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Erol Akçay1,3, Timothy A Linksvayer1,3 and Jeremy Van Cleve2,3

Available online at www.sciencedirect.com

ScienceDirect
Spurred on by technological advances, the last several years

have seen an explosion of studies of behavioral, genomic, and

neurophysiological mechanisms of social behaviors. Yet these

empirical studies and the vast amount of data they produce are

typically disconnected from well-established social evolution

theory. We argue that unlocking the transformative potential of

the emerging empirical approaches to social behavior requires

new kinds of theoretical approaches that integrate proximate

behavioral, genomic, and neurophysiological mechanisms with

evolutionary dynamics. We review recent efforts in this

direction that show how proximate mechanisms are important

for evolutionary dynamics. However, we argue that these

frameworks are still too distant from empirical systems to

interface with emerging datasets. As an example of improved

approaches that can be developed, we focus on the evolution

of social gene regulatory networks, and discuss how

integrating dynamics of gene regulatory networks with social

evolution theory can result in rigorous hypotheses that are

testable with sociogenomic data.
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Introduction
Increasingly, new technologies are transforming the types

and quantities of empirical data available to researchers

studying social behavior. For example, sequencing tech-

nologies enable rapid probing of the links between gene

expression and behavior [1,2,3�], while automated track-

ing and behavioral data collection (‘reality mining’ [4])

technologies afford us a look at the dynamics of social

behaviors at an unprecedented resolution. Additional new
www.sciencedirect.com 
techniques, such as RNAi, CRISPR, and optogenetics,

allow experimental manipulation of genetic and neural

circuits at increasingly fine scales and are starting to be

used for interrogating mechanisms of sociality [5,6].

While major lines of research in the study of social

behavior (e.g., behavioral ecology) have long been closely

tied to and motivated by social evolution theory (e.g.,

inclusive fitness theory [7,8] and game theory [9]), these

theoretical frameworks have generally not been brought

to bear on the new kinds of behavioral and ‘-omic’ data

now widely available. This gap between social evolution

theory and these new data is primarily a product of the

explicit exclusion of genetic, physiological, cognitive, and

neural mechanisms from most social evolution models.

Because of this gap, it has always been difficult to inte-

grate mechanistic studies of behavior with social evolu-

tionary theory. Yet, the emergence of ‘big data’

approaches that quantify complex phenomena such as

social dynamics or genome-wide patterns of gene expres-

sion makes this disconnect even more salient because of

a lack of strong quantitative evolutionary hypotheses to

be tested with these new data. In the context of ‘-omics’,

this situation has recently caused some to express various

degrees of skepticism [10�,11�] as to whether these new

data will prove transformative or simply distracting from

major evolutionary questions.

We contend that the emerging empirical approaches can be

transformative, but realizing their full potential will require

further development of social evolution theory to explicitly

address proximate genetic, physiological, and cognitive

mechanisms. We argue this view by outlining how classic

social evolution theory has often avoided grappling with

these proximate mechanisms in order to produce simple

evolutionary predictions and interpretations of behavior.

While simple, this classic theory often cannot not investi-

gate the proximate mechanism itself as a legitimate evolv-

ing phenotype [12] and thus cannot use genomic or

neurophysiological data to test predictions concerning

these mechanisms. For instance, despite much interest

in dissecting gene regulatory networks underlying social

behaviors [2,3�,13], there exists no formal evolutionary

theory of how social selection should shape them.

The most progress on investigating the evolution of

proximate mechanisms has occurred in theoretical work

on flexible behaviors like reciprocity [14–16]. When mod-

els do not explicitly account for proximate mechanisms

underlying flexible behaviors, an inherent indeterminacy
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results where many different behaviors may be equally

evolutionarily stable. We review existing theoretical

approaches that show how models that include details

of the proximate mechanism such as neural processing of

material and social rewards can resolve this indeterminacy

and yield a clearer prediction for which behaviors evolve.

Nevertheless, we argue that these theories still do not

deal directly enough with behavioral and neural mecha-

nisms in order to interface with current large-scale and

high-resolution behavioral data.

