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Introduction

The theory of repeated games provides a central
underpinning for our understanding of social, political, and
economic institutions, both formal and informal.
A key ingredient in understanding institutions and other
long run relationships is the role of

shared expectations about behavioral norms (cultural
beliefs), and
sanctions in ensuring that people follow the “rules.”

Repeated games allow for a clean description of both the
myopic incentives that agents have to not follow the rules
and, via appropriate specifications of future behavior (and
so rewards and punishments), the incentives that deter
such opportunistic behavior.
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Examples of Long-Run Relationships
and Opportunistic Behavior

Buyer-seller.
The seller selling an inferior good.

Employer and employees.
Employees shirking on the job, employer reneging on implicit
terms of employment.

A government and its citizens.
Government expropriates (taxes) all profits from investments.

World Trade Organization
Imposing tariffs to protect a domestic industry.

Cartels
A firm exceeding its share of the monopolistic output.
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Two particularly interesting examples

1 Dispute Resolution.
Ellickson (1991) presents evidence that neighbors in Shasta
County, CA, resolve disputes arising from the damage created
by escaped cattle in ways that both ignore legal liability and are
supported by intertemporal incentives.

2 Traders selling goods on consignment.
Grief (1994) documents how the Maghribi and Genoese
merchants deterred their agents from misreporting that goods
were damaged in transport, and so were worth less. These two
communities of merchants did this differently, and in ways
consistent with the different cultural characteristics of the
communities and repeated game analysis.
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The Leading Example
The prisoners’ dilemma as a partnership

E S

E 2, 2 −1, 3

S 3,−1 0, 0

u2

u1

F∗

Each player can guarantee herself a payoff of 0.
A payoff vector is individually rational if it gives each player at
least their guarantee.
F∗ is the set of feasible and individually rational payoffs.
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The Leading Example
The prisoners’ dilemma as a partnership

E S

E 2, 2 −1, 3

S 3,−1 0, 0

u2

u1

F∗

Each player can guarantee herself a payoff of 0.
A payoff vector is individually rational if it gives each player at
least their guarantee.
F∗ is the set of feasible and individually rational payoffs.
In the static (one shot ) play, each player will play S,
resulting in the inefficient SS outcome.
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Intertemporal Incentives

Suppose the game is repeated (once), and payoffs are
added.

We “know” SS will be played in last period, so
no intertemporal incentives.

Infinite horizon—relationship never ends.
The infinite stream of payoffs (u0

i , u1
i , u2

i , . . .) is evaluated
as the (average) discounted sum

∑

t≥0
(1 − δ)δtut

i .

Individual i is indifferent between 0, 1, 0, . . . and δ, 0, 0 . . ..

The normalization (1 − δ) implies that repeated game
payoffs are comparable to stage game payoffs.
The infinite constant stream of 1 utils has a value of 1.
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A strategy σi for individual i describes how that individual
behaves (at each point of time and after any possible
history).

A strategy profile σ = (σ1, . . . , σn) describes how everyone
behaves (at each point of...).

Definition
The profile σ∗ is a Nash equilibrium if for all individuals i , when
everyone else is behaving according to σ∗

−i , then i is also willing
to behave as described by σ∗

i .
The profile σ∗ is a subgame perfect equilibrium if for all histories
of play, the behavior described (induced) by the profile is a
Nash equilibrium.

Useful to think of social norms as equilibria: shared
expectations over behavior that provide appropriate
sanctions to deter deviations.
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Characterizing Equilibria

Difficult problem: many possible deviations after many
different histories.

But repeated games are recursive, and the one shot
deviation principle (from dynamic programming) holds.

Simple penal codes (Abreu, 1988): use i ’s worst eq to
punish any (and all) deviation by i .
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Prisoners’ Dilemma
Grim Trigger

wEEw0 wSS
¬EE

EE

This is an equilibrium if

(1 − δ) × 2 + δ × 2 = 2 ≥(1 − δ) × 3 + δ × 0

⇒ δ ≥ 1
3 .

Grim trigger is subgame perfect: always S is a Nash eq
(because SS is an eq of the stage game and in wSS behavior is
history independent).
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The need for credibility of punishments
The Purchase Game

A buyer and seller:

Buy Don’t buy

High effort 2,3 0, 0

Low effort 3,2 0, 0

u2

u1

F∗

The seller can guarantee himself 0, while the buyer can
guarantee herself 2.
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The need for credibility of punishments
The Purchase Game

A buyer and seller:

Buy Don’t buy

High effort 2,3 0, 0

Low effort 3,2 0, 0

u2

u1

F∗

The seller can guarantee himself 0, while the buyer can
guarantee herself 2.
There is an equilibrium in which the seller always chooses
low effort and the buyer always buys.
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The need for credibility of punishments
The Purchase Game

A buyer and seller:

Buy Don’t buy

High effort 2,3 0, 0

Low effort 3,2 0, 0

u2

u1

F∗

The seller can guarantee himself 0, while the buyer can
guarantee herself 2.
There is an equilibrium in which the seller always chooses
low effort and the buyer always buys.
Is there a social norm in which the buyer threatens not to
buy unless the seller chooses high effort?

Need to provide incentives for the buyer to do so.
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Why the buyer is willing to punish
Suppose, after the seller “cheats” the buyer by choosing low
effort, the buyer expects the seller to continue to choose low
effort until the buyer punishes him by not buying.

B D

H 2, 3 0, 0

L 3, 2 0, 0 wHBw0 wLD

L

D

H B

The seller chooses high effort as long as δ ≥ 1
2 .

The buyer is willing to punish as long as δ ≥ 2
3 .
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Why the buyer is willing to punish
Suppose, after the seller “cheats” the buyer by choosing low
effort, the buyer expects the seller to continue to choose low
effort until the buyer punishes him by not buying.

B D

H 2, 3 0, 0

L 3, 2 0, 0 wHBw0 wLD

L

D

H B

The seller chooses high effort as long as δ ≥ 1
2 .

The buyer is willing to punish as long as δ ≥ 2
3 .

This is a carrot and stick punishment (Abreu, 1986).
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The Game with Perfect Monitoring
Action space for i is Ai , with typical action ai ∈ Ai .

An action profile is denoted a = (a1, . . . , an), with
associated flow payoffs ui(a).

Infinite stream of payoffs (u0
i , u1

i , u2
i , . . .) is evaluated as the

(average) discounted sum
∑

t≥0
(1 − δ)δtut

i ,

where δ ∈ [0, 1) is the discount factor.

Perfect monitoring: At the end of each period, all players
observe the action profile a chosen.

History to date t : ht ≡ (a0, . . . , at−1) ∈ At ≡ Ht ; H0 ≡ {∅}.

Set of all possible histories: H ≡ ∪∞
t=0Ht .

Strategy for player i is denoted si : H → Ai .

Set of all strategies for player i is Si .
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Automaton Representation of Behavior

An automaton is the tuple (W , w0, f , τ ), where

W is set of states,

w0 is initial state,

f : W → A is output function (decision rule), and

τ : W × A → W is transition function.

Any automaton (W , w0, f , τ ) induces a strategy profile. Define

τ(w , h t) := τ(τ(w , h t−1), a t−1).

The induced strategy s is given by s(∅) = f (w0) and

s(ht) = f (τ(w0, ht)), ∀ht ∈ H\{∅}.

Every profile can be represented by an automaton (set W = H).
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Nash Equilibrium

Definition
An automaton is a Nash equilibrium if the strategy profile s
represented by the automaton is a Nash equilibrium.
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Subgames and Continuation Play

Each history ht reaches (“indexes”) a distinct subgame.

Suppose s is represented by (W , w0, f , τ ). Recall that

τ(w0, ht) := τ(τ(w0, ht−1), at−1).

The continuation strategy profile after a history ht , s|ht is
represented by the automaton (W , wt , f , τ ), where

wt := τ(w0, ht).

Grim Trigger after any ht = (EE)t :

wEEw0 wSS
¬EE

EE

19 / 42



Subgames and Continuation Play

Each history ht reaches (“indexes”) a distinct subgame.

Suppose s is represented by (W , w0, f , τ ). Recall that

τ(w0, ht) := τ(τ(w0, ht−1), at−1).

The continuation strategy profile after a history ht , s|ht is
represented by the automaton (W , wt , f , τ ), where

wt := τ(w0, ht).

Grim Trigger after ht with an S (equivalent to always SS):

wEE wSS w0
¬EE

EE
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Subgame Perfection

Definition

The state w ∈ W of an automaton (W , w0, f , τ ) is reachable
from w0 if w = τ(w0, ht) for some history ht ∈ H. Denote the
set of states reachable from w0 by W(w0).

Definition

The automaton (W , w0, f , τ ) is a subgame perfect equilibrium if
for all states w ∈ W(w0), the automaton (W , w , f , τ ) is a Nash
equilibrium.
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The automaton (W , w , f , τ ) induces the sequences

ŵ0 := w , a0 := f (ŵ0)

ŵ1 := τ(ŵ0, a0), a1 := f (ŵ1),

ŵ2 := τ(ŵ1, a1), a2 := f (ŵ2),

...
...

Given an automaton (W , w0, f , τ ), let Vi(w) be i ’s value from
being in the state w ∈ W , i.e.,

Vi(w) = (1 − δ)ui(f (ŵ
0)) + δVi(τ(ŵ0, f (ŵ0)))

= (1 − δ)ui(a
0) + δ{(1 − δ)ui(a

1) + δVi(ŵ
2)}

...

= (1 − δ)
∑

t
δtui(a

t).

22 / 42



Principle of No One-Shot Deviation
Definition

Player i has a profitable one-shot deviation from (W , w0, f , τ ), if
there is a state w ∈ W(w0) and some action ai ∈ Ai such that

Vi(w) < (1 − δ)ui(ai , f−i(w)) + δVi(τ(w , (ai , f−i(w))).
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Principle of No One-Shot Deviation
Definition

Player i has a profitable one-shot deviation from (W , w0, f , τ ), if
there is a state w ∈ W(w0) and some action ai ∈ Ai such that

Vi(w) < (1 − δ)ui(ai , f−i(w)) + δVi(τ(w , (ai , f−i(w))).

Theorem
An automaton is subgame perfect iff there are no profitable
one-shot deviations.
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Principle of No One-Shot Deviation
Definition

Player i has a profitable one-shot deviation from (W , w0, f , τ ), if
there is a state w ∈ W(w0) and some action ai ∈ Ai such that

Vi(w) < (1 − δ)ui(ai , f−i(w)) + δVi(τ(w , (ai , f−i(w))).

Theorem
An automaton is subgame perfect iff there are no profitable
one-shot deviations.

Corollary

The automaton (W , w0, f , τ ) is subgame perfect iff, for all
w ∈ W(w0), f (w) is a Nash eq of the normal form game with
payoff function gw : A → Rn, where

gw
i (a) = (1 − δ)ui(a) + δVi(τ(w , a)).
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SGP if No Profitable One-Shot Deviations
Proof I

Let Ṽi(w) be player i ’s payoff from the best response to
(W , w , f−i , τ ) (i.e., the strategy profile for the other players
specified by the automaton with initial state w). Then

Ṽi(w) = max
ai∈Ai

{
(1 − δ)ui(ai , f−i(w)) + δṼi(τ(w , (ai , f−i(w))))

}
.

Note that Ṽi(w) ≥ Vi(w) for all w . Denote by w̄i , the state
that maximizes Ṽi(w) − Vi(w) (if there is more than one,
choose one arbitrarily).

