Recitation 09/15

Today: Relations + equivalence classes

Warm up: 1) Draw a picture of the reln on \(R \) given by \(R = \{(a,b) \mid a, b \in \mathbb{R} \text{ and } a^2 < b^2\} \)

2) Let \(R \) be the reln on \(\mathbb{R} \) with \(a \sim b \) if \(a - b \in \mathbb{Q} \).
 (a) Convince yourself \(R \) is an equivalence reln.
 (b) Find 3 disjoint equivalence classes. \([a] = \{b \mid a - b \in \mathbb{Q}\}\)

1) \[y = x^2 \]
 \[(a, b) \text{ s.t. } a^2 < b \implies R \]

2) \[a - a = 0 \in \mathbb{Q} \checkmark \]
 (a) \[a - b \in \mathbb{Q} \]
 \[b - a = -(a - b) \in \mathbb{Q} \checkmark \]
 \[a - b, b - c \in \mathbb{Q} \]
 \[a - c = (a - b) + (b - c) \in \mathbb{Q} \checkmark \]

(b) \[[0] = \{b \mid b \sim 0 \} \]

[\(\pi \)] Pretty sure \(\pi - \pi \notin \mathbb{Q} \)

[\(\sqrt{2} \)]
Relations between sets A and B is a subset of $A \times B$ usually $B = A$.

Reflexive: $\forall a \in A, aRa$

- $A = \{0,1,2\}$
- $R = \{(0,0), (1,1), (2,2), (1,2), (2,1)\}$

- Not Symm: $0 \not\sim 1$
- Not Trans: $0 \sim 1, 1 \sim 2, 0 \not\sim 2$

Symmetric: $\forall a, b \in A, aRb \iff bRa$

- "being a cousin of", people

Equivalence Reln

\leq, R (\equiv, A)

Transitive: $\forall a, b, c \in A, aRb \land bRc \implies aRc$

Recall: The equivalence class of $a \in A$ is $[a] = \{b \in A : aRb\}$. The projection map $A \to A/\equiv$ sends $a \to [a]$.

Think: Let R be an equivalence reln. Then $\forall a, b \in A$, either $[a] = [b]$ or $[a] \cap [b] = \emptyset$.

Pf: If $[a] \cap [b] = \emptyset$, then done, so suppose $[a] \cap [b] \neq \emptyset$. (WTS $[a] = [b]$)

This means $\exists c \in A$ s.t. $c \in [a] \cap [b]$, i.e. $c \in [a]$ and $c \in [b]$.

\leq: Let $a' \in [a]$, so $a \sim a'$. Then:

- $a' \sim a$ by symmetry,
- $a' \sim c$ by transitivity, since $a \sim c$,
- and $c \sim b$ by symmetry,
- so $a' \sim b$ by transitivity,
- $b \sim a'$ by symmetry,

Hence $a' \in [b]$. Thus $[a] \subseteq [b]$.

\geq: Similar. (Exc or see notes). \square

Cor. If R is equiv. reln, get partition of $A = \bigcup_{i \in I} A_i$ for $A_i = [a_i]$ and $A_i \cap A_j = \emptyset$ for $i \neq j$.

Thm. \(\{ \text{Equivalence relns on } A^2 \} \leftrightarrow \{ \text{partitions of } A \} \).

Pf/ (\(\Rightarrow \)) Suppose \(A = \bigcup_{i \in I} A_i \), with \(A_i \cap A_j = \emptyset \) for \(i \neq j \). Define \(R \) s.t. \(aRb \)
if \(a, b \in A_i \cdot \) (WTS: \(R \) is (i) ref (ii) symm (iii) trans)

(i) For any \(a \in A_i \), \(aRa \) since \(a \in A_i \).
(ii) Suppose \(aRb \), so \(a, b \in A_i \), which means \(bRa \).
(iii) Suppose \(aRb \), \(bRc \), so \(a, b \in A_i \) and \(b, c \in A_j \) for some \(i, j \in I \).
Since \(b \in A_i \), \(A_i \cap A_j = \emptyset \Rightarrow A_i = A_j \) and so \(a, c \in A_i \), i.e. \(aRc \).

\(\Box \)

Important Example:
Let \(n \in \mathbb{Z} \) and consider the reln on \(\mathbb{Z} \) given by \(a \sim b \) if \(a - b \) is a multiple of \(n \).

Claim. This is an equivalence relation.

Pf/ (reflexive) For any \(a \in \mathbb{Z} \), \(a \sim a \) since \(a - a = 0 = 0 \cdot n \).

(Symmetry) Suppose \(a \sim b \), so \(a - b = kn \) for some \(k \in \mathbb{Z} \). Then \(b - a = -(a - b) = -(kn) = (-k)n \)
so \(bRa \).

(Transitive) If \(a \sim b \) and \(b \sim c \), then \(a - b = kn \) and \(b - c = k'n \) for some \(k, k' \in \mathbb{Z} \). Then \(a - c = a + (-b + b - c) = (a - b) + (b - c) = kn + k'n = (k + k')n \), so \(a \sim c \).

\(\Box \)

Defn. The equivalence classes are \(\mathbb{Z}/n =: \mathbb{Z}/n\mathbb{Z} \). "\(\mathbb{Z} \) mod \(n \mathbb{Z} \)"

Claim \(|\mathbb{Z}/n\mathbb{Z}| = n \)

Pf/ We will show there is a bijection \(f: \mathbb{Z}/n\mathbb{Z} \to \{0, 1, \ldots, n-1\} \), which implies \(|\mathbb{Z}/n\mathbb{Z}| = |\{0, 1, \ldots, n-1\}| = n \).

