Today: other isom thms

HW 9
- Syl
- ep extensions
- free gps
- gp presentations

Isomorphism Thms at Lightning Speed

0. Let \(\varphi : G \to G' \) be a gphom. Then \(G/\text{ker} \varphi \cong G' \).

2. Let \(H \leq G \) and \(N \leq G \). Then
 \[
 HN = \{hn \mid hH, nN \leq G \}
 \]
 and \(HN/N \cong H/\text{NN}H \).

3. Let \(N \leq G \). Then

 \[
 \frac{G}{N} \cong \frac{G/N}{\text{NN}N} \cong \frac{G/N}{\text{NN}N}.
 \]

Examples using them

Prove: \(\gcd(a, b) \cdot \text{lcm}(a, b) = ab \)

Let \(G = \mathbb{Z} \), \(H = 2\mathbb{Z} \), \(N = 3\mathbb{Z} \). Then
 \[
 a = 2x, b = 3y, a = \frac{a}{x}, b = \frac{b}{y}, \frac{a}{x}, \frac{b}{y} \in \mathbb{Z}
 \]
 so \(\gcd(a, b) = x \) and \(\text{lcm}(a, b) = y \).

Short Exact Sequences of Groups

A short exact sequence (SES) of groups is notation

\[
\begin{array}{c}
\varepsilon \\
\rightarrow \\
N \\
\rightarrow \\
\rightarrow \\
G \rightarrow \\
P \\
\rightarrow \\
Q \\
\rightarrow \\
\rightarrow \\
e
\end{array}
\]

which neatly packages a lot of info:

- \(N, G, Q \) are groups and \(i, p \) are gphoms
- \(i \) is injective \(1 \rightarrow N \rightarrow G \)
- \(p \) is surjective \(G \rightarrow Q \rightarrow 1 \)
- \(\text{ker}(p) = \text{im}(i) \)

What is this telling us?

1. We know \(\text{ker}(p) \leq G \), and by 1st iso
 \(G/\text{ker}(p) \cong \text{im}(p) \)
2. But \(p \) is surjective, so \(G/\text{ker}(p) \cong \text{im}(p) = Q \).
3. By exactness, \(\ker(p) = \text{im}(i) \) so \(G/\text{im}(i) \cong Q \).

4. But \(i \) is injective, so \(N \cong \text{im}(i) \), hence

\[
G/N \cong Q
\]

The group \(G \) is called the extension of \(Q \) by \(N \).

Sometimes, \(G \cong N \times G/N \cong N \times Q \). \(\Box \) not always!

Examples (from HW9 Exc1)

1. \[
\begin{array}{cccc}
\mathbb{Z} & \mathbb{Z}/2 & \mathbb{Z}/2 & 0 \\
a \mapsto & a & b & 0 \\
& \mapsto & b \mod 2 & 0
\end{array}
\]

(i) Everything involved is a gp \(\to \) gp hom.
(ii) \(i \) is injective since if \(a, b \in \mathbb{Z} \) are equal in \(\mathbb{Z} \), then equal in \(\mathbb{Z}/2 \).
(iii) \(q \) is surjective since \(0, 1 \in \mathbb{Z}/2 \) map to \([0], [1] \).

4. \(\ker(q) = \text{im}(i) \) ...

If \(q(a) = 0 \) then \(a = 2k \) for some \(k \in \mathbb{Z} \), i.e. \(a \in 2\mathbb{Z} \), so \(\ker(q) \subseteq \text{im}(i) \).
If \(a \in \text{im}(i) \) then \(a = 2k \) for some \(k \in \mathbb{Z} \) so \(q(a) = q(2k) = 0 \), hence \(\text{im}(i) \subseteq \ker(q) \). \(\Box \)

Note: \(\mathbb{Z} \not\cong \mathbb{Z} \times \mathbb{Z}/2 \) e.g. the RHS has non-id elem \((0, 1)\) of finite order but we can understand elmts of \(\mathbb{Z} \times \mathbb{Z}/2 \) as "\(\mathbb{Z}/2 \) part" plus "1 or 0".

2. \[
\begin{array}{cccc}
\mathbb{Z}/2 & \mathbb{Z}/2 & \mathbb{Z}/2 & 0 \\
a \mapsto & (a, 0) & (a, b) & 0 \\
& \mapsto & b & 0
\end{array}
\]

(i) \(i \) is injective since if \((a, 0) = (a', 0) \) then \(a = a' \).
(ii) \(\pi_2 \) is surjective since for any \(b \in \mathbb{Z}/2 \), \(\pi_2(0, b) = b \).
(iv) \(\text{im}(i) = \ker(\pi_2) \):

\[
\ker(\pi_2) = \{ (a, b) | b = q(a, b) = 0 \}
\]

\[
= \{ (a, 0) | a \in \mathbb{Z}/2 \}
\]

and \(\text{im}(i) = \{ (a, 0) | a \in \mathbb{Z}/2 \} \), so they're equal.