If (W , w0, f , τ )) is not SGP, then for some player i ,

Ṽi(w̄i) − Vi(w̄i) > 0.

26 / 42



SGP iff No Profitable One-Shot Deviations
Proof II

Then, for all w ,

Ṽi(w̄i) − Vi(w̄i) > δ[Ṽi(w) − Vi(w)],

and so (where aw̄i
i yields Ṽi(w̄i))

Ṽi(w̄i) − Vi(w̄i)

>δ[Ṽi(τ(w̄i , (a
w̄i
i , f−i(w̄i)))) − Vi(τ(w̄i , (a

w̄i
i , f−i(w̄i))))]
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SGP iff No Profitable One-Shot Deviations
Proof II

Then, for all w ,

Ṽi(w̄i) − Vi(w̄i) > δ[Ṽi(w) − Vi(w)],

and so (where aw̄i
i yields Ṽi(w̄i))

Ṽi(w̄i) − Vi(w̄i)

>δ[Ṽi(τ(w̄i , (a
w̄i
i , f−i(w̄i)))) − Vi(τ(w̄i , (a

w̄i
i , f−i(w̄i))))]

+ [(1 − δ)ui(a
w̄i
i , f−i(w̄i)) − (1 − δ)ui(a

w̄i
i , f−i(w̄i))]

28 / 42



SGP iff No Profitable One-Shot Deviations
Proof II

Then, for all w ,

Ṽi(w̄i) − Vi(w̄i) > δ[Ṽi(w) − Vi(w)],

and so (where aw̄i
i yields Ṽi(w̄i))

Ṽi(w̄i) − Vi(w̄i)

>δ[Ṽi(τ(w̄i , (a
w̄i
i , f−i(w̄i)))) − Vi(τ(w̄i , (a

w̄i
i , f−i(w̄i))))]

+[(1 − δ)ui(a
w̄i
i , f−i(w̄i)) − (1 − δ)ui(a

w̄i
i , f−i(w̄i))]

=Ṽi(w̄i)

−
{

(1 − δ)ui(a
w̄i
i , f−i(w̄i)) + δVi(τ(w̄i , (a

w̄i
i , f−i(w̄i))))

}
.
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SGP iff No Profitable One-Shot Deviations
Proof II

Then, for all w ,

Ṽi(w̄i) − Vi(w̄i) > δ[Ṽi(w) − Vi(w)],

and so (where aw̄i
i yields Ṽi(w̄i))

Ṽi(w̄i) − Vi(w̄i)

>δ[Ṽi(τ(w̄i , (a
w̄i
i , f−i(w̄i)))) − Vi(τ(w̄i , (a

w̄i
i , f−i(w̄i))))]

+ [(1 − δ)ui(a
w̄i
i , f−i(w̄i)) − (1 − δ)ui(a

w̄i
i , f−i(w̄i))]

=Ṽi(w̄i)

−
{

(1 − δ)ui(a
w̄i
i , f−i(w̄i)) + δVi(τ(w̄i , (a

w̄i
i , f−i(w̄i))))

}
.

Thus,

(1 − δ)ui(a
w̄i
i , f−i(w̄i)) + δVi(τ(w̄i , (a

w̄i
i , f−i(w̄i)))) > Vi(wi),

that is, player i has a profitable one-shot deviation at w̄i .
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Enforceability and Decomposability

Definition
An action profile a′ ∈ A is enforced by the continuation
promises γ : A → Rn if a′ is a Nash eq of the normal form game
with payoff function gγ : A → Rn, where

gγ
i (a) = (1 − δ)ui(a) + δγi(a).
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Enforceability and Decomposability

Definition
An action profile a′ ∈ A is enforced by the continuation
promises γ : A → Rn if a′ is a Nash eq of the normal form game
with payoff function gγ : A → Rn, where

gγ
i (a) = (1 − δ)ui(a) + δγi(a).

Definition
A payoff v is decomposable on a set of payoffs V if there exists
an action profile a′ enforced by some continuation promises
γ : A → V satisfying, for all i ,

vi = (1 − δ)ui(a
′) + δγi(a

′).

The payoff v is decomposed by a′ on V .
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The Purchase Game 1

Buy Don’t buy

High effort 2,3 0, 0

Low effort 3,2 0, 0

Only LB can be enforced by constant continuation
promises, and so

only (3, 2) can be decomposed on a singleton set, and that
set is {(3, 2)}.
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The Purchase Game 2

Buy Don’t buy

High effort 2,3 0, 0

Low effort 3,2 0, 0

Suppose V =
{(2δ, 3δ), (2, 3)},
and δ > 2

3 .

(2, 3) is decomposed on V by HB and promises

γ(a) =

{
(2, 3), if a1 = H,

(2δ, 3δ), if a1 = L.

(2δ, 3δ) is decomposed on V by LD and promises

γ(a) =

{
(2, 3), if a2 = D,

(2δ, 3δ), if a2 = B.

No one-shot deviation principle =⇒
every payoff in V is a subgame perfect eq payoff.

34 / 42



The Purchase Game 3

Buy Don’t buy

High effort 2,3 0, 0

Low effort 3,2 0, 0

Suppose V =
{(2δ, 3δ), (2, 3)},
and δ > 2

3 .

(3 − 3δ + 2δ2, 2 − 2δ + 3δ2) =: v† is decomposed on V by
LB and the constant promises

γ(a) = (2δ, 3δ).

So, payoffs outside V can also be decomposed on V .

No one-shot deviation principle =⇒
v† is a subgame perfect eq payoff.
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The Purchase Game 4

Buy Don’t buy

High effort 2,3 0, 0

Low effort 3,2 0, 0

u2

u1

V
v†
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Subgame Perfection redux

Let Ep(δ) ⊂ Fp∗ be the set of pure strategy subgame perfect
equilibrium payoffs.

Theorem

A payoff v ∈ Rn is decomposable on Ep(δ) if, and only if,
v ∈ Ep(δ).
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Subgame Perfection redux

Let Ep(δ) ⊂ Fp∗ be the set of pure strategy subgame perfect
equilibrium payoffs.

Theorem

A payoff v ∈ Rn is decomposable on Ep(δ) if, and only if,
v ∈ Ep(δ).

Theorem
Suppose every payoff v in some bounded set V ⊂ Rn is
decomposable with respect to V . Then, V ⊂ Ep(δ).

Any set of payoffs with the property described above is said to
be self-generating.
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A Folk Theorem

Intertemporal incentives allow for efficient outcomes, but
also for inefficient outcomes, as well as crazy outcomes.

This is illustrated by the “Folk” Theorem, so called because
results of this type have been part of game theory folklore
since at least the late sixties.

The Discounted Folk Theorem (Fudenberg&Maskin 1986)
Suppose v is a feasible and strictly individually rational vector of
payoffs. If the individuals are sufficiently patient (there exists
δ ∈ (0, 1) such that for all δ ∈ (δ, 1)), then there is a subgame
perfect equilibrium with payoff v .
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Interpretation
While efficient payoffs are consistent with equilibrium, so
are many other payoffs, and associated behaviors.
(Consistent with experimental evidence.)
Moreover, multiple equilibria are consistent with the same
payoff.
The theorem does not justify restricting attention to efficient
payoffs.
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Interpretation
While efficient payoffs are consistent with equilibrium, so
are many other payoffs, and associated behaviors.
(Consistent with experimental evidence.)
Moreover, multiple equilibria are consistent with the same
payoff.
The theorem does not justify restricting attention to efficient
payoffs.

Nonetheless:

In many situations, understanding the potential scope of
equilibrium incentives helps us to understand possible
plausible behaviors.
Understanding what it takes to achieve efficiency gives us
important insights into the nature of equilibrium incentives.
It is sometimes argued that the punishments imposed are
too severe. But this does simplify the analysis.
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What we learn from perfect monitoring

Multiplicity of equilibria is to be expected.
This is necessary for repeated games to serve as a building
block for any theory of institutions.
Selection of equilibrium can (should) be part of modelling.

In general, efficiency requires being able to reward and
punish individuals independently (this is the role of the full
dimensionality assumption).

Histories coordinate behavior to provide intertemporal
incentives by punishing deviations. This requires
monitoring (communication networks) and a future.

Intertemporal incentives require that individuals have
something at stake: “Freedom’s just another word for
nothin’ left to lose.”
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What we learned from perfect monitoring

Multiplicity of equilibria is to be expected.

In general, efficiency requires being able to reward and
punish individuals independently.

Histories coordinate behavior to provide intertemporal
incentives by punishing deviations. This requires
monitoring (communication networks) and a future.
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What we learned from perfect monitoring

Multiplicity of equilibria is to be expected.

In general, efficiency requires being able to reward and
punish individuals independently.

Histories coordinate behavior to provide intertemporal
incentives by punishing deviations. This requires
monitoring (communication networks) and a future.

But suppose deviations are not observed?
Suppose instead actions are only imperfectly observed.
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Collusion in Oligopoly
Perfect Monitoring

In each period, firms i = 1, . . . , n simultaneously choose
quantities qi .

Firm i profits

πi(q1, . . . , qn) = pqi − c(qi),

where p is market clearing price, and c(qi) is the cost of qi .

Suppose p = P(
∑

i qi) and P is a strictly decreasing
function of Q :=

∑
i qi .

If firms are patient, there is a subgame perfect equilibrium
in which the each firm sells Qm/n, where Qm is monopoly
output, supported by the threat that any deviation results in
perpetual Cournot (static Nash) competition.

4 / 40



Collusion in Oligopoly
Imperfect Monitoring

In each period, firms i = 1, . . . , n simultaneously choose
quantities qi .

Firm i profits

πi(q1, . . . , qn) = pqi − c(qi),

where p is market clearing price, and c(qi) is the cost of qi .

Suppose p = P(
∑

i qi) and P is a strictly decreasing
function of Q :=

∑
i qi .

Suppose now q1, . . . , qn are not public, but the market
clearing price p still is (so each firm knows its profit).
Nothing changes! A deviation is still necessarily detected,
since the market clearing price changes.
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Collusion in Oligopoly
Noisy Imperfect Monitoring–Green and Porter (1984)

In each period, firms i = 1, . . . , n simultaneously choose
quantities qi .

Firm i profits

πi(q1, . . . , qn) = pqi − c(qi),

where p is market clearing price, and c(qi) is the cost of qi .

But suppose demand is random, so that the market
clearing price p is a function ofQ and a demand shock η.
Moreover, suppose p has full support for all Q.

=⇒ no deviation is detected.
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Repeated Games with Noisy Imperfect Monitoring

In a setting with noisy imperfect monitoring where it is
impossible to detect deviations, are there still intertemporal
incentives?

If so, what is their nature?

And, how effective are these intemporal incentives?
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Repeated Games with Noisy Imperfect Monitoring

In a setting with noisy imperfect monitoring where it is
impossible to detect deviations, are there still intertemporal
incentives? Yes

If so, what is their nature?

And, how effective are these intemporal incentives?
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Repeated Games with Noisy Imperfect Monitoring

In a setting with noisy imperfect monitoring where it is
impossible to detect deviations, are there still intertemporal
incentives?

If so, what is their nature?