On the genomics side, the absence of formal frameworks

that connect directly with proximate mechanisms has

meant that most empirical research that leverages socio-

genomic and other high resolution data has largely pro-

ceeded based on verbal models (with a few exceptions, for

example, population genetic models such as [17,18]). As a

case study, we highlight the study of the molecular

mechanisms and gene regulatory networks underlying

social behavior in social insects, which have largely been

interpreted using ideas from evolutionary developmental

biology, such as the concept of ‘genetic toolkits’ [19,20],

which have relatively little direct connection to formal

social evolution theory. In the final section of the paper,

we use the gene regulatory network example to sketch

how a new approach based on evolutionary systems

biology could deeply integrate proximate mechanisms

with social evolution theory.

Social evolution theory: the phenotypic
gambit
Modern theory of social evolution took off in the 1960s with

the theoretical work of Hamilton [7], and Price [21] and

Maynard Smith and Price [9] followed shortly afterwards.

Hamilton’s great contribution was to formalize the notion

that when the fitness of a focal individual is determined

not just by its own genotype, but also by that of its social

partners, the net selection pressure on a trait is determined

in part by correlations between the genotypes of interact-

ing individuals, which are often measured by genetic

relatedness. Hamilton showed that behaviors such as

costly helping will evolve if their ‘inclusive fitness effect’

is positive, which is encapsulated in his celebrated epony-

mous rule, rb � c > 0. The inclusive fitness effect is de-

fined as the sum of the change in the focal individual’s

own fitness and that of social partners’ that can be ascribed

to the focal individual’s genotype. Hamilton proposed that

inclusive fitness is the quantity maximized by natural

selection, which has gained widespread acceptance among

behavioral ecologists [22].

The inclusive fitness maximization perspective is intrinsi-

cally linked with the ‘phenotypic gambit’ [23], which

holds it is both reasonable and profitable to study the

evolution of complex behaviors as if they have a simple

additive genetic basis and are unconstrained by the avail-

ability of beneficial mutations. The phenotypic gambit
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caused much controversy between researchers using opti-

mality as a working hypothesis and those that relied on

more detailed population and quantitative genetic models

[24,25]. The controversy ultimately produced a precise

understanding of the relationship between optimality

models and population genetic perspectives [26,27,28�,
29�] where optimality models are special cases (often

approximations) of population genetics models. Moreover,

the phenotypic gambit has been very successful in gener-

ating adaptive hypotheses and interpretations of complex

social behaviors that are otherwise difficult with traditional

population genetic models.

However, by focusing solely on phenotypes and their

adaptive value, the phenotypic gambit has effectively

suppressed the role of proximate mechanisms and geno-

mic architecture in evolutionary theory of social beha-

viors. By ‘genomic architecture’ of social traits, we

specifically mean the structure and function of gene

regulatory networks underlying social trait expression

and how segregating variation within these networks

maps to variation in social traits. Not surprisingly, this

has meant that theory contributed little to progress on

questions about evolutionary genetic and genomic pat-

terns for social traits (though see [17,18,30,31], for efforts

in this direction). Crucially, social evolution theory does

not currently make specific predictions about the details

of the molecular and evolutionary genomic architecture of

social traits. While population and quantitative genetics

generally studies the genetic basis of trait variation as we

discuss in the next section, it has not usually explicitly

considered the gene regulatory networks that underlie

behaviors studied in social evolution (except until recent-

ly, for example, [2,3�,13,32�]). This has left unanswered

questions such as how gene regulatory network structure

evolves when those networks drive social phenotypes.

Addressing these questions is key to a comprehensive

understanding of the evolution of social phenotypes that

spans genes to social groups.

Social interactions and flexible behaviors
Theoretical work on the evolution of flexible behaviors,

particularly those like reciprocity that are involved in

cooperation, is an important case study for why proxi-

mate mechanisms are crucial for evolutionary theories

of social behavior. The most common approach to

studying flexible behaviors is to use iterated social

interactions, or ‘games’, where a single game is played

repeatedly and individuals are endowed with sets of

rules that prescribe their behavior in response to past

interactions [33]. Although very popular, this approach

is hampered by the fact that infinitely many such rules

can be devised, which makes evolutionary stable rules

indeterminate. Although recent work has put some

bounds on the indeterminacy [34], it cannot be resolved

completely without addressing the proximate genetic,

physiological, or cognitive mechanisms, which could in
www.sciencedirect.com
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principle empirically constrain the set of allowable

rules.

