of vector spaces as being
parameterized by a base space B, and is an example of a more general structure
known as a fiber bundle.

Definition A.1.12. A fiber bundle F → E
π−→ B consists of a total space E, a base

space B, a fiber F , and a projection map π : E → B such that for all p ∈ B there is a
neighborhood U and a homeomorphism φ : π−1(U)→ U ×F that make the following
diagram commute:

π−1(U) U × F

U

φ

π

The unlabeled arrow indicates projection onto the first coordinate. Note that com-
mutivity of the diagram implies that each fiber Fp := π−1(p) is homeomorphic to
{p} × F via φ, and so the map φ is called a local trivialization.

A fiber bundle is determined by the map π : E → B, but may be denoted by
(E,B, π), the short exact sequence notation used above, or even just the total space
E. When E is isomorphic to B × F , the fiber bundle is trivial.
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Definition A.1.13. A (differentiable) vector bundle of rank n is a fiber bundle such
that π : E → B is a differentiable map between differentiable manifolds, each fiber
Fp is an n-dimensional vector space over R, and each local trivialization φ is a diffeo-
morphism.

The word ‘differentiable’ is often omitted when clear from context. More intu-
itively, we can think of a vector bundle as a family of vector spaces paramatrized by
the manifold B. The following vector bundles are two prime motivational examples
from differential topology.

Definition A.1.14. The tangent bundle of M is the vector bundle TM whose fibres
are the tangent spaces TpM . The natural projection map π : TM →M sends a vector
vp ∈ TpM to the point p.

The tangent bundle is equipped with a natural topology and smooth structure.
As a set,

TM =
⋃
p∈M

TpM = {(p, v) | p ∈M, v ∈ TpM}.

A local coordinate system (U, φ) on M induces a chart (TU, Tφ) where

Tφ : TU → φ(U)× Rn

maps (p, u) ∈ TU to (φ(p), dφp(v)) ∈ R2n. This notation can be a bit confusing at
first, so we will take a second to unpack what is going on. If φ = (x1, . . . xn) is a local

coordinate map, we can write a tangent vector v ∈ TpM as
∑n

i=1(dxi)p(v) ∂
∂xi

∣∣∣
p
, where

each (dxi)p(v) =: vi ∈ R is like “the component of v pointing in the xi direction.”
The dφp(v) is meant to indicate the n-tuple (v1, . . . , vn). It is straightforward to show
that the induced Tφ is bijective. The topology on TM is given by the collection
{(π−1(U), Tφ) | (U, φ)}, after declaring each π−1(U) to be open and each Tφ to be
a homeomorphism. All in all, if M is an n-dimensional manifold, then TM is a
2n-dimensional manifold.

Definition A.1.15. The vector space dual to TpM is called the contangent space of
M at p and is denoted by T ∗pM ; its elements are called cotangent vectors. The vector
bundle over M whose fibers are the contangent spaces is called the cotangent bundle
of M , denoted by T ∗M . The projection map π : T ∗M →M sends T ∗pM to p.

Like the tangent bundle, the cotangent bundle admits the structure of a 2n-
dimensional manifold. As a set,

T ∗M =
⋃
p∈M

T ∗pM = {(p, ξ) | p ∈M, ξ ∈ T ∗pM},

and a chart (U, φ) on M induces the natural chart on T ∗M via the map

T ∗φ : T ∗U → φ(U)× (Rn)∗

that sends ξ ∈ T ∗pM to (φ(p), ξdφ−1
p ). As with the tangent bundle, the topology is

given by these induced charts, giving the cotangent bundle the structure of a 2n-
dimensional manifold.
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A.1.4 Vector Fields

A vector field can be thought of as an assignment of a tangent vector at each point of
M . A more formal definition approaches vector fields from the perspective of vector
bundles.

Definition A.1.16. A vector field is a section of the tangent bundle TM .

Recall that a section of π : TM →M is a (differentiable) map s : M → TM such
that π ◦ s = idM . The collection of all vector fields on M is a module both over R
and over C∞(M).

Remark A.1.17. Dually, a 1-form is a section of the cotangent bundle T ∗M , that is,
a map s : M → T ∗M such that π ◦ s = idM (where now π is the natural projection
T ∗M →M). The differential

df : M → T ∗M

which sends p 7→ (df)p is a 1-form, since the natural projection sends (df)p 7→ p. The
differential also gives an embedding of M into T ∗M (cf. [AD14, Exercise 2]).