And, how effective are these intemporal incentives?
Surprisingly strong!
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Repeated Games with Imperfect Public Monitoring
Structure 1

Action space for i is Ai , with typical action ai ∈ Ai .
Profile a is not observed.
All players observe a public signal y ∈ Y , |Y | < ∞, with

Pr{y | (a1, . . . , an)} =: ρ(y | a).

Since y is a possibly noisy signal of the action profile a in
that period, the actions are imperfectly monitored.
Since the signal is public (observed by all players), the
game is said to have public monitoring.
Assume Y is finite.
u∗

i : Ai × Y → R, i ’s ex post or realized payoff.
Stage game (ex ante) payoffs:

ui(a) ≡
∑

y∈Y

u∗
i (ai , y)ρ(y | a).
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Ex post payoffs
Oligopoly with imperfect monitoring

Ex post payoffs are given by realized profits,

u∗
i (qi , p) = pqi − c(qi),

where p is the public signal.

Ex ante payoffs are given by expected profits,

ui(q1, . . . , qn) = E [pqi − c(qi) | q1, . . . qn]

= E [p | q1, . . . qn]qi − c(qi).
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Ex post payoffs II
Prisoners’ Dilemma with Noisy Monitoring

There is a noisy signal of actions (output), y ∈ {y , y} =: Y ,

Pr(y | a) := ρ(ȳ | a) =






p, if a = EE ,

q, if a = SE or SE , and

r , if a = SS.

Player i ’s ex post payoffs ex ante payoffs

ȳ y

E (3−p−2q)
(p−q) − (p+2q)

(p−q)

S 3(1−r)
(q−r) − 3r

(q−r)

E S

E 2, 2 −1, 3

S 3,−1 0, 0
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Repeated Games with Imperfect Public Monitoring
Structure 2

Public histories:
H ≡ ∪∞

t=0Y t ,

with ht ≡ (y0, . . . , yt−1) being a t period history of public
signals (Y 0 ≡ {∅}).

Public strategies:
si : H → Ai .
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Automaton Representation of Public Strategies
An automaton is the tuple (W , w0, f , τ ), where

W is set of states,

w0 is initial state,

f : W → A is output function (decision rule), and

τ : W × Y → W is transition function.

The automaton is strongly symmetric if fi(w) = fj(w) ∀i , j , w .

Any automaton (W , w0, f , τ ) induces a strategy profile. Define

τ(w , h t) := τ(τ(w , h t−1), y t−1).

The induced strategy s is given by s(∅) = f (w0) and

s(ht) = f (τ(w0, ht)), ∀ht ∈ H\{∅}.

Every public profile can be represented by an automaton (set
W = H).
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Prisoners’ Dilemma with Noisy Monitoring
Grim Trigger

wEEw0 wSS

y

y

This is an eq if

V = (1 − δ)2 + δ[pV + (1 − p) × 0]

≥ (1 − δ)3 + δ[qV + (1 − q) × 0]

⇒ 2δ(p−q)
(1−δp) ≥ 1 ⇐⇒ δ ≥ 1

3p−2q .

Note that
V = 2(1−δ)

(1−δp) ,

and so limδ→1 V = 0.
15 / 40



Equilibrium Notion

Game has no proper subgames, so how to usefully capture
sequential rationality?
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Equilibrium Notion

Game has no proper subgames, so how to usefully capture
sequential rationality?

A public strategy for an individual ignores that individual’s
private actions, so that behavior only depends on public
information. Every player has a public strategy best
response when all other players are playing public
strategies.

Definition

The automaton (W , w0, f , τ ) is a perfect public equilibrium
(PPE) if for all states w ∈ W(w0), the automaton (W , w , f , τ ) is
a Nash equilibrium.
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Principle of No One-Shot Deviation

Definition

Player i has a profitable one-shot deviation from (W , w0, f , τ ), if
there is a state w ∈ W(w0) and some action ai ∈ Ai such that

Vi(w) < (1−δ)ui(ai , f−i(w))+δ
∑

y

Vi(τ(w , y))ρ(y | (ai , f−i(w))).
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Principle of No One-Shot Deviation

Definition

Player i has a profitable one-shot deviation from (W , w0, f , τ ), if
there is a state w ∈ W(w0) and some action ai ∈ Ai such that

Vi(w) < (1−δ)ui(ai , f−i(w))+δ
∑

y

Vi(τ(w , y))ρ(y | (ai , f−i(w))).

Theorem

The automaton (W , w0, f , τ ) is a PPE iff there are no profitable
one-shot deviations, i.e, for all w ∈ W(w0), f (w) is a Nash eq of
the normal form game with payoff function gw : A → Rn, where

gw
i (a) = (1 − δ)ui(a) + δ

∑

y

Vi(τ(w , y))ρ(y | a).
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Prisoners’ Dilemma with Noisy Monitoring
Bounded Recall

wEEw0 wSS

y
y y

y

V (wEE) = (1 − δ)2 + δ{pV (wEE) + (1 − p)V (wSS)}
V (wSS) = δ{rV (wEE) + (1 − r)V (wSS)}

V (wEE) > V (wSS), but V (wEE ) − V (WSS) → 0 as δ → 1.

At wEE , EE is a Nash eq of gwEE if δ ≥ (3p − 2q − r)−1.

At wSS, SS is a Nash eq of gwSS if δ ≤ (p + 2q − 3r)−1.
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Prisoners’ Dilemma with Noisy Monitoring
Bounded Recall

wEEw0 wSS

y
y y

y

V (wEE) = (1 − δ)2 + δ{pV (wEE) + (1 − p)V (wSS)}
V (wSS) = δ{rV (wEE) + (1 − r)V (wSS)}

V (wEE) > V (wSS), but V (wEE ) − V (WSS) → 0 as δ → 1.

At wEE , EE is a Nash eq of gwEE if δ ≥ (3p − 2q − r)−1.

At wSS, SS is a Nash eq of gwSS if δ ≤ (p + 2q − 3r)−1.

PPE if (3p − 2q − r)−1 ≤ δ ≤ (p + 2q − 3r)−1.
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Characterizing PPE

A major conceptual breakthrough was to focus on
continuation values in the description of equilibrium, rather
than focusing on behavior directly.

This yields a more transparent description of incentives,
and an informative characterization of equilibrium payoffs.

The cost is that we know little about the details of behavior
underlying most of the equilibria, and so have little sense
which of these equilibria are plausible descriptions of
behavior.

22 / 40



Enforceability and Decomposability

Definition
An action profile a′ ∈ A is enforced by the continuation
promises γ : Y → Rn if a′ is a Nash eq of the normal form game
with payoff function gγ : A → Rn, where

gγ
i (a) = (1 − δ)ui(a) + δ

∑

y

γi(y)ρ(y | a).
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Enforceability and Decomposability

Definition
An action profile a′ ∈ A is enforced by the continuation
promises γ : Y → Rn if a′ is a Nash eq of the normal form game
with payoff function gγ : A → Rn, where

gγ
i (a) = (1 − δ)ui(a) + δ

∑

y

γi(y)ρ(y | a).

Definition
A payoff v is decomposable on a set of payoffs V if there exists
an action profile a′ enforced by some continuation promises
γ : Y → V satisfying, for all i ,

vi = (1 − δ)ui(a
′) + δ

∑

y

γi(y)ρ(y | a′).
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Characterizing PPE
The Role of Continuation Values

Let Ep(δ) ⊂ F∗ be the set of (pure strategy) PPE.
If v ∈ Ep(δ), then there exists a′ ∈ A and γ : Y → Ep(δ) so
that, for all i ,

vi = (1 − δ)ui(a
′) + δ

∑

y
γi(y)ρ(y | a′)

≥ (1 − δ)ui(ai , a′
−i) + δ

∑

y
γi(y)ρ(y | ai , a′

−i) ∀ai ∈ Ai .

That is, v is decomposed on Ep(δ).
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Characterizing PPE
The Role of Continuation Values

Let Ep(δ) ⊂ F∗ be the set of (pure strategy) PPE.
If v ∈ Ep(δ), then there exists a′ ∈ A and γ : Y → Ep(δ) so
that, for all i ,

vi = (1 − δ)ui(a
′) + δ

∑

y
γi(y)ρ(y | a′)

≥ (1 − δ)ui(ai , a′
−i) + δ

∑

y
γi(y)ρ(y | ai , a′

−i) ∀ai ∈ Ai .

That is, v is decomposed on Ep(δ).

Theorem (Self-generation, Abreu, Pearce, Stacchetti, 1990)

B ⊂ Ep(δ) if and only if for all v ∈ B, B bounded, there exists
a′ ∈ A and γ : Y → B so that, for all i ,

vi = (1 − δ)ui(a
′) + δ

∑

y
γi(y)ρ(y | a′)

≥ (1 − δ)ui(ai , a′
−i) + δ

∑

y
γi(y)ρ(y | ai , a′

−i) ∀ai ∈ Ai .
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Decomposability

u(a′)

γ(y1)

γ(y2)γ(y3)

E(δ)

E [γ(y) | a′]

v

δ

(1 − δ)

v − E [γ(y) | a′] = (1 − δ)(u(a′) − E [γ(y) | a′])

u(a′) − v = δ(u(a′) − E [γ(y) | a′])
27 / 40



Impact of Increased Precision

Let R be the |A| × |Y |-matrix, [R]ay := ρ(y | a).

(Y , ρ′) is a garbling of (Y , ρ) if there exists a stochastic
matrix Q such that

R′ = RQ.

That is, the “experiment” (Y , ρ′) is obtained from (Y , ρ) by
first drawing y according to ρ, and then adding noise.

If W can be decomposed on W ′ under ρ′, then W can be
decomposed on the convex hull of W ′ under ρ. And so the
set of PPE payoffs is weakly increasing as the monitoring
becomes more precise.
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Bang-Bang
Suppose A is finite and the signals y are distributed
absolutely continuously with respect to Lebesgue measure
on a subset of Rk . Every pure strategy eq payoff can be
achieved by (W , w0, f , τ ) with the bang-bang property:

V (w) ∈ ext Ep(δ) ∀w 6= w0,

where ext Ep(δ) is the set of extreme points of Ep(δ).

(Green-Porter) If (W , w0, f , τ ) is strongly symmetric, then
ext Ep(δ) = {V , V}, where V := min Ep(δ), V := max Ep(δ).

wqw0 wq

p 6∈ P
p ∈ P p 6∈ P

p ∈ P
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Prisoners’ Dilemma with Noisy Monitoring
The value of “forgiveness” I

wEEw0 ŵEE wSSy

y
y

y

This has a higher value than grim trigger, since permanent
SS is only triggered after two consecutive y .

But the limiting value (as δ → 1) is still zero. As players
become more patient, the future becomes more important,
and smaller variations in continuation values suffice to
enforce EE .

EE can be enforced by more forgiving specifications as
δ → 1.
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Prisoners’ Dilemma with Noisy Monitoring
The value of “forgiveness” II

wEEw0 wSS

y (1 − β)

(β)

y

Public correlating device: β.
This is an eq if

V = (1 − δ)2 + δ(p + (1 − p)β)V

≥ (1 − δ)3 + δ(q + (1 − q)β)V

In the efficient eq (requires p > q and δ(3p − 2q) > 1),

β = δ(3p−2q)−1
δ(3p−2q−1) and V = 2 − 1−p

p−q < 2.
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Prisoners’ Dilemma with Noisy Monitoring
The value of “forgiveness” III

Public correlating device is not necessary: Every pure
strategy strongly symmetric PPE has payoff no larger than

2 − 1−p
p−q =: γ.
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Prisoners’ Dilemma with Noisy Monitoring
The value of “forgiveness” III

Public correlating device is not necessary: Every pure
strategy strongly symmetric PPE has payoff no larger than

2 − 1−p
p−q =: γ.

