The Power Clean

Project by: Kamil Okroj
What is it?

- Explosive, Olympic-style lift
- Emphasizes power over strength
- Used a lot in football training

- Video
Muscles Used

- The “Posterior Chain”
 - Lower Back, Glutes, Hamstrings, Calves
- Upper Back
 - Traps
- Fiber Recruitment
 - Fast-twitch fibers
Biomechanics

1st Pull | 2nd Pull | Catch Phase
1st Pull

- Pull barbell up to knees
- Keep shoulders over bar, butt back
- Slowest movement
2nd Pull

- Extend hips/Jump
- Shrug shoulders
- Very explosive movement (generates most of the power)
Catch Phase

- Drop under bar
- Rotate shoulders forward/stick elbows out
- Catch bar on shoulders
Slow-Mo
Physics Assumptions

- All force (tension in arms) is parallel to the motion of the bar (straight up)
- All energy produced is transferred to the bar
- Bar is in “free-fall” during catch phase
Work & Power

- Work
 \[W = F \times dy = \Delta E \]
 \[W = F_{\text{avg}} \cdot (h) = \frac{1}{2} m(V_f^2 - V_i^2) + mg(h) \]

- Power
 \[P = \frac{W}{t} \]
Force Calculation

\[\text{Work} = \Delta E = \frac{1}{2} m (v^2) + mg(h) \]

\[= \frac{1}{2} (52.16)(3.352^2) + 0 + (52.16)(9.8)(0.9424) = 775 \text{Joules} \]

\[F_{\text{avg}} \cdot (h) = 775 \text{J} \]

\[F_{\text{avg}} = \frac{775 \text{J}}{(0.9424 \text{m})} = 822 \text{N} \]

\[F_{\text{avg}} = F_T \quad mg = 822 \text{N} \]

\[F_T = 822 \text{N} + (52.16)(9.8) = 1333 \text{N} \]
Power Output by Pull

<table>
<thead>
<tr>
<th></th>
<th>1st Pull</th>
<th>2nd Pull</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δh</td>
<td>0.364 m</td>
<td>0.579 m</td>
</tr>
<tr>
<td>V_i</td>
<td>0 m/s</td>
<td>0.854 m/s</td>
</tr>
<tr>
<td>V_f</td>
<td>0.854 m/s</td>
<td>3.352 m/s</td>
</tr>
<tr>
<td>Δt</td>
<td>0.531 s</td>
<td>0.356 s</td>
</tr>
<tr>
<td>Work</td>
<td>205 J</td>
<td>570 J</td>
</tr>
<tr>
<td>Power</td>
<td>386 W</td>
<td>1601 \text{ W}</td>
</tr>
</tbody>
</table>
The Deadlift

- Very similar to clean
- Includes 1st and 2nd pulls
- No explosion in 2nd pull
- No catch phase
- Emphasizes strength over power
<table>
<thead>
<tr>
<th>Power Clean</th>
<th>Deadlift</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work = (\Delta KE + \Delta U)</td>
<td>Work = (\Delta U)</td>
</tr>
<tr>
<td>[= \frac{1}{2}m(v)^2 + mg(h)]</td>
<td>[= mg(h)]</td>
</tr>
<tr>
<td>[= \frac{1}{2}(52.16)(3.352)^2 + (52.16)(9.8)(0.9424)]</td>
<td>[= (52.16)(9.8)(0.7102)]</td>
</tr>
<tr>
<td>= 775 Joules</td>
<td>= 363 Joules</td>
</tr>
<tr>
<td>Power = (\frac{W}{\Delta t})</td>
<td>Power = (\frac{W}{\Delta t})</td>
</tr>
<tr>
<td>[= \frac{775 \text{ J}}{.887 \text{ s}}]</td>
<td>[= \frac{363 \text{ J}}{.812 \text{ s}}]</td>
</tr>
<tr>
<td>= 874 Watts</td>
<td>= 447 Watts</td>
</tr>
<tr>
<td>Force</td>
<td>Force</td>
</tr>
<tr>
<td>(F_{avg} = 1333 \text{ N})</td>
<td>(F_{avg} = 1022 \text{ N})</td>
</tr>
</tbody>
</table>

Using the same weight
Conclusions

- **Power Clean**
 - Faster Movement
 - Explosive 2nd pull
 - Uses lighter weights
 - Recruits fast-twitch muscles in the posterior chain
 - Generates more POWER

- **Deadlift**
 - Slower Movement
 - No explosion in 2nd pull
 - Uses heavier weights
 - Recruits slow-twitch muscles in posterior chain
 - Capable of generating more FORCE