Definition A.1.18. The directional derivative of f along a vector field V is V f =
V (f) : M → R, which is the function (V f)(p) = Vp(f).

The directional derivative at p can be thought of as representing the instantaneous
rate of change of f , moving through p in the direction of V . The function V f is not
to be confused with fV , which denotes the vector field with (fV )p = f(p)Vp.

Definition A.1.19. The Lie bracket for vector fields V,W is the vector field corre-
ponding ot the derivation f 7→ V (Wf)−W (V f), denoted [V,W ]. That is,

[V,W ]p(f) = Vp(Wf)−Wp(V f).

The bracket satisfies several key properties:

(i) R-bilinearity : [aV + bṼ ,W ] = a[V,W ] + b[Ṽ ,W ] for all a, b ∈ R; similarly for
the second slot;

(ii) anti-symmetry : [V,W ] = −[W,V ];

(iii) Jacobi identity : [[V, Ṽ ],W ] + [[Ṽ ,W ], V ] + [[W,V ], Ṽ ] = 0.

Definition A.1.20. A Lie algebra is a vector space with an operation [ , ] satisfying
the three characterizing properties above.

The collection of vector fields on M under the Lie bracket forms a Lie algebra,
and is naturally isomorphic to the set of all derivations of C∞(M) as Lie algebras.
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A.1.5 Riemannian Metrics

One of the most crucial vector fields that we will discuss is the gradient of a function
f : M → R. In Euclidean coordinates, the gradient at a point p is dual to the Jacobian
at p,

∇pf =

[
∂f

∂x1

(p), . . . ,
∂f

∂xn
(p)

]
.

The vector field ∇f can be thought of as pointing in the direction of “steepest in-
crease,” perpendicular to the level sets of f . In the more general setting of manifolds,
we need to do a little bit more work to develop a similar type of vector field. In
particular, the gradient will depend on a choice of Riemannian metric, which will
allow us to make sense of things like angle and distance on a manifold. The idea is
that we equip each tangent space TpM with an inner product gp, so that the inner
products vary smoothly as p varies across M .

Definition A.1.21. A Riemannian structure is a “smoothly varying” association
g : p 7→ gp of a point p to a symmetric, positive-definite bilinear form

gp : TpM × TpM → R.

Here, “smoothly varying” means that for any pair of smooth vector fields V,W , the
function p 7→ gp(Vp,Wp) is smooth.4 Such a g is called Riemannian metric (or metric
tensor), and a manifold M with such a metric is called a Riemannian manifold.

It is well-known that every smooth manifold admits a Riemannian structure (cf.
[Mor01, §4.1]). Since gp is an inner product on TpM , we often use the notation 〈V,W 〉p
instead of gp(V,W ). Strictly speaking, a Riemannian metric g is not a metric on M
in the usual sense, however g does induce a genuine metric on M .

Definition A.1.22. Let γ : [a, b]→ M be a piece-wise smooth curve. The length of
γ is

L(γ) =

∫ b

a

√
〈γ′(t), γ′(t)〉γ(t)dt.

We therefore have a well-defined notion of distance, via the metric induced by g,

dg(p, q) = inf{L(γ)},

where the infimum is taken over piece-wise smooth curves γ : [a, b]→M from p to q,
that is γ such that γ(a) = p, γ(b) = q.

We will often drop the specific reference to the metric from our notation. Equipped
with this distance function, our manifold carries the structure of a metric space.
Furthermore, on a connected manifold M , the metric topology on M coincides with
the original manifold topology (cf. [Lee71, Proposition 8.19]).

4More formally, we require g to be a smooth section of the tensor product T ∗M ⊗ T ∗M .
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A.1.6 Flow

Let V be a vector field on M . A curve c : (a, b) → M is an integral curve of V if
Vc(t) = dc

ds
(t) for all t ∈ (a, b). The vector dc

ds
(t) ∈ Tc(t)M is called the velocity vector

and is sometimes denoted ċ(t). Without loss of generality, we may assume 0 ∈ (a, b).
For every point p ∈M , there is a uniquely determined smooth curve

cp : (a, b)→M, with cp(0) = p and
dcp
ds

(t) = Vcp(t).

