Group Homomorphisms

Recall: for sets \(f : A \to B \)

Now, for groups: \(\phi : G \to G' \)

Injective, Bijective, Surjective

Well-defined

Homomorphisms

Injective

Isomorphism

Well-defined + (\(k \))

\(\phi(g \cdot h) = \phi(g) \cdot \phi(h) \)

Does the fn \(\phi : G \to G' \) satisfy...

1. \(\phi(e_G) = e_{G'} \)?
2. \(\phi(g^{-1}) = \phi(g)^{-1} \)?
3. \(\phi(g^k) = \phi(g)^k \)?

If the answer to any of these is "No" then \(\phi \) can't satisfy (*)!

Checking (1) - (3) isn't enough (in general) to know \(\phi \) satisfies (4).

These conditions are necessary, not sufficient.

Ex. \(\mathbb{Z} \xrightarrow{\text{mod} 2} \mathbb{Z} \) is not a homomorphism

Proof: It's a function, but it doesn't satisfy (*):

\[(x+y)^2 \neq x^2 + y^2 \quad \text{(e.g., } x = y = 1)\]

Ex. \(\mathbb{Z} \xrightarrow{\cdot} \mathbb{Z} \) is an endomorphism

Proof: Multiplication is a well-defined function, and (4) encodes distribution:

\[n \cdot (x+y) = n \cdot x + n \cdot y \quad \forall x, y \in \mathbb{Z} \]

This is called an "involution"

Ex. \(\mathbb{Z} \xrightarrow{-} \mathbb{Z} \) is an automorphism

Proof: Multiplication by -1 is a bijection (its inverse is itself!) and satisfies (4) by the previous ex.

Note: \(\mathbb{Z} \xrightarrow{\cdot} \mathbb{Z} \) is a different automorphism!

We can consider the set \(\text{Aut}(G) = \{ \text{automorphisms of } G \} \).

In fact:

Prop. \(\text{Aut}(G) \) is a group! (under composition)

Ex. What is \(\text{Aut}(\mathbb{Z}) \)? Claim \(\text{Aut}(\mathbb{Z}) = \langle 1 \rangle \approx \mathbb{Z} / \mathbb{Z} \)

Proof: We first establish \(\text{Aut}(\mathbb{Z}) = \langle 1 \rangle \) as a set. We've already discussed \(\mathbb{Z} \) so we just need to show \(\leq \). Let \(\phi \in \text{Aut}(\mathbb{Z}) \). Since \(\phi \) is a homomorphism, \(\phi(0) = 0 \) and \(\phi(n) = \phi(1+1+\ldots+1) = \phi(1) + \ldots + \phi(1) = n \cdot \phi(1) \). That is, \(\phi \) can be described...
as “multiplication by \(\phi(1)\). This is a bijection iff \(\phi(1) \in \{-1, 1\}\).

Now we show \(\text{Aut}(\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}\) as groups. Consider \(f: \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}\) which sends \(+1 \to 0\) and \(-1 \to 1\). (Note: this is the only choice since \(f(0) = 0\) necessarily.) To check \(f\) is a group homomorphism, the only non-trivial part to check is

\[
f(-1 \cdot -1) = f(id) = 0 = f(-1) + f(-1).
\]

\[\square\]

Prop \(\Phi: G \to G'\) is a group homomorphism, then

1. \(H \leq G \implies \Phi(H) \leq G'\)
2. \(H' \leq G' \implies \Phi^{-1}(H') \leq G\)

Pf

1. Let \(H \leq G\). Since \(e \in H\) and \(e\) is the group hom,

\[
e = \phi(e) \in \Phi(H).
\]

Now suppose \(g, g' \in \Phi(H)\). Then \(g = \phi(h)\) and \(g' = \phi(h')\) for some \(h, h' \in H\). Thus \(h \cdot h' \in H\) and

\[
g \cdot g' = \phi(h) \cdot \phi(h') = \phi(h \cdot h') \in \Phi(H).
\]

Finally, if \(g \in \Phi(H)\), so \(g = \phi(h)\) for some \(h \in H\), then \(h' \in H\) so

\[
g^{-1} = \phi(h)^{-1} = \phi(h^{-1}) \in \Phi(H).
\]

Hence \(\Phi(H) \leq G'\).

2. Now let \(H' \leq G'\). Since \(e \in H'\), we can consider \(\Phi^{-1}(e) = \{g \in G \mid \Phi(g) = e\}\), and since \(\Phi\) is a group hom, we know \(e \in \Phi^{-1}(e) \subseteq \Phi^{-1}(H')\). Now suppose \(g, g' \in \Phi^{-1}(H')\). By defn, \(\Phi(g), \Phi(g') \in H'\) so \(\Phi(g) \cdot \Phi(g') = \Phi(g \cdot g') \in H'\). Hence \(g \cdot g' \in \Phi^{-1}(H')\).

Finally, if \(g \in \Phi^{-1}(H')\), then \(\phi(g) \in H'\) so \(\phi(g)^{-1} = \phi(g^{-1}) \in H'\) and therefore \(g \in \Phi^{-1}(H')\).

\[\square\]

Ex/Defn The kernel of \(\Phi: G \to G'\) is \(\ker(\Phi) = \Phi^{-1}(e)\). We just showed \(\ker(\Phi) \leq G\).

Prop \(\Phi\) is injective \(\iff\ ker(\Phi) = e\).

Pf \((\Rightarrow)\) If \(x \in \ker(\Phi)\), then \(\Phi(x) = e = \phi(e)\), so injectivity implies \(x = e\).