Note: \(\mathbb{Z}/2 \times \mathbb{Z}/2 \cong \mathbb{Z}/2 \times \mathbb{Z}/2 \) duh...

Idea: A SES \(e \to N \to G \to Q \to e \) is split "if \(G \cong N \times Q \)". Otherwise, non-split.

Claim: \(e \to (n, e) \to N \times Q \to Q \to e \) is a SES

(iv) \(\text{im}(i) = \ker(p) \)

(\(\leq \)) Suppose \((n, g) \in \text{im}(i) \). Then \(g = e \), so \(p(n, g) = p(n, e) = e \in Q \) so \((n, g) \in \ker(p) \).

(\(\geq \)) Suppose \((n, g) \in \ker(p) \), so \(p(n, g) = e \). This means \(g = e \) so \((n, g) = (n, e) = i(n) \in \text{im}(i) \). \(\Box \)
Def: A SES \(e \to N \xrightarrow{\pi} G \to Q \to e \) is *split* if \(\exists \sigma : G \to N \) s.t. \(\sigma \circ i = \text{id}_N \)

Q: Why is this the same as "\(G \cong N \times Q \)"? (or "\(G \) is split extension")

A. Ex 2.2

Prop: A SES splits iff \(\exists \sigma : G \cong N \times Q \) s.t. TFDC:

\[
\begin{align*}
\sigma(i(n)) &= i(n) = (n,e) \\
p(q) &= \pi_2(d(g)) \Rightarrow \sigma(g) = (?, p(g))
\end{align*}
\]

Proof: \((\Leftarrow)\) Suppose \(\exists \sigma : G \cong N \times Q \) which commutes appropriately. Define \(r : G \to N \) by

\[
r : G \xrightarrow{\sigma} N \times Q \xrightarrow{\pi_1} N
\]

i.e. \(r = \pi_1 \circ \sigma \)

Then \(r \) is a gp hom since both \(\sigma \) and \(\pi_1 \) are, and \(r \circ i(n) = \pi_1 \circ \sigma(i(n)) = \pi_1(n,e) = n \).

\((\Rightarrow)\) Suppose \(\exists r : G \to N \) s.t. \(\text{roi} = \text{id}_N \). Define \(\sigma : G \to N \times Q \) by

\[
\sigma(g) = (r(g), p(g)).
\]

Note that \(\sigma \) is a gp hom since \(r \) and \(q \) are, and TFDC:

\[
\begin{align*}
r &\rightarrow N \\
N \rightarrow Q \xleftarrow{(r(g), p(g))} N \times Q \\
G \xrightarrow{\sigma} N \times Q \xrightarrow{\pi_1} N
\end{align*}
\]

\[
\begin{align*}
r(i(n)) &= (r(i(n)), p(i(n))) = (n,e)
\end{align*}
\]

\[
\begin{align*}
r(i(n)) &= (r(i(n)), p(i(n))) = (n,e)
\end{align*}
\]

\[
\begin{align*}
r(i(n)) &= (r(i(n)), p(i(n))) = (n,e)
\end{align*}
\]

\[
\begin{align*}
r(i(n)) &= (r(i(n)), p(i(n))) = (n,e)
\end{align*}
\]

Remains to show \(\sigma \) is bijective.

\((\text{injective})\) Suppose \(\sigma(g) = e \), so \(r(g) = e = p(g) \). This means \(q \circ \text{ker}(p) = \text{im}(i) \), so \(g = i(n) \) for some \(n \in N \). But then \(e = r(g) = r(i(n)) = n \), so \(n = e \). Hence \(g = i(e) = e \).

\((\text{surjective})\) Let \((n,e) \in N \times Q \). \text{WTS} \exists g s.t. \((n,e) = \sigma(g) = (r(g), p(g)) \)

\[
\begin{align*}
\text{Know ASIDE}
\end{align*}
\]

- Since \(p \) is surjective, \(\exists h \in G \) s.t. \(p(h) = q \), but probably not \(r(h) = n \).
- \(\sigma(i(n)) = (r(i(n)), p(i(n))) = (n, e) \)

\[
\begin{align*}
\text{Idea: combine them}
\end{align*}
\]

- \(\sigma(i(n)h) = \sigma(i(n)) \sigma(h) = (n, e) \cdot (r(g), q) = (nr(g), q) \) almost...
- \(\sigma(i(n)h' r(g)^{-1}) = \sigma(i(n)) \sigma(h) \sigma(i(r(g)^{-1})) = (n, e) \cdot (r(g), q) \cdot (r(g)^{-1}, e) = (n, e) \cdot (r(g), q) \cdot (e, e) = (n, e) \cdot (r(g), q) = (n, q) \).
Set \(g = i(n) \circ i(r(g)^{-1}) \). Then \(L(i(n) \circ i(r(g)^{-1})) = (n,q) \) by above. \(\square \)

UPSHOT: Split extensions are when \(G \cong \mathbb{Z} \times Q \) in a nice way. These always exist and are nice, but sometimes more interesting things happen.