Another approach to modeling the evolution of flexible

behaviors, called ‘interacting phenotypes’ or ‘indirect

genetic effects’ (IGE) theory [35–37], extends traditional

quantitative genetics to the case of social interactions.

IGE theory measures the phenotype of a focal individual

in terms of its own genes and those of its social partners

(the so-called IGEs). Similar to other models of recipro-

city, IGEs have effects on social traits similar to related-

ness and can change the direction and rate of social

evolution [37]. Furthermore, because IGE theory is based

on quantitative genetics, it is eminently suitable for

quantifying genetic constraints and feedbacks between

social traits [38,39] and for discovering associated quanti-

tative-trait loci (QTLs) and single-nucleotide polymor-

phisms (SNPs) [40].

One important limitation of conventional IGE theory is

that it regards social effects themselves as fixed, rather

than as evolving together with the proximate mechanism

of behavior. The question of how flexible behaviors

evolve as a result of evolving proximate cognitive mech-

anisms has been addressed by a series of models Akçay,

Van Cleve, and colleagues [16,41,42]. In these models

both the social behavior and the degree of flexibility, or

responsiveness, emerge from evolving preference func-

tions that represent the output of neural circuits weighing

the reward values of different options. The problem of

evolutionary indeterminacy remains, since an infinity of

different preference functions are possible, but it can be

dealt with by using behavioral and neuroeconomics

experiments to empirically constrain how reward values

are processed in the brain [43].

Thus, the IGE framework is well-suited for quantifying

behavioral flexibility and genetic constraints, and the

responsiveness/preference function framework is appro-

priate for modeling cognitive and/or neurophysiological

mechanisms in an evolutionary context. Neither frame-

work alone, however, fully integrates both genetic and

neurophysiological constraints and mechanisms in a

manner readily applicable to data. Combining these

frameworks is an immediate goal of future work integrat-

ing proximate mechanisms with social evolution theory.

Further improvements can come from detailed behav-

ioral observations of how animals respond to each other.

For example, Johnstone et al. [44�] quantified the mech-

anism of parental responses (in this case, alternating

visits) in great tits using nest recordings, and used the

empirically determined behavioral model in the evolu-

tionary analysis. As automated behavioral monitoring

becomes more widespread, such studies will become

more feasible, along with the opportunity to integrate

with data on the genetic variation underlying behavioral

responses.
www.sciencedirect.com 
Gene regulatory networks for social traits: the
case of social insects
Social insects have long been established models for

testing a range of predictions of social evolution theory

(e.g., [45,46]), such as queen-worker conflict over the sex

ratio. More recently, social insect researchers have rapidly

embraced sequencing technologies, resulting in a verita-

ble flood of new transcriptomic and genomic data (e.g.,

[47,48�]), and leading to social insect groups being among

the most well-studied animal groups in terms of genomic

and transcriptomic resources.

Without a strong and explicit connection between socio-

genomic data and social evolution theory, questions in the

field of sociogenomics have rarely been explicitly moti-

vated by the predictions from social evolution theory.

Instead, sociogenomic studies have often been motivated

by conceptual frameworks borrowed from other fields. In

particular, the ‘evo-devo’ approach [49] has inspired the

search for ‘genetic toolkits’ for social behavior, highly

conserved genes and gene networks underlying the evo-

lution of diverse social behavior [1,19,20]. While widely

accepted and intuitively appealing, precisely defining

toolkits for development, let alone social behavior, has

proven difficult, leading some authors to question the

utility of the framework for hypothesis testing [50]. More-

over, other researchers emphasize the importance of

rapidly evolving, or novel genes underlying the evolution

of social behavior [32�,51–53]. In reality, both conserved

and novel genes presumably play important roles in the

evolution of social behavior, with novel components

likely added to conserved, core network components over

the course of social evolution [3�]. Yet the mere existence

of such sets of genes is relatively uninformative about the

unique features of gene regulatory networks that are

actually involved in social processes such as social signal

production and response. These types of gene regulatory

networks are the ones that are likely to reflect unique

social evolutionary processes.

Social evolutionary systems biology
Thus, several critical questions about the genetic archi-

tecture of social behavior remain unexplored by evolu-

tionary theory, such as: how do the unique features of

social systems affect the contribution of conserved versus

novel genes and gene pathways for the evolution of social

traits? Can we expect differences in the evolutionary

genomic underpinnings of traits relating to social behavior

relative to other traits? Does selection through direct vs.

indirect fitness effects differentially shape the genomic

architecture of social traits?