Moreover, the upper bound is achieved: For sufficiently
large δ, both [0, γ] and (0, γ] are self-generating.
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Prisoners’ Dilemma with Noisy Monitoring
The value of “forgiveness” III

Public correlating device is not necessary: Every pure
strategy strongly symmetric PPE has payoff no larger than

2 − 1−p
p−q =: γ.

Moreover, the upper bound is achieved: For sufficiently
large δ, both [0, γ] and (0, γ] are self-generating.

The use of payoff 0 is Nash reversion.
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Prisoners’ Dilemma with Noisy Monitoring
The value of “forgiveness” III

Public correlating device is not necessary: Every pure
strategy strongly symmetric PPE has payoff no larger than

2 − 1−p
p−q =: γ.

Moreover, the upper bound is achieved: For sufficiently
large δ, both [0, γ] and (0, γ] are self-generating.

The use of payoff 0 is Nash reversion.

Forgiving grim trigger: the set W = {0} ∪ [γ, γ], where

γ := 2(1−δ)
1−δp ,

is, for large δ, self-generating with all payoffs > 0
decomposed using EE .

35 / 40



Implications

Providing intertemporal incentives requires imposing
punishments on the equilibrium path.

These punishments may generate inefficiencies, and the
greater the noise, the greater the inefficiency.

How to impose punishments without creating inefficiencies:
transfer value rather than destroying it.

In PD example, impossible to distinguish ES from SE .

Efficiency requires the monitoring be statistically
sufficiently informative.

Other examples reveal the need for asymmetric/
nonstationary behavior in symmetric stationary
environments.
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Statistically Informative Monitoring
Rank Conditions

Definition
The profile α has individual full rank for player i if the
|Ai | × |Y |-matrix Ri(α−i), with

[Ri(α−i)]ai y := ρ(y | aiα−i),

has full row rank.
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Statistically Informative Monitoring
Rank Conditions

Definition
The profile α has individual full rank for player i if the
|Ai | × |Y |-matrix Ri(α−i), with

[Ri(α−i)]ai y := ρ(y | aiα−i),

has full row rank.
The profile α has pairwise full rank for players i and j if the
(|Ai | + |Aj |) × |Y |-matrix

Rij(α) :=




Ri(α−i)

Rj(α−j)





has rank |Ai | + |Aj | − 1.
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Another Folk Theorem
The Public Monitoring Folk Theorem (Fudenberg, Levine,
and Maskin 1994)
Suppose the set of feasible and individually rational payoffs has
nonempty interior, and that all action profiles satisfy pairwise full
rank for all players. Every strictly individually rational and
feasible payoff is a perfect public equilibrium payoff, provided
players are patient enough.
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Another Folk Theorem
The Public Monitoring Folk Theorem (Fudenberg, Levine,
and Maskin 1994)
Suppose the set of feasible and individually rational payoffs has
nonempty interior, and that all action profiles satisfy pairwise full
rank for all players. Every strictly individually rational and
feasible payoff is a perfect public equilibrium payoff, provided
players are patient enough.

Pairwise full rank fails for our prisoners’ dilemma example
(can be satisfied if there are three signals).

Also fails for Green Porter noisy oligopoly example, since
distribution of the market clearing price only depends on
total market quantity.

Folk theorem holds under weaker assumptions.
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Role of Patience

The monitoring can be arbitrarily noisy, as long as it
remains statistically informative.

But, the noisier the monitoring the more patient the players
must be.
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Role of Patience

The monitoring can be arbitrarily noisy, as long as it
remains statistically informative.

But, the noisier the monitoring the more patient the players
must be.

Suppose time is continuous, and decisions are taken at
points Δ, 2Δ, 3Δ,. . . .

If r is continuous rate of time discounting, then δ = e−rΔ.
As Δ → 0, δ → 1.

For games of perfect monitoring, high δ can be interpreted
as Δ.
But, this is problematic for games of imperfect monitoring:
As Δ → 0, the monitoring becomes increasingly precise
over a fixed time interval.
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Games with Private Monitoring

Intertemporal incentives arise when public histories
coordinate continuation play.

Can intertemporal incentives be provided when the
monitoring is private?

Stigler (1964) suggested that that answer is often NO, and
so collusion is not likely to be a problem when monitoring
problems are severe.
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The Problem

Fix a strategy profile σ. Player i ’s strategy is sequentially
rational if, after all private histories, the continuation
strategy is a best reply to the other players’ continuation
strategies (which depend on their private histories).

That is, player i is best responding to the other players’
behavior, given his beliefs over the private histories of the
other players.

While player i knows his/her beliefs, we typically do not.

Most researchers thought this problem was intractable,
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The Problem

Fix a strategy profile σ. Player i ’s strategy is sequentially
rational if, after all private histories, the continuation
strategy is a best reply to the other players’ continuation
strategies (which depend on their private histories).

That is, player i is best responding to the other players’
behavior, given his beliefs over the private histories of the
other players.

While player i knows his/her beliefs, we typically do not.

Most researchers thought this problem was intractable,
until Sekiguchi, in 1997, showed:

There exists an almost efficient eq for the PD with
conditionally-independent almost-perfect private monitoring.
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Prisoners’ Dilemma
Conditionally Independent Private Monitoring

E S

E 2, 2 −1, 3

S 3,−1 0, 0 wEw0 wS

sj

ej

Rather than observing the other player’s action for sure,
player i observes a noisy signal: πi(yi = aj) = 1 − ε.
Grim trigger is not an equilibrium: at the end of the first
period, it is not optimal for player i to play S after observing
yi = sj (since in eq, player j played E and so with high
prob, observed yj = ei ).
Sekiguchi (1997) avoided this by having players randomize
(we will see how later).

5 / 41



Almost Public Monitoring

How robust are PPE in the game with public monitoring to
the introduction of a little private monitoring?

Perturb the public signal, so that player i observes the
conditionally (on y ) independent signal yi ∈ {y , y}, with
probabilities given by

π(y1, y2 | y) = π1(y1 | y)π2(y2 | y),

and

πi(yi | y) =

{
1 − ε, if yi = y ,

ε, if yi 6= y .

Ex post payoffs are now u∗
i (ai , yi).
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Prisoners’ Dilemma with Noisy Monitoring
Bounded Recall-public monitoring

wEEw0 wSS

y
y y

y

Suppose (3p − 2q − r)−1 < δ < (p + 2q − 3r)−1, so profile
is strict PPE in game with public monitoring.

Vi(w) is i ’s value from being in public state w .
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Prisoners’ Dilemma with Noisy Monitoring
Bounded Recall-private (almost-public) monitoring

wEw0 wS

y
i

y i
y

i

y i

In period t , player i ’s continuation strategy after private
history ht

i = (a0
i , a1

i , . . . , at−1
i ) is completely determined by

i ’s private state wt
i ∈ W .

In period t , j sees private history ht
j , and forms belief

βj(ht
j ) ∈ W over the period t state of player i .
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Prisoners’ Dilemma with Noisy Monitoring
Bounded Recall-Best Replies

wEw0 wS

y
i

y i
y

i

y i

For all y , Pr(yi 6= yj | y) = 2ε(1 − ε), and so

Pr(wt
j 6= wt

i (h
t
i ) | ht ′

i ) = 2ε(1 − ε) ∀t ′ ≤ t .

For ε sufficiently small, incentives from public monitoring
carry over to game with almost public monitoring, and
profile is an equilibrium.
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Prisoners’ Dilemma with Noisy Monitoring
Grim Trigger

Suppose 1
2p−q < δ < 1, so grim trigger is a strict PPE.

Strategy in game with private monitoring is

wEw0 wS

y
i

y i

If 1 > p > q > r > 0, profile is not a Nash eq (for any
ε > 0).

If 1 > p > r > q > 0, profile is a Nash eq (but not
sequentially rational).
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Prisoners’ Dilemma with Noisy Monitoring
Grim Trigger, 1 > p > q > r > 0

Consider private history ht
1 = (Ey

1
, Sy1, Sy1, ∙ ∙ ∙ , Sy1).

Associated beliefs of 1 about wt
2:

Pr(w0
2 = wE) = 1,

Pr(w1
2 = wS | Ey

1
) = Pr(y1

2 = y
2
| Ey

1
, w0

2 = wE) ≈ 1 − ε < 1,

but

Pr(wt
2 = wS | ht

1)

= Pr(wt
2 = wS | wt−1

2 = wS) Pr(wt−1
2 = wS | ht

1)

+ Pr(yt
2 = y | wt−1

2 = wE , ht
1)︸ ︷︷ ︸

≈0

Pr(wt−1
2 = wE | ht

1),

and Pr(wt−1
2 = wS | ht

1) < Pr(wt−1
2 = wS | ht−1

1 ), and so
Pr(wt

2 = wS | ht
1) →≈ 0, as t → ∞ .
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Prisoners’ Dilemma with Noisy Monitoring
Grim Trigger, 1 > p > r > q > 0

Consider private history ht
1 = (Ey

1
, Sy1, Sy1, ∙ ∙ ∙ , Sy1).

Associated beliefs of 1 about wt
2:

Pr(w0
2 = wE) = 1,

Pr(w1
2 = wS | Ey

1
) = Pr(y1

2 = y
2
| Ey

1
, w0

2 = wE) ≈ 1 − ε < 1,

but

Pr(wt
2 = wS | ht

1)

= Pr(wt
2 = wS | wt−1

2 = wS) Pr(wt−1
2 = wS | ht

1)

+ Pr(yt
2 = y | wt−1

2 = wE , ht
1)︸ ︷︷ ︸

≈0

Pr(wt−1
2 = wE | ht

1),

and Pr(wt−1
2 = wS | ht

1) > Pr(wt−1
2 = wS | ht−1

1 ), and so
Pr(wt

2 = wS | ht
1) ≈ 1 for all t .
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Prisoners’ Dilemma with Noisy Monitoring
Grim Trigger, 1 > p > r > q > 0

Consider private history ht
1 = (Ey

1
, Ey1, Ey1, ∙ ∙ ∙ , Ey1).

Associated beliefs of 1 about wt
2:

Pr(w0
2 = wE) = 1,

Pr(w1
2 = wS | Ey

1
) = Pr(y1

2 = y
2
| Ey

1
, w0

2 = wE) ≈ 1 − ε < 1,

but

Pr(wt
2 = wS | ht

1)

= Pr(wt
2 = wS | wt−1

2 = wS) Pr(wt−1
2 = wS | ht

1)

+ Pr(yt
2 = y | wt−1

2 = wE , ht
1)︸ ︷︷ ︸

≈0

Pr(wt−1
2 = wE | ht

1),

and Pr(wt−1
2 = wS | ht

1) < Pr(wt−1
2 = wS | ht−1

1 ), and so
Pr(wt

2 = wS | ht
1) →≈ 0, as t → ∞ .
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Automaton Representation of Strategies

An automaton is the tuple (Wi , w0
i , fi , τi), where

Wi is set of states,

w0
i is initial state,

fi : W → Ai is output function (decision rule), and

τi : Wi × Ai × Yi → Wi is transition function.