Ex. two extensions of \(\mathbb{Z}/2 \) by \(\mathbb{Z}/3 \\
\\split \quad 0 \to \mathbb{Z}/3 \to \mathbb{Z}/6 \to \mathbb{Z}/2 \to 0 \\
\\\downarrow \quad \downarrow \quad \downarrow \\
\\2/3 \times \mathbb{Z}/2 \\
\\non-split \quad 0 \to \mathbb{Z}/3 \to S_3 \to \mathbb{Z}/2 \to 0 \\
\\\text{by } S_3 \not\cong \mathbb{Z}/6 \\
\\0 \mapsto e \\
\\1 \mapsto (123) \\
\\2 \mapsto (123)^2 = (132) \\
\\\text{What is } p? S_3/\langle (123) \rangle = \langle \{ (123), (12) \mid (123)^2 \} \rangle \\
\\\text{So } p : S_3 \to \mathbb{Z}/2 \text{ from univ. prop.} \\
\\pmb{Note} \quad \mathbb{Z}/3 \cong A_3 \text{ so similar argument shows } 0 \to A_3 \to S_3 \to \mathbb{Z}/2 \to 0 \text{ is non-split w/o aor.}

Special examples: Group Presentations \(\leftrightarrow \) special kind of f.g. group

One of the ways we describe groups is using generators and relations

\(\text{e.g. } \mathbb{Z}/n \cong \{ [0], [1], \ldots, [n-1] \} = \langle 1 | n \cdot 1 = 0 \rangle \)

\(D_4 = \{ e, r, r^2, r^3, sr, sr^2, sr^3 \} \text{ s.t. } r^4 = e, rs = sr^{-1} \)

\(\mathbb{Z} = \langle 1 \rangle = \langle 1 | \phi \rangle. \)

In general, \(G = \langle \text{letters } | \text{relations} \rangle \) and the elements of \(G \) are words.

\(\text{e.g. } 1 + 2 + 4 - 3 \text{ is a word in } \mathbb{Z}/3 \)

\(= 9 - 3 = 4 \equiv 1 \) using relns \(\leftarrow \text{"reduced words"} \)

\(rsr^3s^{-1}r^2 \text{ is a word in } D_4 \)

\(= rsr^3r^2 = r^5 \text{ using relns} \)

If \{relations\} = \phi, \(G \) is called a free group \(\text{lying a bit: there's a UP} \)

Defn For any set \(S \), the free group on \(S \) is the group \(F(S) = \langle s \in S | \phi \rangle. \)

Intuition \(S \) is like a "basis" for \(F(S). \)

This intuition is bad \(\text{b/c} \)

1. not every gp "has a basis" (i.e. is free)
2. this "basis" is non-commutative
Better intuition? S is an "alphabet* for F(S).

Remarks.
- \(F(\emptyset) = \mathbb{E} \)
- The rank of \(F(S) \) is \(|S| \), and \(F(S) \cong F(S') \iff |S| = |S'| \).
- UP: \(\text{Hom}_{gp}(F(S), G) \cong \text{Hom}_{sets}(S, G) \) as a set.
- \(F(S,3) \cong \mathbb{Z} \)
- \(F(S) \) is non-Abelian if \(|S| \geq 2 \).
- If \(H \subseteq F(S) \) then \(H \) is free (i.e. \(H \cong F(S') \) for some \(S' \)).

E.g. \(F(x,y) \) is not \(F(x) \times F(y) \), \(F(S) \cong \mathbb{Z} \times \mathbb{Z} \)

\[x^2 y^2 \] \[(x^k, y^j) \]

Q. How do I get from \(F(x,y) \) to \(F(x,y) \times F(x,y) \)?

A. "Abelianize"; impose relations \(xy = yx \iff xy(yx^{-1}) = e \)

\[x \mapsto \text{quotient by } "\text{commutator subgp}" \]

\[[F(x,y)] \cong F(x,y) \times F(x,y) \]

\[<x,y | xyx^{-1}y^{-1}> \]

Remark. Can "Abelianize" any \(G \) by declaring \(gh = hg \) in this way.

\[G_{ab} = G/[G,G] \]

Abstract Observation. If \(G = <S | R> \) then "\(G \cong F(S)/R \)"

\[1 \rightarrow N(R) \rightarrow F(S) \rightarrow G \rightarrow 1 \]

Smallest normal subgroup containing \(R \) contained in \(F(S) \).