The existence and uniqueness of this curve is a consequence of the existence and
uniqueness theorem for ordinary differential equations. We can use these curves to
describe the local flow of the vector field V , which describes how our buoyant grain
will travel after time t after being placed at any point p on the manifold. However,
this local flow will only “make sense” for certain t, depending on the domain of the
curve cp.

Definition A.1.23. Let Mt = {p ∈ M | t is in the domain of cp}. The local flow of
V at p is ϕtV : Mt →M with ϕtV (p) = cp(t).

If we start at the point p, and flow along the integral curve cp, then ϕtV (p) describes
the point at which we arrive after time t. Note that ϕ0

V = idMt .

Remark A.1.24. When φtV is defined for all t ∈ R, we say that the vector field (or
flow) is complete. In particular, any vector field on a compact manifold is complete
(see [Mil63, p.10]).

When the vector field is complete, we have a one-parameter group of diffeo-
morphisms generated by V , which is a smooth map ϕV : R ×M → M such that
ϕV (t, p) = ϕtV (p), with ϕt+sV = ϕtV ◦ ϕsV . To see that ϕtV is a diffeomorphism, observe

ϕtV ◦ ϕ−tV = ϕ−tV ◦ ϕ
t
V = ϕ0

V = idM .

Alternatively, given a one-parameter group of diffeomorphisms ϕ : R ×M → M ,
we can define a vector field V on M . For every smooth f : M → R, let

Vp(f) = lim
h→0

f(ϕ(h, p))− f(p)

h
.

The assignment V : p 7→ Vp is a vector field.

A.2 A Bit of Algebraic Topology

This section provides only the most essential definitions in homotopy theory and al-
gebraic homology. We recommend that the reader unfamiliar with these concepts to
at least become comfortable with homotopy (Definition A.2.1), homotopy equivalence
(Definition A.2.2), chain complexes (Definition A.2.6), and homology groups (Defini-
tion A.2.7), although they may skip the examples of singular homology and cellular
homology which are presented as a supplement to Section 1.3.2. The reader who is
interested in more than our pithy refresher of this material will be pleased to know
that there are many excellent books to turn to, such as [Hat02, Mun61, May99].
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A.2.1 Homotopy

Homotopy provides a way to think of spaces as being “similar” without requiring
something as strict as a homeomorphism.

Definition A.2.1. A homotopy between continuous maps f, g : X → Y is a con-
tinuous map H : X × I → Y such that H(x, 0) = f(x) and H(x, 1) = g(x), where
I = [0, 1]. We say that f is homotopic to g and write f ' g. For a fixed time t ∈ I,
we write Ht = H(−, t).

We can think of a homotopy as a one-parameter family of continuous maps X →
Y . Imagining the parameter as representing time, then the homotopy “deforms” one
map into the other, continuously, as time goes from 0 to 1.

f

g

Definition A.2.2. A map f : X → Y is a homotopy equivalence if there is a map
g : Y → X such that gf ' idX and fg ' idY . The spaces X, Y are said to have the
same homotopy type, denoted X ' Y .

If f ' c for some constant map c, we say that f is nullhomotopic. When the
identity map on the space is nullhomotopic, the space is said to be contractible,
meaning it has the same homotopy type as a point.

Definition A.2.3. Let A ⊆ X. A retraction of X onto A is a map r : X → X
such that r(X) = A and r|A = id. A deformation retraction is a homotopy from the
identity on X to a retraction of X onto A.

In general, two spaces are homotopy equivalent if and only if there is a third space
containing them both as deformation retracts. Homotopy equivalence provides a good
criterion for the algebraic topologist to talk about “sameness” of topological spaces,
without restricting to homeomorphic spaces. One such way to classify topological
spaces is via their homotopy groups, which record information about the “holes” in
the space.

Definition A.2.4. For a space X and basepoint x0 ∈ X, define the nth homotopy
group πn(X, x0) to be the set of homotopy classes of maps f : (In, ∂In) → (X, x0)
where homotopies ft are required to satisfy ft(∂I

n) = x0 for all t.

Here In denotes the n-product of I, with boundary ∂In consisting of points with
at least one coordinate equal to 0 or 1. When n = 0, we define I0 to be just a point
and ∂I0 to be empty. Equivalently, we could consider homotopy classes of maps from
Sn → X that preserve a chosen base point. In this way, the homotopy groups describe
the n-dimensional holes (the places we could fit an n-dimensional sphere) in X. For
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example, π1(X, x0) records information about homotopies of loops in X (based at
x0); this group is called the fundamental group of X. These homotopy groups give
us a slightly weaker notion of “sameness” between spaces.