Define \(f[a] := \text{remainder of } a/n \), i.e. \(a = qn + r \) \(\quad \bigcirc \)

Well-defined: Suppose \([a] = [b] \). (WTS: \(f[a] = f[b] \))
This means \(a \sim b \), so \(a - b = kn \) for some \(k \in \mathbb{Z} \). If \(b = q'n + r' \), then \(a = kn + b \).

\(a = kn + b = kn + q'n + r' = (k + q) + r' \) so \(f[a] = f[b] \).

Injective: Suppose \(f[a] = f[b] \). (WTS \([a] = [b] \)) Write \(a = qn + r \) and \(b = q'n + k' \), so \(b/c \) \(f[a] = f[b] \), this implies \(r = r' \). Then \(a - b = (qn + r) - (q'n + r') = qn + r - q'n - r' = qn - q'n = (q - q')n \). Hence \(a \sim b \), i.e. \([a] = [b] \), so \(f \) is injective.
Surjective: Let $r \in \{0,1,\ldots,n-1\}$. Then $f[r] = r$ since $r < n$, i.e. $r = 0 \cdot n + r$. So this shows f is surjective.

Therefore f is a bijection hence $|\mathbb{Z}/n\mathbb{Z}| = n$. □

Example of not well-defined

$n = 2$: $\mathbb{Z}/2\mathbb{Z} \rightarrow \{1,2,3\}$

$\begin{align*}
0 & \mapsto 1 \\
1 & \mapsto 1 \\
2 & \mapsto 2 \\
3 & \mapsto 3 \\
4 & \mapsto 1 \\
5 & \mapsto 2 \\
\vdots & \quad \vdots
\end{align*}$

- $f[0] = 1$
- $f[2] = 2$
- $[0] = [2]$

\[\begin{align*}
x &= y^2 \\
y &= \sqrt[3]{x}
\end{align*}\]
Practice

Part I.
1. Find examples of \(f: \mathbb{R} \rightarrow \mathbb{R} \) s.t. \(f \) is
 - (a) bijective
 - (b) not injective nor surjective
 - (c) injective but not surjective
 - (d) surjective but not injective

2. (from Lecture) \(f: \mathbb{R} \rightarrow \mathbb{R} \) is bijective \(\iff \) it has an inverse \(g: \mathbb{R} \rightarrow \mathbb{R} \)

Part II.
1. Let \(|A| = n \). How many distinct relations are there on \(A \)?

 Bonus: How many reflexive, symmetric, transitive, etc?

2. (from HW2) Let \(\sim \) be the relation on \(\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \) given by \(x \sim y \) if \(xy > 0 \). Describe the corresponding partition.

Part III.
1. Let \(\mathcal{A} = \{ \text{differentiable functions } \mathbb{R} \rightarrow \mathbb{R} \} \). Define \(R \) by \(f \sim g \) if \(f(0) = g(0) \).
 - (a) Prove \(R \) is an equivalence relation
 - (b) Let \(S = \mathcal{A}/_R \) and define \(F: S \rightarrow \mathbb{R} \) by \(F[f] = f(0) \).
 Prove \(F \) is well-defined + bijective.

2. Let \(\mathcal{A} = \{ \text{lines in the plane } \mathbb{R}^2 \} \). Prove:
 - (a) "is parallel to" is an equivalence relation
 - (b) "is perpendicular to" is not.
 - (c) Show slope: \(\mathcal{A}/_{\text{parallel}} \rightarrow \mathbb{R} \) is well-defined + bijective.

Bonus
Can you construct \(\mathbb{Z} \) from a relation on \(\mathbb{N} \times \mathbb{N} \)?

How about \(\mathbb{Q} \) from a relation on \(\mathcal{Z} \times \mathcal{Z} \setminus \{0\} \)?

Define: \((a,b)R(c,d)\) if \(a+d=b+c\).

\(R \) is an equivalence relation

\(a-b = c-d \)

1. (reflexive) \(wts: (ab)R(ab) \)

 We have \(a+b = b+a \) since addition is commutative, hence \(R \) is reflexive.

2. (symm) Suppose \((a,b)R(c,d)\); so \(a+d=b+c\). \(wts: (c,d)R(a,b) \iff c+b=d+a \)

 We know \(b+c = a+d \) by symmetry of \(= \),
 \(c+b = d+a \) by \(\text{comm.} \) of \(+ \).

3. (trans) If \((a,b)R(c,d)\) and \((c,d)R(e,f)\), then \(a+d=b+c\) and \(c+f=d+e\). Then \((a+d)+(c+f) = (b+c)+(d+e) \)

 \((d+c)+(a+f) = (d+c)+(b+e) \) by \(\text{comm. \ assoc. of } + \)

4. \(a+f=b+e \) by cancellation.
(2) **Note**: if \(a > b \), then \((a,b)R(a-b,0)\)
if \(a < b \), then \((a,b)R(0, b-a)\)
So \([(a,b)] \) looks like \([(0,n)] \) or \([(n,0)] \). Define

\[
\begin{align*}
N \times N/R & \to \{ -\infty, -1, 0, 1, \ldots \} \\
[(n,0)] & \mapsto n \\
[0,n)] & \mapsto -n. \quad \square
\end{align*}
\]

If \(|A|=n\), show \# relations on \(A^2 \) = ?

\[
\#\text{Subset of } A \times A^2 = |\mathcal{P}(A \times A)| = 2^{|A \times A|} = 2^{n^2} = 2^n^2.
\]

Recall: If \(|X|=m\), then \(|\mathcal{P}(X)|=2^m\)

- Reflexive: \((a,a) \in \text{subset}\)
- Symmetric: \[
\begin{bmatrix}
\frac{n^2 + n}{2} \\
2
\end{bmatrix}
\]
- Transitive:

\[\begin{array}{c}
b \cap a \cup b
\end{array}\]