Any automaton (Wi , w0
i , fi , τi) induces a strategy for i . Define

τi(wi , ht
i ) := τi(τi(wi , ht−1

i ), at−1
i , yt−1

i ).

The induced strategy si is given by si(∅) = fi(w0
i ) and

si(h
t
i ) = fi(τi(w

0
i , ht

i )), ∀ht
i .

Every strategy can be represented by an automaton.
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Almost Public Monitoring Games

Fix a game with imperfect full support public monitoring, so
that for all y ∈ Y and a ∈ A, ρ(y | a) > 0.

Rather than observing the public signal directly, each
player i observes a private signal yi ∈ Y .

The game with private monitoring is ε-close to the game
with public monitoring if the joint distribution π on the
private signal profile (y1, . . . , yn) satisfies

|π((y , y , . . . , y) | a) − ρ(y | a)| < ε.

Such a game has almost public monitoring.

Any automaton in the game with public monitoring
describes a strategy profile in all ε-close almost public
monitoring games.
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Almost Pubic Monitoring
Rich Private Monitoring

Fix a game with imperfect full support public monitoring, so
that for all y ∈ Y and a ∈ A, ρ(y | a) > 0.
Each player i observes a private signal zi ∈ Zi , with
(z1, . . . , zn) distributed according to the joint dsn π.
The game with rich private monitoring is ε-close to the
game with public monitoring if there are mappings
ξi : Zi → Y such that

∣
∣
∣
∣
∣
∣

∑

ξ1(z1)=y ,...,ξn(zn)=y

π((z1, . . . , zn) | a) − ρ(y | a)

∣
∣
∣
∣
∣
∣
< ε.

Such a game has almost public monitoring.
Any automaton in the game with public monitoring
describes a strategy profile in all ε-close almost public
monitoring games with rich private monitoring.
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Behavioral Robustness

Definition
An eq of a game with public monitoring is behaviorally robust if
the same automaton is an eq in all ε-close games to the game
with public monitoring for ε sufficiently small.

Definition

A public automaton (W , w0, f , τ ) has bounded recall if there
exists L such that after any history of length at least L,
continuation play only depends on the last L periods of the
public history (i.e., τ(w , hL) = τ(w ′, hL) for all w , w ′ ∈ W).
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Behavioral Robustness

An eq is behaviorally robust if the same profile is an eq in
near-by games.
A public profile has bounded recall if there exists L such that
after any history of length at least L, continuation play only
depends on the last L periods of the public history.

Theorem (Mailath and Morris, 2002)
A strict PPE with bounded recall is behaviorally robust to
private monitoring that is almost public.
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Behavioral Robustness

An eq is behaviorally robust if the same profile is an eq in
near-by games.
A public profile has bounded recall if there exists L such that
after any history of length at least L, continuation play only
depends on the last L periods of the public history.

Theorem (Mailath and Morris, 2002)
A strict PPE with bounded recall is behaviorally robust to
private monitoring that is almost public.

“Theorem” (Mailath and Morris, 2006)
If the private monitoring is sufficiently rich, a strict PPE is
behaviorally robust to private monitoring that is almost public if
and only if it has bounded recall.
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Bounded Recall
It is tempting to think that bounded recall provides an attractive
restriction on behavior. But:

Folk Theorem II (Hörner and Olszewski, 2009)
The public monitoring folk theorem holds using bounded recall
strategies. The folk theorem also holds using bounded recall
strategies for games with almost-public monitoring.

This private monitoring folk theorem is not behaviorally
robust.
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Bounded Recall
It is tempting to think that bounded recall provides an attractive
restriction on behavior. But:

Folk Theorem II (Hörner and Olszewski, 2009)
The public monitoring folk theorem holds using bounded recall
strategies. The folk theorem also holds using bounded recall
strategies for games with almost-public monitoring.

This private monitoring folk theorem is not behaviorally
robust.

Folk Theorem III (Mailath and Olszewski, 2011)
The perfect monitoring folk theorem holds using bounded recall
strategies with uniformly strict incentives. Moreover, the
resulting equilibrium is behaviorally robust to almost-perfect
almost-public monitoring.
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Prisoners’ Dilemma
Conditionally Independent Private Monitoring

E S

E 2, 2 −1, 3

S 3,−1 0, 0 wE wS

sj

ej

Player i observes a noisy signal: πi(yi = aj) = 1 − ε.

Theorem (Sekiguchi, 1997)

For all ψ > 0, there exists η′′ > η′ > 0 such that for all
δ ∈ (1/3 + η′, 1/3 + η′′), there is a Nash equilibrium in which
each player randomizing over the initial state, with the
probability on wE exceeding 1 − ψ.
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Proof and extend to all high δ

Proof of theorem
Optimality of grim trigger after different histories:

Es: updating given original randomization =⇒ S optimal.

23 / 41



Proof and extend to all high δ
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and s is a mistake, or j received an erroneous signal in the
previous period. Odds slightly favor j receiving the
erronous signal, and because δ low, S is optimal.

Ee, Ee, . . . , Ee, Es, Se, . . . , Se. This period’s S will trigger
j ’s switch to wS, if not there already.
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Proof and extend to all high δ

Proof of theorem
Optimality of grim trigger after different histories:

Es: updating given original randomization =⇒ S optimal.

Ee, Ee, . . . , Ee: perpetual e reassures i that j is still in wE .

Ee, Ee, . . . , Ee, Es. Most likely events: either j is still in wE

and s is a mistake, or j received an erroneous signal in the
previous period. Odds slightly favor j receiving the
erronous signal, and because δ low, S is optimal.

Ee, Ee, . . . , Ee, Es, Se, . . . , Se. This period’s S will trigger
j ’s switch to wS, if not there already.

To extend to all high δ, lower effective discount factor by dividing
games into N interleaved games.
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Belief-Free Equilibria

Another approach is to specify behavior in such a way that the
beliefs are irrelevant.
Suppose n = 2.

Definition

The profile ((W1, w0
1 , f1, τ1), (W2, w0

2 , f2, τ2)) is a belief-free eq if
for all (w1, w2) ∈ W1 ×W1, (Wi , wi , fi , τi) is a best reply to
(Wj , wj , fj , τj), all i 6= j .

This approach is due to Piccione (2002), with a refinement by
Ely and Valimaki (2002). Belief-free eq are characterized by
Ely, Hörner, and Olszewski (2005).
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Illustration of Belief Free Eq
The product-choice game

c s

H 2, 3 0, 2

L 3, 0 1, 1

Row player is a firm choosing H igh or Low quality.

Column player is a short-lived customer choosing the
customized or standard product.

In the game with perfect monitoring, grim trigger (play Hc
till 1 plays L, then revert to perpetual Ls) is an eq if δ ≥ 1

2 .
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The belief-free eq that achieves a payoff of 2 for the row player:

Row player always plays 1
2 ◦ H + 1

2 ◦ L. (Trivial automaton)

Column player’s strategy has one period memory. Play c
for sure after H in the previous period, and play

αL :=
(
1 − 1

2δ

)
◦ c + 1

2δ ◦ s

after L in the previous period. Player 2’s automaton:

wcw0 wαL

L

H

H

L
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Let V1(w ; a1) denote player 1’s payoff when 2 is in state w ,
and 1 plays a1. Then (where α = 1 − 1/(2δ)),

V1(wc ; H) = (1 − δ)2 + δV1(wc)

= V1(wc ; L) = (1 − δ)3 + δV1(wαL),

V1(wαL ; a1 = H) = (1 − δ)2α + δV1(wc)

= V1(wαL ; a1 = L) = (1 − δ)(2α + 1) + δV1(wαL).

Then, V1(wc) − V1(wαL) = (1 − δ)/δ.

Which is true when α = 1 − 1/(2δ).
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Belief-Free Eq in the Prisoners’ Dilemma
Ely and Valimaki (2002)

E S

E 2, 2 −1, 3

S 3,−1 0, 0

Perfect monitoring.
Player i ’s automaton, (Wi , wi , fi , τi):

W = {wE
i , wS

i },

fi(w
a
i ) =

{
1, a = E ,

α ◦ E + (1 − α) ◦ S, a = S,

τi(wi , aiaj) = w
aj

i ,

where α := 1 − 1/(3δ).
Both (W1, wE

1 , f1, τ1) and (W1, wS
1 , f1, τ1) are best replies to

both (W2, wE
2 , f2, τ2) and (W2, wS

2 , f2, τ2).
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Belief-Free in the Prisoners’ Dilemma-Proof

Let V1(aa′) denote player 1’s payoff when 1 is in state wa
1

and 2 is in state wa′

2 . Then

V1(EE) = (1 − δ)2 + δV1(EE),

V1(ES) = (1 − δ)(3α − 1)

+ δ[αV1(EE) + (1 − α)V1(SE)],

V1(SE ; a1 = E) = (1 − δ)2 + δV1(EE)

= V1(SE ; a1 = S) = (1 − δ)3 + δV1(ES),

V1(SS : a1 = E) = (1 − δ)(−1)

+ δ[αV1(EE) + (1 − α)V1(SE)]

= V1(SS : a1 = S) = δ[αV1(ES) + (1 − α)V1(SS)].

Then, V1(EE) − V1(ES) = V1(SE) − V1(SS) = (1 − δ)/δ.

Which is true when α = 1 − 1/(3δ).
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Belief-Free in the Prisoners’ Dilemma
Private Monitoring

Suppose we have conditionally independent private
monitoring.

For ε small, there is a value of α satisfying the analogue of
the indifference conditions for perfect monitoring (the
system of equations is well-behaved, and so you can apply
the implicit function theorem).

These kinds of strategies can be used to construct
equilibria with payoffs in the square (0, 2) × (0, 2) for
sufficiently patient players.
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Histories are not being used to coordinate play! There is
no common understanding of continuation play.

This is to be contrasted with strict PPE.

Rather, lump sum taxes are being imposed after “deviant”
behavior is “suggested.”

This is essentially what do in the repeated prisoners’
dilemma.

Folk theorems for games with private monitoring have been
proved using belief free constructions.

These equilibria seem crazy, yet Kandori and Obayashi
(2014) report suggestive evidence that in some community
unions in Japan, the behavior accords with such an
equilibrium.
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Imperfect Monitoring

This works for public and private monitoring.

No hope for behavioral robustness.

“Theorem” (Hörner and Olszewski, 2006)
The folk theorem holds for games with private almost-perfect
monitoring.

Result uses belief-free ideas in a central way, but the
equilibria constructed are not belief free.
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Purifiability
Belief-free equilibria typically have the property that players
randomize the same way after different histories (and so
with different beliefs over the private states of the other
player(s)).
Harsanyi (1973) purification (robustness to private payoff
shocks) is perhaps the best rationale for randomizing
behavior in finite normal form games.
Can we purify belief-free equilibria (Bhaskar, Mailath, and
Morris, 2008)?

The one period memory belief free equilibria of Ely and
Valimaki (2002), as exemplified above, is not purifiable
using one period memory strategies.
They are purifiable using unbounded memory strategies.
Open question: can they be purified using bounded
memory strategies? (It turns out that for sequential games,
only Markov equilibria can be purified using bounded
memory strategies, Bhaskar, Mailath, and Morris 2013).
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What about noisy monitoring?

Current best result is Sugaya (2013):

“Theorem”
The folk theorem generically holds for the repeated two-player
prisoners’ dilemma with private monitoring if the support of
each player’s signal distribution is sufficiently large. Neither
cheap talk communication nor public randomization is
necessary, and the monitoring can be very noisy.
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Ex Post Equilibria

The belief-free idea is very powerful.