\((\Leftarrow)\) Suppose \(\Phi(x) = \phi(y)\). Then \(e = \Phi(y) \Phi(x)^{-1} = \Phi(y) \phi(x)^{-1} = \Phi(y \phi(x^{-1}) = \phi(y \phi(x^{-1})^{-1}) \in \ker(\Phi)\).

So \(y \phi(x^{-1}) \in \ker(\Phi).\) If \(\ker(\Phi) = e\), this says \(y \phi(x^{-1}) = e\), i.e. \(y = \phi(x)\). So \(\Phi\) is injective.

Ex/Defn The image of \(\Phi: G \to G'\) is \(\text{im}(\Phi) = \Phi(G)\). We showed \(\text{im}(\Phi) \leq G'\).
Prop. \(\Phi \) is surjective \(\iff \text{im}\Phi = G' \).

Pf. (\(\Rightarrow \)) We know \(\mathcal{E} \), so just need to show \(\text{im}\Phi \supseteq G' \). Given \(g' \in G' \), \(\exists g \in \mathcal{G} \) s.t. \(\Phi(g) = g' \).

Since \(\Phi \) is surjective. Then by defn, \(g' \in \text{im}\Phi \).

(\(\Leftarrow \)) Let \(g' \in G' \). Then since \(G' = \text{im}\Phi = \{\Phi(g) | g \in \mathcal{G} \} \) there exists \(g \in \mathcal{G} \) s.t. \(g' = \Phi(g) \).

This is the defn of \(\Phi \) being surjective. \(\Box \)

Rmk \(\Phi : \mathcal{G} \to G' \) is gp isomorphism (1) if \(\Phi \) hom and (2) is bij.

\[\text{and (2) holds } \iff \ker\Phi = e \in \mathcal{G} \]

\[\text{im}\Phi = G' \]

(also \(\iff \exists \text{ inverse } \Phi' : G' \to \mathcal{G} \))

Ex. Consider the group \(G \) by Cayley table:

<table>
<thead>
<tr>
<th>*</th>
<th>e</th>
<th>(\text{(\star)})</th>
<th>(\triangle)</th>
<th>(\ast)</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
<td>(\text{(\star)})</td>
<td>(\triangle)</td>
<td>(\ast)</td>
</tr>
<tr>
<td>(\text{(\star)})</td>
<td>(\text{(\star)})</td>
<td>e</td>
<td>(\ast)</td>
<td>(\triangle)</td>
</tr>
<tr>
<td>(\triangle)</td>
<td>(\triangle)</td>
<td>(\text{(\star)})</td>
<td>e</td>
<td>(\ast)</td>
</tr>
<tr>
<td>(\ast)</td>
<td>(\ast)</td>
<td>(\triangle)</td>
<td>(\text{(\star)})</td>
<td>e</td>
</tr>
</tbody>
</table>

Claim \(G \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} = K4 \) "klein 4 gp"

Pf. Define \(\Phi : G \to K4 \) by

\[\begin{align*}
\heartsuit & \mapsto (0,0) & \bigstar & \mapsto (0,1) \\
\bigtriangleup & \mapsto (1,0) & \spadesuit & \mapsto (1,1).
\end{align*} \]

This is bijective, and can check it's a hom using the Cayley table. (exc)

Note Could have defined \(\Phi \) by

\[\begin{align*}
\heartsuit & \mapsto (0,0) & \bigstar & \mapsto (1,0) \\
\bigtriangleup & \mapsto (0,1) & \spadesuit & \mapsto (1,1).
\end{align*} \]

This is a different isomorphism! (\(\cong \) isos not nec. unique)

Call it \(\Phi' \). Note \(\Phi' = \Phi \circ \text{swap} \), where \(\text{swap} \in \text{Aut}(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \) swaps the two factors; i.e. switches \((1,0) \leftrightarrow (0,1)\). (up to isomorphism)

Q. Given \(n \in \mathbb{Z}_{>1} \), how many groups are there of order \(n \)?

A. Well...

<table>
<thead>
<tr>
<th>(n)</th>
<th>e</th>
<th>(\text{(\star)})</th>
<th>(\triangle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(\text{(\star)})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(\triangle)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(\text{(\star)})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 5 | \(\text{\(\star \)} \) \\
| 6 | \(\text{\(\star \)} \) |

Wikipedia has a list for \(n \leq 30 \)

in general, this is very hard!! (believed impossible in general)

\(\Rightarrow \) simplicity by adding restrictions:

- \(n = p \text{ prime} : \mathbb{Z}/p \)
- \(G \text{ is simple} : " \text{classification of finite} \text{ check out!} " \)
- \(G \text{ solvable} : " \text{simple gps} " (\text{monster group}) \)
- \(|G| = pq \text{ primes p,q} : " \text{...} " \)

Sylow Thms (to be discussed) will be helpful!
Group Work

(1) (a) Prove $\text{Aut}(G)$ is a group (G is a group).
 (b) Given two groups G, G', is $\text{Hom}(G, G') = \{ \phi: G \to G' \mid \phi \text{ hom}\} \text{ a group?}$
 If yes, prove it. If not, can you add conditions to make it a group?
 Bonus: When is the resulting group Abelian?

(2) Let $(A, +, 0)$ be an Abelian group and $u, v: A \to A$ homomorphisms. Define $f, g: A \to A$ by

 $f(a) = a - v(u(a))$ and $g(a) = a - u(v(a))$.

 Show $\ker f \cong \ker g$.

(3) Let G be a finite group and $\phi: G \to G$ an automorphism s.t. $\phi(g) = g \circ g \circ e$.
 Prove (a) every x in G is of the form $g \circ \phi(g)$
 (b) if ϕ is an involution ($\phi \circ \phi = id$) then $\phi = i$ is inversion
 and G is an Abelian group of odd order.