Definition A.2.5. A map f : X → Y is a weak homotopy equivalence if it induces
isomorphisms πn(X, x0)→ πn(Y, f(x0)) for n ≥ 0 and all choice of basepoints x0.

When the spaces X and Y are nice enough to have the homotopy type of a CW
complex (see Definition A.2.11), the classic theorem of Whitehead tells us that the
weak homotopy equivalence f is in fact a homotopy equivalence [Hat02, Theorem
4.5].

A.2.2 Homology

Homology, like homotopy, provides a way to think of spaces as “the same” by as-
sociating a sequence of algebraic objects to a topological space, the idea being that
similar spaces will be associated with similar objects.

Definition A.2.6. A chain complex is a sequence C∗ of homomorphisms between
Abelian groups

· · · → Ck+1
∂k+1−−→ Ck

∂k−→ Ck−1 → · · · → C1
∂1−→ C0

∂0−→ 0

such that ∂k ◦ ∂k+1 = 0 for each k. The ∂ maps are typically referred to as boundary
operators, and in many cases the subscript is omitted.

The nilpotency of ∂ is equivalent to the requirement that im ∂k+1 ⊆ ker ∂k. An
element of the kernel of ∂ is called a cycle and an element of the image is called a
boundary.

Definition A.2.7. The kth homology group of a chain complex C∗ is the quotient
group

Hk(C∗) = ker ∂k/ im ∂k+1

An element of Hk(X) is a coset of im ∂k+1 called a homology class. Two cycles are
homologous if their difference is a boundary and so belong to the same homology class.
The chain complex is exact (meaning im ∂k+1 = ker ∂k) if and only if Hk(C∗) = 0 for
each k. Thus the homology groups measure the failure of exactness.

Definition A.2.8. A map f : C∗ → D∗ of chain complexes is a sequence of homo-
morphisms fk : Ck → Dk such that the following diagram commutes for all k:

Ck Dk

Ck−1 Dk−1

fk

∂k ∂k

fk−1

A map of chain complexes induces a map between the homology groups, Hk(f) :=
f∗ : Hk(C∗)→ Hk(D∗).
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There are many different types of homologies for a given space, depending on the
assigned chain complex, and it is often enlightening to compare different homology
theories. The first example we will look at, singular homology, is one of the simpler
homology theories, being built on relatively concrete constructions.

Example A.2.9 (Singular homology). Given a topological space X, a singular n-
simplex in X is a continuous map σ : |∆n| → X where |∆n| ⊆ Rn+1 is the standard
topological n-simplex. The word ‘singular’ expresses the idea that im(σ) might have
‘singularities’ where the image does not look like a simplex.5 So a singular 0-simplex
is a map from one-point space into X, which we may identify with just a point of X,
and a singular 1-simplex gives a path in X.

To define singular homology, we take Cn(X) to be the free Abelian group on the
set of all singular n-simplicies in X. This group is called the singular chain group in
dimension n, and an element of Cn(X) is called a singular n-chain in X. We define
the boundary operator ∂n : Cn(X) → Cn−1(X) by specifying its values on the basis
elements: For any singular n-simplex σ : |∆n| → X, define the (n− 1)-chain ∂nσ by

∂nσ =
n∑
i=0

(−1)iσ ◦ di,

where di : |∆n−1| → |∆n| is the ith face map which sends |∆n−1| to the face of |∆n|
opposite the ith vertex.6 The boundary of a 0-chain is defined to be zero. After
checking that ∂2 = 0 (as is done in [Hat02, Chapter 2]), we obtain well-defined
singular homology groups.

Singular homology is particularly nice because f ' g implies that the induced
homology maps will be equal, so any two homotopy equivalent spaces will yield the
same singular homology groups. In the language of category theory, singular ho-
mology group defines a homotopy invariant covariant functor from the category of
topological spaces to the category of (graded) Abelian groups. However, calculations
using singular homology can be quite complicated, which motivates the development
of other homology theories, such as cellular homology.