Suppose there is an unknown state determining payoffs
and monitoring.

ωE E S

E 1, 1 −1, 2

S 2,−1 0, 0

ωS E S

E 0, 0 2,−1

S −1, 2 1, 1

Let Γ(δ; ω) denote the complete-information repeated
game when state ω is common knowledge. Monitoring may
be perfect or imperfect public.
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Perfect Public Ex Post Equilibria
Γ(δ; ω) is complete-information repeated game at ω.

Definition
The profile of public strategies σ∗ is a perfect public ex post eq
if σ∗|ht is a Nash eq of Γ(δ; ω) for all histories ht ∈ H, where
σ∗|ht is the continuation public profile induced by ht .

These equilibria can be strict; histories do coordinate play.
But the eq are belief free.
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Perfect Public Ex Post Equilibria
Γ(δ; ω) is complete-information repeated game at ω.

Definition
The profile of public strategies σ∗ is a perfect public ex post eq
if σ∗|ht is a Nash eq of Γ(δ; ω) for all histories ht ∈ H, where
σ∗|ht is the continuation public profile induced by ht .

These equilibria can be strict; histories do coordinate play.
But the eq are belief free.

“Theorem” (Fudenberg and Yamamoto 2010)
Suppose the signals are statistically informative (about actions
and states). The folk theorem holds state-by-state.

These ideas also can be used in some classes of reputation
games (Hörner and Lovo, 2009) and in games with private
monitoring (Yamamoto, 2014).
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Conclusion

The current theory of repeated games shows that the long
relationships can discourage opportunistic behavior, it
does not show that long run relationships will discourage
opportunistic behavior.

Incentives can be provided when histories coordinate
continuation play.

Punishments must be credible, and this can limit their
scope.

Some form of monitoring is needed to punish deviators.

This monitoring can occur through communication
networks.

Intertemporal incentives can also be provided in situations
when there is no common understanding of histories, and
so of continuation play.
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What is left to understand

Which behaviors in long-run relationships are plausible?

Why are formal institutions important?

Why do we need formal institutions to protect property
rights, for example?

Communication is not often modelled explicitly, and it
should be. Communication make things significantly easier
(see Compte, 1998, and Kandori and Matsushima, 1998).

Too much focus on patient players (δ close to 1).
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Introduction

Repeated games have many equilibria. At the same time,
certain plausible outcomes are not consistent with
equilibrium. Illustrate with product-choice game.

Reputation effects: the impact on the set of equilibria
(typically of a repeated game) of perturbing the game by
introducing incomplete information of a particular kind.

Reputation effects bound eq payoffs in a natural way. First
illustrate again using the product choice game, and then
give a complete proof in the canonical model of Fudenberg
and Levine (1989, 1992), using the tool of relative entropy
introduced by Gossner (2011), and

outline the temporary reputation results of Cripps, Mailath,
and Samuelson (2004, 2007).
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Introduction
The product choice game

c s

H 2, 3 0, 2

L 3, 0 1, 1

Row player is a firm, choosing between high (H) and low
(L) effort.

Column player is a customer, choosing between a
customized (c) and standard (s) product.

Game has a unique Nash equilibrium: Ls.
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Perfect Monitoring

Suppose firm is long-lived, playing the product-choice game
with a sequence of short-lived customers.
Suppose moreover that

monitoring is perfect (everyone sees all past actions) and

the firm has unbounded lifespan, with a discount factor δ.

Then

for δ ≥ 1
2 , there is a subgame perfect eq in which Hc is

played in every period (any deviation results in Ls forever).

for δ ≥ 2
3 , every payoff in [1, 2] is the payoff of some pure

strategy subgame perfect eq.
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Perfect Monitoring

Suppose firm is long-lived, playing the product-choice game
with a sequence of short-lived customers.
Suppose moreover that

monitoring is perfect (everyone sees all past actions) and

the firm has unbounded lifespan, with a discount factor δ.

Then

for δ ≥ 1
2 , there is a subgame perfect eq in which Hc is

played in every period (any deviation results in Ls forever).

for δ ≥ 2
3 , every payoff in [1, 2] is the payoff of some pure

strategy subgame perfect eq.

But for all δ, the profile in which history is ignored and Ls is
played in every period is an eq.
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Imperfect Monitoring
Suppose now that the actions of the firm are imperfectly
observed. There is a signal y ∈ {ȳ ,

ˉ
y , } (good experience, bad

experience) with distribution

ρ(ȳ | a1) =

{
p, if a1 = H,

q, if a1 = L,

where 0 < q < p < 1.

If 2p − q ≤ 1, the only pure strategy PPE is perpetual Ls
(and as under perfect monitoring, this is always an eq).
The maximum payoff the firm can achieve in any PPE is

2 −
(1 − p)

(p − q)
< 2.

(Achieving this bound requires δ close to 1.)
Payoffs are bounded away from payoff from perpetual Hc.
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The issue

Repeated games have too many equilibria and not enough:

In the finitely horizon product choice, the unique Nash eq is
Ls in every period, irrespective of the length of the horizon.

In the finitely repeated prisoners’ dilemma, the unique
Nash eq is always defect, irrespective of the number of
repetitions.

In the chain store paradox, the chain store cannot deter
entry no matter how many entrants it is facing.

It seems counter-intuitive that observing a sufficiently long
history of H ’s (or sufficiently high fraction of ȳ ’s) in our example
would not convince customers that the firm will play H.
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Incomplete Information

Suppose the customers are not completely certain of all the
characteristics of the firm. That is, the game has incomplete
information, with the firm’s characteristics (type) being private
information to the firm.
Suppose that the customers assign some (small) chance to the
firm being a behavioral (commitment) type ξ(H) who always
plays H.
Then, if the normal type firm is sufficiently patient, its payoff is
close to 2.
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A simple reputation result
A preliminary lemma

Lemma
Suppose prob assigned to ξ(H), μ(ξ(H)) =: μ0, is strictly
positive. Fix a Nash equilibrium. Let ht be a positive probability
period-t history in which H is always played. The number of
periods in ht in which a customer plays s is no larger than

k∗ := −
log μ0

log 2
.
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A simple reputation result
A preliminary lemma

Lemma
Suppose prob assigned to ξ(H), μ(ξ(H)) =: μ0, is strictly
positive. Fix a Nash equilibrium. Let ht be a positive probability
period-t history in which H is always played. The number of
periods in ht in which a customer plays s is no larger than

k∗ := −
log μ0

log 2
.

qτ is 2’s prob that firm plays H in period τ conditional on hτ .
In eq, if customer τ does choose s, then

qτ ≤ 1
2 .

So, would like an upper bound on

k(t) := #{τ ≤ t : qτ ≤ 1
2}.
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Let μτ := Pr{ξ(H)|hτ} be the posterior assigned to ξ(H) after
hτ , and since hτ is an initial segment of ht ,

μτ+1 = Pr{ξ(H)|hτ , H} =
Pr{ξ(H), H|hτ}

Pr{H|hτ}

=
Pr{H|ξ(H), hτ}Pr{ξ(H)|hτ}

Pr{H|hτ}

=
μτ

qτ
=⇒ μτ = qτμτ+1.
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Let μτ := Pr{ξ(H)|hτ} be the posterior assigned to ξ(H) after
hτ , and since hτ is an initial segment of ht ,

μτ+1 = Pr{ξ(H)|hτ , H} =
Pr{ξ(H), H|hτ}

Pr{H|hτ}

=
Pr{H|ξ(H), hτ}Pr{ξ(H)|hτ}

Pr{H|hτ}

=
μτ

qτ
=⇒ μτ = qτμτ+1.

Then,

μ0 = q0μ1 = q0q1μ2 = μt

t−1∏

τ=0

qτ ≤ μt

∏

{τ :qτ≤ 1
2}

qτ ≤
(1

2

)k(t)
.

Taking logs, log μ0 ≤ k(t) log 1
2 , and so

k(t) ≤ −
log μ0

log 2
.
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The Theorem

Theorem (Fudenberg and Levine 1989)

Suppose ξ(H) receives positive prior probability μ0 > 0. In any
Nash equilibrium, the normal type’s expected payoff is at least
2δk∗

. Thus, for all ε > 0, there exists δ̄ such that for all
δ ∈ (δ̄, 1), the normal type’s payoff in any Nash equilibrium is at
least 2 − ε.

Normal type can always playing H.
Applying Lemma yields a lower bound on payoffs of

k∗−1∑

τ=0

(1 − δ)δτ 0 +
∞∑

τ=k∗

(1 − δ)δτ 2 = 2δk∗
.

This can be made arbitrarily close to 2 by choosing δ close to 1.
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Comments

This result made few assumptions on the nature of the
incomplete information. In particular, the type space Ξ can
be infinite (even uncountable), as long as there is a grain of
truth on the commitment type (μ(ξ(H)) > 0).

The result also holds for finite horizons. If firm payoffs are
the average of the flow (static) payoffs, then average
payoffs are close to 2 for sufficiently long horizons.

Perfect monitoring of the behavioral type’s action is critical.

Above argument cannot be extended to either imperfect
monitoring or mixed behavior types (and yet the intuition is
compelling).

A new argument is needed.
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The Canonical Reputation Model
The Complete Information Model

A long-lived player 1 faces a sequence of short-lived players, in
the role of player 2 of the stage game.

Ai , finite action set for each player.

Y , finite set of public signals of player 1’s actions, a1.

ρ(y | a1), prob of signal y ∈ Y , given a1 ∈ A1.

Player 2’s ex post stage game payoff is u∗
2(a1, a2, y), and

2’s ex ante payoff is

u2(a1, a2) :=
∑

y∈Y
u∗

2(a1, a2, y)ρ(y |a1).

Each player 2 max’s her (expected) stage game payoff u2.
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Player 1’s ex post stage game payoff is u∗
1(a1, a2, y), and

1’s ex ante payoff is

u1(a1, a2) :=
∑

y∈Y
u∗

1(a1, a2, y)ρ(y |a1).

Player 1 max’s the expected value of

(1 − δ)
∑

t≥0
δtu1(a1, a2).

Player 1 observes all past actions and signals, while each
player 2 only the history of past signals.

A strategy for player 1:

σ1 : ∪∞
t=0(A1 × A2 × Y )t → Δ(A1).

A strategy for player 2:

σ2 : ∪∞
t=0Y t → Δ(A2).
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The player 2’s are uncertain about the characteristics of
player 1: Player 1’s characteristics are described by his
type, ξ ∈ Ξ.

All the player 2’s have a common prior μ on Ξ.
Type space is partitioned into two sets, Ξ = Ξ1 ∪Ξ2, where

Ξ1 is the set of payoff types and
Ξ2 is the set of behavioral (or commitment or action) types.

For ξ ∈ Ξ1, player 1’s ex post stage game payoff is
u∗

1(a1, a2, y , ξ), and 1’s ex ante payoff is

u1(a1, a2, ξ) :=
∑

y∈Y
u∗

1(a1, a2, y , ξ)ρ(y |a1).

Each type ξ ∈ Ξ1 of player 1 max’s the expected value of

(1 − δ)
∑

t≥0
δtu1(a1, a2, ξ).
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Player 1 knows his type and observes all past actions and
signals, while each player 2 only the history of past signals.