We propose that a promising approach to answer ques-

tions such as these and generate testable hypotheses

for emerging sociogenomic data is to integrate models

of gene regulatory networks (GRNs) underlying social

traits with social evolution models. As diagrammed in
Current Opinion in Behavioral Sciences 2015, 6:59–64
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Figure 1
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The social evolutionary systems biology approach and the role of

indirect genetic effects. Individuals living in a social group may share

genes that are identical by descent due to some kind of population

structure where the extent (probability) of gene sharing is given by a

relatedness coefficient (denoted by open headed arrows). Genes

within individuals form a gene regulatory network where expression

from genes in the network is determined by the sum of the regulatory

interactions. Expression from genes in the network shapes individual

behaviors (phenotypes). Social behaviors result from the interaction of

multiple individuals where the behavior of each individual is directly

affected by the behavior of its social partners and their underlying

GRNs. These social interactions are sometimes called ‘indirect genetic

effects’ [15,35,37] and are denoted by dashed arrows. Fitness (e.g.,

offspring of a queen ant) is the product of the social behaviors of all

individuals in the social interaction. Thus, fitness is affected by the

degree of relatedness in the population, the structure and function of

the GRNs shaping behavior, and the behavioral interactions among

individuals. Finally, genetic variation may exist (different colored genes

in the networks), and this variation may result in phenotypic variation

(different colored individual ants) and in fitness variation in the

population. Heritable variation in fitness results in natural selection on

behavior in the social interaction and on the function of the GRNs.
Figure 1, this approach marries evolutionary systems

biology, which has been developed mainly in non-social

evolutionary settings, with social evolution theory, such

as the IGE approach, that has been developed in the

absence of models of gene regulation.

One of the main questions in evolutionary systems biolo-

gy has been how GRNs can produce robust phenotypes

(i.e., insensitive to perturbations) while still allowing

enough heritable variation for natural selection to act

on [54,55]. A general result from this work is that evolved

GRNs can reconcile these two seemingly contradictory

qualities thanks to large mutational networks with nearly

neutral effects [56,57]. Moving to social settings reveals
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a limitation of this theory, which is that it regards the

phenotype as a static property of the individual. When the

phenotype is plastic, as it is in many social interactions,

robustness and evolvability properties become more com-

plicated, since selection for plasticity means phenotypes

need to be malleable under some perturbations, and not

under others. Likewise, the generation of a variety of

phenotypes from a single genotype can either enhance or

diminish evolvability [58]. Relatively little is known

about how GRNs evolve to produce plastic phenotypes

[59,60]. This gap in our knowledge is even more dire for

social phenotypes, since GRNs for such phenotypes need

to adapt and respond to both external abiotic environ-

ments and to social environments created by other GRNs.

As we discuss above, social evolution theory predicts

that interactions with relatives and the nature of behav-

ioral flexibility and responsiveness are a critical to social

evolution.

Therefore, to understand the evolution of GRNs for

social phenotypes, we need to extend them to the social

system level [61]. As an example of a first step in this

direction, recent social insect studies have sought to

identify features of GRNs (e.g., network connectivity)

underlying social behavior that have been shaped by

social evolution [3�,13,32�]. Recent work also suggests

that changes in specific regulatory pathways, such as

carbohydrate metabolism, might be associated with the

expression and evolution of particular social behaviors

[62–64]. A complementary approach to looking at whole

GRNs is therefore to focus on the evolution and expres-

sion of specific pathways underlying social behavior. We

predict that these different types of approaches will yield

broad insights into both evolutionary patterns of social

gene regulation as well as insights into when and how

cooperation and sociality are adaptive.

In conclusion, we believe that realizing the potential of

new data-generation technologies for social behaviors will

depend on further developing social evolution theory to

make meaningful statements about proximate mecha-

nisms. We do not advocate a wholesale rejection of the

‘phenotypic gambit’ or optimality approaches. Rather, we

contend that recognizing proximate mechanisms and

genomic architecture as legitimate social phenotypes

and applying existing evolutionary theory at that level

will yield important insights into the evolution of social

life.
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