Example A.2.10 (Cellular homology). This homology is defined for a certain kind
of topological space called a CW complex. In order to define cellular homology, we
must first understand CW complexes. Essentially, a CW complex is a type of space
constructed from building blocks called cells. An open (closed) n-cell is a topological
space that is homeomorphic to the n-dimensional open (closed) unit ball.

Definition A.2.11. A CW complex is a cell complex X built out of cells in the
following manner: starting with a discrete set X0 (whose points are 0-cells), induc-
tively construct the n-skeleton Xn from Xn−1 by attaching n-cells via attaching maps
ϕα : Sn−1 → Xn−1. We can write Xn as the pushout

5Placing appropriate restrictions on σ to get a nice embedding yields simplicial homology.
6The reader familiar with simplicial sets can note the connection here with Example 3.1.11.
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∐
α S

n−1
α Xn−1

∐
αD

n
α Xn

∐
α ϕα

Here, Sn denotes the topological n-sphere, which can be seen as the boundary of the
n-disk Dn. The diagram above just means that Xn is the quotient space Xn−1 q∐

αD
n
α/ ∼ where x ∼ ϕα(x) for x ∈ Sn−1

α = ∂Dn
α. If this inductive process stops at

a finite stage, setting X = Xn for some n < ∞, then the complex is said to have
dimension n. Otherwise, setting X =

⋃
nX

n, the dimension is said to be infinite.

Given a CW complex X, the cellular complex K∗(X) is defined by taking Kn(X)
to be the free module over Z (or some other group, like Z/2Z,) generated by the
n-cells of X. The differential is given by

∂nc =
∑

c′∈Kn−1(X)

N(c, c′)c′

where c and c′ are cells of dimension n and n−1, respectively. The coefficient N(c, c′)
is determined as follows: Let ϕc be the attachment map of the cell c, and consider
the composition

Sn−1 ϕc|Sn−1−−−−−→ Xn−1 ψc′−−→ Sn−1

where ψc′ is the map that sends Xn−1\c′ to a single point. Then N(c, c′) is the degree
of this composition, meaning the integer d so that the induced map (ψc′◦ϕc|Sn−1)(α) '
dα (see the beginning of [Hat02, §2.2]). It can be shown that ∂2 = 0 and that the
homology of this complex does not depend on the cellular decomposition.

Given two homology theories, it can be enlightening to compare them to each
other. It is well known that the two examples we have presented are isomorphic
(a proof is given in [Hat02, Theorem 2.35]). Consequently, we are able to work with
whichever theory is better suited to the task at hand, without worry of losing valuable
topological information.

A.3 A Bit of Category Theory

The following section covers some basic ideas in category theory that will make this
thesis easier to understand. The first subsection covers the most essential definitions,
such as categories, functors, and natural transformations. The second subsection
discusses the Yoneda lemma and embedding that is referenced in Section 3.1.1. We
then move to limits and colimits, which are used in various places in Chapter 3.
Finally, we define adjunctions, which are not dicussed very much in this thesis, but
are still good to know about. The reader who is in a hurry could likely get away with
only reading Appendix A.3.1 and skimming Appendix A.3.3. Since this exposition
is meant to be supplementary, we do not offer much detail beyond the most basic
definitions; the interested reader should look to [Rie16] or the more classic references
[ML71, May99].
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A.3.1 Basic Notions

The most basic notion is a category, which is specified by a collection of objects and
morphisms between them.

Definition A.3.1. A category C is a collection of objects X, Y, Z, . . . , denoted Ob C ,
and a collection of morphisms f, g, h, . . . , denoted Mor C , such that

• Each morphism has a domain (or source) and a codomain (or target), which
are objects of C . If a morphism f has domain X and codomain Y , we use the

notation f : X → Y or X
f−→ Y . We can assemble all morphisms with domain

X and codomain Y into the collection C (X, Y ), sometimes written Mor(X, Y ).

• Each object X in C has an identity morphism, idX : X → X.

• Any pair of morphisms f, g with f : X → Y and g : Y → Z has a composite
morphism gf : X → Z. We require that idY f = f = f idX and that composition
is associative, so for any morphism h : Z → W , we have h(gf) = (hg)f , which
we denote by hgf .

We will oftentimes write ‘X ∈ C ’ or ‘f ∈ C ’ when it is clear from context whether
we are referring to objects or morphisms in C . By an abuse of notation, we use the
symbol ‘∈’ (typically reserved for set-membership) without requiring that C , Ob C ,
or Mor C are sets.