A strategy for player 1:

σ1 : ∪∞
t=0(A1 × A2 × Y )t × Ξ → Δ(A1).

If ξ̂ ∈ Ξ2 is a simple action type, then there exists unique
α̂1 ∈ Δ(A1) such that σ1(ht

1, ξ̂) = α̂1 for all ht
1.

A strategy for player 2:

σ2 : ∪∞
t=0Y t → Δ(A2).
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Space of outcomes: Ω := Ξ × (A1 × A2 × Y )∞.

A profile (σ1, σ2) with prior μ induces the unconditional
distribution P ∈ Δ(Ω).

For a fixed simple type ξ̂ = ξ(α̂1), the probability measure
on Ω conditioning on ξ̂ (and so induced by α̂1 in every
period and σ2), is denoted P̂ ∈ Δ(Ω).

Denoting by P̃ the measure induced by (σ1, σ2) and
conditioning on ξ 6= ξ̂, we have

P = μ(ξ̂)P̂ + (1 − μ(ξ̂))P̃.

Given a strategy profile σ, U1(σ, ξ) denotes the type-ξ
long-lived player’s payoff in the repeated game,

U1(σ, ξ) := EP

[

(1 − δ)
∞∑

t=0

δtu1(a
t , yt , ξ)

∣
∣
∣
∣
∣
ξ

]

.
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Denote by Γ(μ, δ) the game of incomplete information.

Definition

A strategy profile (σ′
1, σ

′
2) is a Nash equilibrium of the game

Γ(μ, δ) if, for all ξ ∈ Ξ1, σ′
1 maximizes U1(σ1, σ

′
2, ξ) over player

1’s repeated game strategies, and if for all t and all ht
2 ∈ H2 that

have positive probability under (σ′
1, σ

′
2) and μ (i.e., P(ht

2) > 0),

EP
[
u2(σ

′
1(h

t
1, ξ), σ

′
2(h

t
2)) | ht

2

]
= max

a2∈A2

EP
[
u2(σ

′
1(h

t
1, ξ), a2) | ht

2

]
.
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Denote by Γ(μ, δ) the game of incomplete information.

Definition

A strategy profile (σ′
1, σ

′
2) is a Nash equilibrium of the game

Γ(μ, δ) if, for all ξ ∈ Ξ1, σ′
1 maximizes U1(σ1, σ

′
2, ξ) over player

1’s repeated game strategies, and if for all t and all ht
2 ∈ H2 that

have positive probability under (σ′
1, σ

′
2) and μ (i.e., P(ht

2) > 0),

EP
[
u2(σ

′
1(h

t
1, ξ), σ

′
2(h

t
2)) | ht

2

]
= max

a2∈A2

EP
[
u2(σ

′
1(h

t
1, ξ), a2) | ht

2

]
.

Our goal: Reputation Bound (Fudenberg & Levine ’89 ’92)
Fix a payoff type, ξ ∈ Ξ1. What is a “good” lower bound, uniform
across Nash equilibria σ′ and Ξ, for U1(σ

′, ξ)?

Our tool (Gossner 2011): relative entropy.
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Relative Entropy

X a finite set of outcomes.

The relative entropy or Kullback-Leibler distance between
probability distributions p and q over X is

d(p‖q) :=
∑

x∈X

p(x) log
p(x)

q(x)
.

By convention, 0 log 0
q = 0 for all q ∈ [0, 1] and p log p

0 = ∞
for all p ∈ (0, 1]. In our applications of relative entropy, the
support of q will always contain the support of p.

Since relative entropy is not symmetric, often say d(p‖q) is
the relative entropy of q with respect to p.

d(p‖q) ≥ 0, and d(p‖q) = 0 ⇐⇒ p = q.
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Relative entropy is expected prediction error

d(p‖q) measures observer’s expected prediction error on
x ∈ X using q when true dsn is p:

n i.i.d. draws from X under p has probability
∏

x p(x)nx ,
where nx is the number of realization of x in sample.

Observer assigns same sample probability
∏

x q(x)nx .

Log likelihood ratio is

L(x1, . . . , xn) =
∑

x nx log p(x)
q(x) ,

and so
1
nL(x1, . . . , xn) → d(p‖q).
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The chain rule

Lemma
Suppose P, Q ∈ Δ(X × Y ), X and Y finite sets. Then

d(P‖Q) = d(PX‖QX ) +
∑

x PX (x)d(PY (∙|x)‖QY (∙|x))

= d(PX‖QX ) + EPX
d(PY (∙|x)‖QY (∙|x)).
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The chain rule

Lemma
Suppose P, Q ∈ Δ(X × Y ), X and Y finite sets. Then

d(P‖Q) = d(PX‖QX ) +
∑

x PX (x)d(PY (∙|x)‖QY (∙|x))

= d(PX‖QX ) + EPX
d(PY (∙|x)‖QY (∙|x)).

Proof.

d(P‖Q) =
∑

x ,y P(x , y) log PX (x)
QX (x)

P(x ,y)
PX (x)

QX (x)
Q(x ,y)
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∑

x PX (x)
∑

y PY (y |x) log PY (y |x)
QY (y |x) .
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A grain of truth

Lemma
Let X be a finite set of outcomes. Suppose p, p′ ∈ Δ(X ) and
q = εp + (1 − ε)p′ for some ε > 0. Then,

d(p‖q) ≤ − log ε.
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A grain of truth

Lemma
Let X be a finite set of outcomes. Suppose p, p′ ∈ Δ(X ) and
q = εp + (1 − ε)p′ for some ε > 0. Then,

d(p‖q) ≤ − log ε.

Proof.
Since q(x)/p(x) ≥ ε, we have

−d(p‖q) =
∑

x p(x) log q(x)
p(x) ≥

∑
x p(x) log ε = log ε.
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Back to reputations!
Fix α̂1 ∈ Δ(A1) and suppose μ(ξ(α̂1)) > 0.
In a Nash eq, at history ht

2, σ2(ht
2) is a best response to

α1(h
t
2) := EP[σ1(h

t
1, ξ) | ht

2] ∈ Δ(A1),

that is, σ2(ht
2) maximizes
∑

a1

∑
y u∗

2(a1, a2, y)ρ(y |a1)α1(a1|ht
2).
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In a Nash eq, at history ht

2, σ2(ht
2) is a best response to

α1(h
t
2) := EP[σ1(h

t
1, ξ) | ht

2] ∈ Δ(A1),

that is, σ2(ht
2) maximizes
∑

a1

∑
y u∗

2(a1, a2, y)ρ(y |a1)α1(a1|ht
2).

At ht
2, 2’s predicted dsn on the signal yt is

p(ht
2) := ρ(∙|α1(h

t
2)) =

∑
a1

ρ(∙|a1)α1(a1|ht
2).

If player 1 plays α̂1, true dsn on yt is

p̂ := ρ(∙|α̂1) =
∑

a1
ρ(∙|a1)α̂1(a1).

Player 2’s one-step ahead prediction error is

d
(
p̂‖p(ht

2)
)
.
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Bounding prediction errors

Player 2 is best responding to an action profile α1(ht
2) that

is d
(
p̂‖p(ht

2)
)
-close to α̂1 (as measured by the relative

entropy of the induced signals).

To bound player 1’s payoff, it suffices to bound the number
of periods in which d

(
p̂‖p(ht

2)
)

is large.
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Bounding prediction errors

Player 2 is best responding to an action profile α1(ht
2) that

is d
(
p̂‖p(ht

2)
)
-close to α̂1 (as measured by the relative

entropy of the induced signals).

To bound player 1’s payoff, it suffices to bound the number
of periods in which d

(
p̂‖p(ht

2)
)

is large.

For any t , Pt
2 is the marginal of P on Y t . Then,

Pt
2 = μ(ξ̂)P̂t

2 + (1 − μ(ξ̂))P̃t
2,

and so
d(P̂t

2‖Pt
2) ≤ − log μ(ξ̂).
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Applying the chain rule:

− log μ(ξ̂) ≥ d(P̂t
2‖Pt

2)

= d(P̂t−1
2 ‖Pt−1

2 ) + EP̂d(p̂‖p(ht−1
2 ))

=
t−1∑

τ=0

EP̂d(p̂‖p(hτ
2)).
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Applying the chain rule:

− log μ(ξ̂) ≥ d(P̂t
2‖Pt

2)

= d(P̂t−1
2 ‖Pt−1

2 ) + EP̂d(p̂‖p(ht−1
2 ))

=
t−1∑

τ=0

EP̂d(p̂‖p(hτ
2)).

Since this holds for all t ,

∞∑

τ=0

EP̂d(p̂‖p(hτ
2)) ≤ − log μ(ξ̂).
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From prediction bounds to payoff bounds

Definition

An action α2 ∈ Δ(A2) is an ε-entropy confirming best response
to α1 ∈ Δ(A1) if there exists α′

1 ∈ Δ(A1) such that
1 α2 is a best response to α′

1; and
2 d(ρ(∙|α1)‖ρ(∙|α′

1)) ≤ ε.

The set of ε-entropy confirming BR’s to α1 is denoted Bd
ε (α1).

41 / 59



From prediction bounds to payoff bounds

Definition

An action α2 ∈ Δ(A2) is an ε-entropy confirming best response
to α1 ∈ Δ(A1) if there exists α′

1 ∈ Δ(A1) such that
1 α2 is a best response to α′

1; and
2 d(ρ(∙|α1)‖ρ(∙|α′

1)) ≤ ε.

The set of ε-entropy confirming BR’s to α1 is denoted Bd
ε (α1).

In a Nash eq, at any on-the-eq-path history ht
2, player 2’s action

is a d(p̂‖p(ht
2))-entropy confirming BR to α̂1.
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From prediction bounds to payoff bounds

Definition

An action α2 ∈ Δ(A2) is an ε-entropy confirming best response
to α1 ∈ Δ(A1) if there exists α′

1 ∈ Δ(A1) such that
1 α2 is a best response to α′

1; and
2 d(ρ(∙|α1)‖ρ(∙|α′

1)) ≤ ε.

The set of ε-entropy confirming BR’s to α1 is denoted Bd
ε (α1).

Define, for all payoff types ξ ∈ Ξ1,

v ξ
α1

(ε) := min
α2∈Bd

ε (α1)
u1(α1, α2, ξ),

and denote by wξ
α1 the largest convex function below vξ

α1 .

43 / 59



The product-choice game I

c s

H 2, 3 0, 2

L 3, 0 1, 1

Suppose α̂1 = 1 ◦ H.

c is unique BR to α1 if α1(H) > 1
2 .

s is also a BR to α1 if α1(H) = 1
2 .

d(1 ◦ H‖1
2 ◦ H + 1

2 ◦ L) = log 1
1/2 = log 2 ≈ 0.69.

v ξ
H(ε) =

{
2, if ε < log 2,

0, if ε ≥ log 2.
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A picture is worth a thousand words

ε0

player 1

payoffs

2

log 2

wξ
H

v ξ
H
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A picture is worth a thousand words

ε0

player 1

payoffs

2

log 2

wξ
H

v ξ
H

Diff between this and the earlier simple rep. bound is o(1 − δ).
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The product-choice game II

c s

H 2, 3 0, 2

L 3, 0 1, 1

Suppose α̂1 = 2
3 ◦ H + 1

3 ◦ L.

c is unique BR to α1 if α1(H) > 1
2 .

s is also a BR to α1 if α1(H) = 1
2 .

d(α̂1‖
1
2 ◦ H + 1

2 ◦ L) = 2
3 log 2/3

1/2 + 1
3 log 1/3

1/2

= 5
3 log 2 − log 3

=: ε̄ ≈ 0.06.
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Two thousand?