Ex. We saw \(<x,y | xyx^{-1}y^{-1}> \cong \mathbb{Z}^2 \)

but \(<x,y | x^4, y^2, xyx^y> \cong D_4 \)

Ex (Ex 3) \(G = <x,y | xy^2 = yx^2 = y^4 = 1> \). Show: all elements of \(G \) can be written \(y^kx^r \).

From 0, even powers of \(y \) commute with \(x \), so can be moved to the front. From \(\odot \), \(y^2 = y^2x^4 \)

So every word in \(G \) can be expressed using only even powers of \(y \). Hence of the form \(y^kx^r \).

Then: Show \(G \) Ab

Show \(G \cong \mathbb{Z} \).
Ex. \(G = \langle x, y \mid xyx^{-1}y^{-2}, x^2y^3xy \rangle \)

Note \(xyx^{-1}y^{-2} = e \iff x \cdot y \cdot (x^{-1}y^{-2})^{-1} = y^2x \)

and \(x^2y^3xy = e \iff x \cdot y \cdot (x^2y^3)^{-1} = yx^2 \)

So \(y^2x \cdot y \cdot x^2 \) in \(G \). Multiplying by \(y^{-1} \), we get \(yx = x^2 \) so multiplying by \(x^{-1} \)
we get \(y = x \). Then \(x \cdot y \cdot y^2 \cdot x \) implies \(x^2 = x^3 \) so \(x = e \) and \(y = e \).

Thus \(G = e \).

Hard Word Problems (early 1900s)

(1) **Word Problem:** Can we decide when 2 words are equal?

(2) **Isomorphism problem:** Can we decide when \(\langle S | R \rangle \cong \langle S' | R' \rangle \)?

\(\rightarrow \) e.g. \(\langle S | R \rangle = e ? \)

\(\rightarrow \) It's undecidable.

Exercise 4. We show in this exercise that every group is determined by its finitely generated subgroups. Conceptually, this is not surprising. The multiplication \(gh \) in \(G \) for \(g, h \in G \) is entirely determined in the finitely generated subgroup \(\langle g, h \rangle \).

(1) A partially ordered set \(I = (I, \leq) \) is a non-empty set \(I \) together with a relation \(\leq \) which is reflexive, antisymmetric (i.e. if \(a \leq b \) and \(b \leq a \), then \(a = b \)), and transitive. A filtered set \(I = (I, \leq) \) is a partially ordered set together with upper bounds: for all \(a, b \in I \) there exists \(c \in I \) such that \(a \leq c \) and \(b \leq c \). Show that \((\mathbb{N}, \leq) \) and \((\mathbb{R}, \leq) \) are filtered sets.

(2) A filtered system of groups \(I = (I, \leq) \) is a filtered set in groups: each element in \(I \) is a group and we fix injections \(\iota_{HK} : H \to K \) for some pairs of groups \(H, K \in I \). The relation \(\leq \) is defined as \(H \leq G \) if and only if we have chosen an injective homomorphism \(\iota_{HG} : H \to G \), for \(H, G \in I \). Fix now a group \(G \) and let \(I_G \) be the set of all finitely generated subgroups of \(G \). Show that \(I_G \) is a filtered system of groups.

(3) Let \(I \) be a filtered set of groups. We define the filtered colimit \(\{ G, \{ f_I \}_{I \in I} \} \) of \(I \) as follows. It is a group \(G \) together with homomorphisms \(f_H : H \to G \) for each \(H \in I \) such that for all injective homomorphisms \(\iota_{HK} : H \to K \) in the filtered system \(I \), we have \(f_K \circ \iota_{HK} = f_H \) for all \(H, K \in I \). It respects a universal property that reads: for any other group \(G' \) with homomorphisms \(\{ f'_{I} \}_{I \in I} \) such that \(f'_K \circ \iota_{HK} = f'_H \) for all \(H, K \in I \), then there exists a unique homomorphism \(F : G \to G' \) such that \(F \circ f_H = f'_H \) for all \(H \in I \). Show that given a filtered set of groups \(I \), the filtered colimit of \(I \) is unique up to isomorphism if it exists.

(4) Let \(G \) be a group and let \(I_G \) be the filtered set as in (2). Show that \(G \) is the filtered colimit of \(I_G \).