If Ob C and Mor C are in fact sets, we say that the category is small. Alternatively,
when C (X, Y ) is a set for each X, Y ∈ C , we say C is locally small. These C (X, Y )
are called homsets. A concrete category is one whose objects have underlying sets and
whose morphisms are so-called ‘structure-preserving’ function between these sets.

Example A.3.2 (Examples of categories). Many familiar classes of mathematical
objects can be assembled into a category. We list a few key examples here that are
topical to this thesis.

Set sets and functions,

Top topological spaces and continuous maps,

Diff smooth manifolds and smooth maps,

Htpy topological spaces and homotopy classes of continuous maps,

In any category, a morphism f : X → Y is an isomorphism ∼= if there is another
morphism g : Y → X that is a two-sided inverse for f , meaning that fg = idY and
gf = idX . Isomorphisms in a particular category might be given a different name, for
instance ‘bijection’ in Set or ‘homeomorphism’ in Top. In general, isomorphisms are
the strongest type of equivalence (other than identity) in the category. A category
is a groupoid if every morphism is an isomorphism and discrete if every morphism is
the identity.

Definition A.3.3. Given a category C , we define its opposite category C op to be
the category with the same objects as C but with reversed morphisms. That is, we
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have X
f−→ Y ∈ C if and only if Y

fop−−→ X ∈ C op. The identity of X in C op is
the same identity map idX (with the arrow reversed), and composition is given by
(gf)op = f opgop.

This process of ‘flipping the arrows’ creates a duality between a category and its
opposite— we can learn about one by examining the other. To see an example of
this phenomenon, we can turn to certain ‘special’ objects in a category, known as
the initial and terminal objects. An object X ∈ C is initial if for every Y ∈ C
there is a unique morphism X → Y , and terminal if there is a unique morphism
Y → X.7 Thus an object is initial in C if and only if it is terminal in C op. In this
spirit, any theorem proved about an arbitrary category C can also be interpreted in
the dual context, where the arrows in the argument are reversed, thus yielding a dual
theorem. In the words of Riehl, “The result is a two-for-one deal: any proof in cate-
gory theory simultaneously proves two theorems, the original statement and its dual”
[Rie16, p.10]. Mathematicians are fond of calling the dual notion of some concept
its coconcept (see, for instance, limits and colimits in Appendix A.3.3 or fibrations
and cofibrations in Section 3.2.1). This affinity can lend some light-heartedness to
abstract mathematics, such as the infamous pants and copants of cobordism theory,
or the joke that every nut is a coconut.

pants copants

Having defined and explored various categories, it is only fitting that we next
investigate the morphisms between them.

Definition A.3.4. A morphism between categories is called a functor. More specif-
ically, a (covariant) functor F : C → D is specified by

• an object FX ∈ Ob D for every X ∈ Ob C ,

• a morphism Ff ∈ D(FX,FY ) for every morphism f ∈ C (X, Y ),

such that the functoriality axioms are satisfied: (i) F (gf) = Fg ◦ Ff for every
composable pair f, g in C , and (ii) F idX = idFX for every X ∈ Ob C . Similarly, a
contravariant functor from C to D is a morphism F : C op → D specified by

• an object FX ∈ Ob D for every object X ∈ C ,

• a morphism Ff ∈ D(FY, FX) for every morphism f ∈ C (X, Y ),

that satisfy (i) F (gf) = Ff ◦Fg for every composable pair f, g in C , and (ii) F idX =
idFX for every X ∈ Ob C .

7An object that is both initial and terminal is called a zero object.
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Given a functor F between (locally) small categories, we say F is full if (for every
X, Y in the domain) the map C (X, Y ) → D(FX,FY ) is surjective and faithful if
the map is injective. Since functors preserve the structure of categories (such as
isomorphisms and commutative diagrams), we get the category of categories Cat
whose objects are small categories and whose morphisms are functors.

Example A.3.5 (Examples of functors). There are many mathematical notions that
naturally exhibit the structure of a functor, and we present a few examples.

• The constant functor on an object X ∈ C is the functor cX : C → C that takes
every object to X and every morphism to idX .

• There is a type of functor known as a “forgetful functor” that lands in Set and
‘forgets’ structure. For example, the forgetful functor Top→ Set sends a space
to its set of points and a continuous map to its underlying function.

• There is a functor Top→ Htpy that acts as the identity on objects and sends
a continuous morphism to its homotopy class,

• A simplicial set is a contravariant functor ∆→ Set, as treated in Section 3.1.1.

Definition A.3.6. A natural transformation is a functor between functors. That
is, if F : C → D and G : C → D are functors, N : F → G assigns to each object
X ∈ Ob C a morphism NX ∈ Mor D such that the following diagram commutes:

F (X) G(X)

F (Y ) G(Y )

NX

Ff Gf

NY

The map NX is called the component of N at X. A natural isomorphism is a natural
transformation whose components are all isomorphisms.

Example A.3.7. If C has an initial object ∅ (meaning there is a unique map ∅ → X
for every X ∈ C ), then there is a natural transformation between the constant functor
c∅ and idC . Each component NX of this natural transformation is given by the unique
map ∅ → X.

We write DC for the category of functors C → D and natural transformations
between them, called a functor category. We can also use natural transformations to
develop a notion of when categories are “essentially the same,” or equivalent.

Definition A.3.8. An equivalence of categories consists of functors F : C � D :G
together with natural isomorphisms η : idC → GF and ε : FG→ idD .

The reader may note that this definition of categorical equivalence is strikingly
similar to that of homotopy equivalence (Definition A.2.2), where homotopies are now
replaced with natural isomorphisms.
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A.3.2 The Yoneda Lemma

The Yoneda Lemma (and embedding) provides a way to understand set-valued func-
tors in terms of a certain class of functors, known as representable functors. For
the sake of brevity, we merely state the lemma and subsequent embedding, without
providing proofs. The interested reader may look to [ML71, §III.2] or [Rie16, §2.2]
for further explanation. We assume that C is a locally small category throughout.

Definition A.3.9. For any object c ∈ C , we define two functors C → Set, called
the functors represented by c. A functor C → Set is called representable if it can be
represented by some object c ∈ C . The covariant functor represented by c, C (c,−),
maps an object X to the homset C (c,X). A morphism f : X → Y is sent to the
post-composition f∗ : C (c,X) → C (c, Y ). The contravariant functor represented by
c, C (−, c), takes X to C (X, c) and f to the pre-composition f ∗ : C (Y, c)→ C (X, c).
Diagramically, we have

X C (c,X)

Y C (c, Y )

f

C (c,−)

f∗

X C (X, c)

Y C (Y, c)

f

C (−,c)

f∗

In general, we use f∗ and f ∗ to denote post- and pre-composition by f , respec-
tively. Note that post-composition defines a covariant action on homsets, while pre-
composition defines a contravariant one.

Theorem A.3.10 (The Yoneda Lemma). For any functor F : C → Set and any
object c ∈ C , there is a bijection

Cat(C (c,−), F ) ∼= Fc

which maps a natural transformation N : C (c,−) → F to Ncidc, the image of the
identity under the component Nc.

Applying the Yoneda Lemma allows us to characterize natural transformations
between representable functors, via the Yoneda embeddings.

Corollary A.3.11 (Yoneda embeddings). The covariant and contravariant Yoneda
functors given by

C SetC op

c C (−, c)

d C (−, d)

y

f f∗

C op SetC

c C (c,−)

d C (d,−)

y

f f∗
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define full and faithful embeddings.

This says that any locally small category is isomorphic to the subcategory of
SetC op

spanned by the contravariant represented functors, and the dual statement
holds of C op.

A.3.3 Limits and Colimits

Limits and colimits can be found in any category, and include under their umbrella
familiar constructions like the infimum and supremum, cartesian products, direct
sums, kernels, cokernels, and unions, among others. We will only brush the surface of
this rich area of category theory, providing a basic definition of a categorical (co)limit,
as is used to define the realization functor in Section 3.1.2 and the homotopy pullback
in Section 3.2.2. We first introduce some basic terminology with which to build these
definitions.

A diagram in a category C is typically thought of as a directed graph of morphisms
in C , but we can make this notion more precise. Specifically, a diagram of shape (or
type) J in C is a functor D : J → C , where the domain is a small category. The
domain J is called the indexing category (or scheme) of the diagram D. For example,
for any category J and object c ∈ C , the constant diagram c is the functor c : J → C
that sends every object of J to c and all morphisms in J to idc. A morphism of
diagrams is just a natural transformation in the functor category C J .

Definition A.3.12. A cone over a diagram D : J → C with apex (or summit or
vertex ) c ∈ C is a natural transformation c → D. The components of this natural
transformation are called the legs of the cone.

A cone over D can be specified by a collection of morphisms λj : c→ Fj, indexed
by the objects j ∈ J such that the following triangle commutes in C

c

Di Dj

λjλi

Df

,

whenever f : i → j in J . For example, if D is a diagram indexed by J = [n], the
poset category with n+1 objects 0, 1, . . . , n and n non-identity generating morphisms
(i→ j just in case i ≤ j), then the cone over D with apex c looks like

c

. . .

D0 D1 . . . D(n− 1) Dn

λ0 λ1 λn−1 λn
.

Definition A.3.13. The dual notion to the cone over D is called the cone under (or
cocone), which is given by flipping the arrows in the definition of the cone over D.
That is, a cone under D with nadir c is a natural transformation D → c.
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In this case, the cone is specified by morphisms λj with domain Fj and codomain
the constant diagram of c, again indexed by j ∈ J , such that the following triangle
commutes:

Di Dj

c

Df

λi λj

.

Returning to the example above, when J = [n], the cone under D looks as we
would expect:

D0 D1 . . . D(n− 1) Dn

. . .

c

λ0 λ1 λn−1 λn .

Put simply, the colimit of D is the universal cone under the diagram D, whereas
the limit is the universal cone over D. Like many categorical notions, there are
multiple perspectives from which to view limits and colimits. The definition we
present here is taken from [May99, §6.2], but the interested reader can look to [Rie16,
§3.1] for more detailed exposition.

Definition A.3.14. The colimit of a J-shaped diagram D, colimD, is an object of
C along with a morphism of diagrams ι : D → colimD that is initial among all such
morphisms. (Recall that here colimD denotes the constant diagram on colimD.)
That is, any morphism of diagrams η : D → X factors uniquely through ι. In terms
of diagrams, for any map f : i→ j in J , we have a commutative diagram

Di Dj

colimD

X

Df

ι

η

ι

η

∃!

.

Dually, the limit of D, limD, is an object of C with morphisms π : limD → D that
is terminal among all such morphisms. That is, any morphism ε : D → X factors
uniquely through π and a map X → limD in C , giving the commutative diagram

Di Dj

limD

X

Df

π π

∃!

ε ε
.
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Many limits and colimits are given special names; for example, a (co)equalizer is
the (co)limit of a diagram indexed by • ⇒ •, a pullback is the limit of a diagram
indexed by • → • ← •, and a pushout is the colimit of a diagram indexed by the
dual • ← • → •. A category might have some colimits and limits, but not others. A
category is called (co)complete if it has all (co)limits.

A.3.4 Adjunctions

An adjunction consists of a pair of functors standing in a particular relation to one
another.

Definition A.3.15. An adjunction from C to D consists of two functors, F : C → D
and G : D → C , along with isomorphisms

D(Fc, d) ∼= C (c,Gd)

for each c ∈ C and d ∈ D that are natural in both c and d. We say that F is left
adjoint to G and G is right adjoint to F . The morphisms corresponding under the
isomorphism are said to be adjunct.

Following convention, we use ‘`’ to indicate when a pair of functors are adjoint.
The expressions G ` F and F G̀ assert that F : C → D is left-adjoint to G : D → C .

When C and D are locally small, the naturality condition amounts to the assertion
that the isomorphisms assemble into a natural isomorphism

C op ×D Set.

D(F−,−)

C (−,G−)

∼=

Here C op × D denotes the product of the two categories, whose objects are or-
dered pairs (c, d) for c ∈ C and d ∈ D and whose morphisms are ordered pairs
(f, g) : (c, d) → (c′, d′) for f : c → c′ ∈ C and g : d → d′ ∈ D . Composition and
identities in the product are defined componentwise.

Intuitively, we can think of an adjunction as giving us a way to move between
the two categories. An equivalent definition (cf. [Rie16, Proposition 4.2.6]) of adjoint
functors says that two functors are adjoint if and only if there exist a pair of natural
transformations idC ⇒ GF and FG ⇒ idD that satisfy certain identities given in
[Rie16, Definition 4.2.5]. In this sense, we can think of adjoint functors as giving a
weak form of an equivalence of categories.
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