ε0

player 1

payoffs

2
21

3

1
3

log 2ε̄

wξ
α̂1

wξ
H

v ξ
α̂1

v ξ
H
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The reputation bound

Proposition

Suppose the action type ξ̂ = ξ(α̂1) has positive prior probability,
μ(ξ̂) > 0, for some potentially mixed action α̂1 ∈ Δ(A1). Then,
player 1 type ξ’s payoff in any Nash equilibrium of the game
Γ(μ, δ) is greater than or equal to wξ

α̂1
(ε̂), where

ε̂ := −(1 − δ) log μ(ξ̂).

The only aspect of the set of types and the prior that plays a
role in the proposition is the probability assigned to ξ̂.
The set of types may be very large, and other quite crazy types
may receive significant probability under the prior μ.
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The proof

Since in any Nash equilibrium (σ′
1, σ

′
2), each payoff type ξ has

the option of playing α̂1 in every period, we have

U1(σ
′, ξ) = (1 − δ)

∑∞

t=0
δtEP[u1(σ

′
1(h

t
1), σ

′
2(h

t
2), ξ) | ξ]

≥ (1 − δ)
∑∞

t=0
δtEP̂u1(α̂1, σ

′
2(h

t
2), ξ)

50 / 59



The proof

Since in any Nash equilibrium (σ′
1, σ

′
2), each payoff type ξ has

the option of playing α̂1 in every period, we have

U1(σ
′, ξ) = (1 − δ)

∑∞

t=0
δtEP[u1(σ

′
1(h

t
1), σ

′
2(h

t
2), ξ) | ξ]

≥ (1 − δ)
∑∞

t=0
δtEP̂u1(α̂1, σ

′
2(h

t
2), ξ)

≥ (1 − δ)
∑∞

t=0
δtEP̂v ξ

α̂1
(d(p̂‖p(ht

2)))

51 / 59



The proof

Since in any Nash equilibrium (σ′
1, σ

′
2), each payoff type ξ has

the option of playing α̂1 in every period, we have

U1(σ
′, ξ) = (1 − δ)

∑∞

t=0
δtEP[u1(σ

′
1(h

t
1), σ

′
2(h

t
2), ξ) | ξ]

≥ (1 − δ)
∑∞

t=0
δtEP̂u1(α̂1, σ

′
2(h

t
2), ξ)

≥ (1 − δ)
∑∞

t=0
δtEP̂v ξ

α̂1
(d(p̂‖p(ht

2)))

≥ (1 − δ)
∑∞

t=0
δtEP̂wξ

α̂1
(d(p̂‖p(ht

2)))

52 / 59



The proof

Since in any Nash equilibrium (σ′
1, σ

′
2), each payoff type ξ has

the option of playing α̂1 in every period, we have

U1(σ
′, ξ) = (1 − δ)

∑∞

t=0
δtEP[u1(σ

′
1(h

t
1), σ

′
2(h

t
2), ξ) | ξ]

≥ (1 − δ)
∑∞

t=0
δtEP̂u1(α̂1, σ

′
2(h

t
2), ξ)

≥ (1 − δ)
∑∞

t=0
δtEP̂v ξ

α̂1
(d(p̂‖p(ht

2)))

≥ (1 − δ)
∑∞
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δtEP̂wξ
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≥ wξ
α̂1
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(1 − δ)

∑∞

t=0
δtEP̂d(p̂‖p(ht

2))
)
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The proof
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α̂1
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2)))

≥ wξ
α̂1

(
(1 − δ)

∑∞

t=0
δtEP̂d(p̂‖p(ht

2))
)

≥ wξ
α̂1

(
−(1 − δ) log μ(ξ̂)

)
= wξ

α̂1
(ε̂).
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Patient player 1

Corollary

Suppose the action type ξ̂ = ξ(α̂1) has positive prior probability,
μ(ξ̂) > 0, for some potentially mixed action α̂1 ∈ Δ(A1). Then,
for all ξ ∈ Ξ1 and η > 0, there exists a δ̄ < 1 such that, for all
δ ∈ (δ̄, 1), player 1 type ξ’s payoff in any Nash equilibrium of the
game Γ(μ, δ) is greater than or equal to

v ξ
α̂1

(0) − η.
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When does Bd
0 (α1) = BR(α1)?

Suppose ρ(∙|a1) 6= ρ(∙|a′
1) for all a1 6= a′

1. Then pure action
Stackelberg payoff is a reputation lower bound provided
the simple Stackelberg type has positive prob.

Suppose ρ(∙|α1) 6= ρ(∙|α′
1) for all α1 6= α′

1. Then mixed
action Stackelberg payoff is a reputation lower bound
provided the prior includes in its support a dense subset of
Δ(A1).
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How general is the result?

The same argument (with slightly worse notation) works if
the monitoring distribution depends on both players actions
(though statistical identifiability is a more demanding
requirement, particularly for extensive form stage games).

The same argument (with slightly worse notation) also
works if the game has private monitoring. Indeed, notice
that player 1 observing the signal played no role in the
proof.
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The Purchase Game

2

don’t buy

0
0

1

buy

H

1
1

L

2
−1
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The Purchase Game

2

don’t buy

0
0

1

buy

H

1
1

L

2
−1

BR(H) = {b}.
But ρ(∙|Hd) = ρ(∙|Ld) and so
Bd

0 (Hd) = {d , b}, implying

v ξ(H)
H (0) = 0, and no useful

reputation bound.
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Impermanent Reputations
under Imperfect Monitoring

Imperfect monitoring of long-lived players is not an
impediment for reputation effects.
But it does have implications for its permanance:
Reputation effects are necessarily temporary in the
presence of imperfect monitoring.
(Under perfect monitoring, permanent reputation effects
are trivially possible.)
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Imperfect Monitoring

Suppose only two types, the normal type �0 and the simple
action type �̂ := �(�̂1).
Allow signal dsn to depend on a1 and a2.
Maintain assumption that player 1 observes past a2.

Assumption: Full support
�(y j�̂1;a2) > 0 for all y 2 Y and a2 2 A2.

Assumption: Identifiability
[�(�j�; �2)]y ;a1 has full column rank.

Identifiability implies Bd
0 (�1) = BR(�1).
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Disappearing Reputations

Given a strategy profile (�1; �2) of the incomplete information
game, the short-lived player’s belief in period t that player 1 is
type �̂ is

�t(ht
2) := P(�̂jht

2);

and so �0 is the period 0, or prior, probability assigned to �̂.

Proposition (Cripps, Mailath, Samuelson 2004)
Suppose player 2 has a unique best response â2 to �̂1 and
(�̂1; â2) is not a Nash equilibrium of the stage game. If (�1; �2)
is a Nash equilibrium of the game �(�; �), then

�t ! 0; eP-a.s.

4 / 26



Intuition
Bayes’ rule determines �t after all histories (of 1’s actions).
At any Nash eq, �t is a bounded martingale and so

9�1 : �t ! �1 P-a.s. (and hence eP- and bP-a.s.).

1 Suppose result is false. Then, there is a positiveeP-probability event on which �1 is strictly positive.
2 On this event, player 2 believes that both types of player 1

are eventually choosing the same distribution over actions
�̂1 (because otherwise player 2 could distinguish them).

3 Consequently, on a positive eP-probability set of histories,
eventually, player 2 will always play a best response to �̂1.

4 Since player 1 is more informed than player 2, player 1
knows this.

5 This yields the contradiction, since player 1 has a strict
incentive to play differently from �̂1.
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Player 2 either learns the type is normal or doesn’t
believe it matter-I

Lemma
At any Nash eq,

lim
t!1

�t(1� �t)
�̂1 � eE [�1(ht

1; �0)j(h
t
2]
 = 0; P-a.s.
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Player 2 either learns the type is normal or doesn’t
believe it matter-II

For " > 0 small, on the event

X t :=
�p(ht

2)� p̂(ht
2)
 < "1

	
;

player 2 best responds to �̂1, i.e., �2(ht
2) = â2.

Player 2 cannot have too many eP-expected surprises (i.e.,
periods in which player 2 both assigns a nontrivial probability to
player 1 being �̂ and believes p(ht

2) is far from p̂(ht
2)):

Lemma
1X

t=0

E
eP

h
(�t)2(1� 1X t )

i
� �

2 log(1� �0)

"2
1

;

where 1X t is the indicator function for the event X t .
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Implications of Permanent Reputations
If reputations do not disappear almost surely under eP, then

eP(�1 = 0) < 1;

and so there exists a � > 0 and T0 such that

0 < eP(�t � �; 8t � T0) =: eP(F ):

On F , eventually player 2 believes �0 plays �̂1:

Lemma

Suppose �t 6! 0 eP-a.s. There exists T1 such that for

B :=
\

t�T1
X t ;

we have eP(B) � eP(F \ B) > 0:
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Conclusion of Argument

On B, not only is player 2 always playing â2, the BR to �̂1,
but player 1 eventually is confident that 2 is doing so.

Moreover, again on B, for all � , for sufficiently large t , 1 is
confident that 2 is doing so in periods, t ; t + 1; : : : ; t + � ,
irrespective of the signals 2 observes in periods
t ; t + 1; : : : ; t + � .
Imperfect monitoring is key here: The minimum prob of any
� sequence of signals under �̂1 is bounded away from zero.
Contradiction: Player 1 best responding to player 2 cannot
play �̂1.
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but player 1 eventually is confident that 2 is doing so.
Moreover, again on B, for all � , for sufficiently large t , 1 is
confident that 2 is doing so in periods, t ; t + 1; : : : ; t + � ,
irrespective of the signals 2 observes in periods
t ; t + 1; : : : ; t + � .
Imperfect monitoring is key here: The minimum prob of any
� sequence of signals under �̂1 is bounded away from zero.
Contradiction: Player 1 best responding to player 2 cannot
play �̂1.

18 / 26



Comments

Result is very general. Holds if:
there are many types,
under private monitoring of both players’ actions, as long as
an identifiability condition holds on both players’ actions
(Cripps, Mailath, and Samuelson 2007, Mailath and
Samuelson 2014).
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Asymptotic Restrictions on Behavior I

Result is on beliefs. What about behavior? If player 2’s actions
are observed by player 1, then:

For any Nash eq of the incomplete information game and for alleP-almost all sequences of histories fhtg, every cluster point of
the sequence of continuation profiles is a Nash eq of the
complete information game with normal type player 1.

If player 2 is imperfectly monitored, then need to replace the
second Nash with correlated.
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Asymptotic Restrictions on Behavior II

Suppose player 2’s actions are perfectly monitored.
Suppose the stage game has a strict Nash equilibrium a�.
Suppose for all " > 0, there exists � > 0 and an eq of the
complete information game �(0) such that for all �0 2 (0; �)
the incomplete information game with prior �0 has an eq
with player 1 payoff within " of u1(�(0)).

Given any prior �0 and any �, for all " > 0, there exists a Nash
eq of the incomplete information game in which theeP-probability of the event that eventually a� is played in every
period is at least 1� ".
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Interpretation

�

1

�0

��0 �00

��
reputation effects
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Reputation Effects with Long-lived Player 2?

Simple types no longer provide the best bounds on payoffs.
For the repeated PD, a reputation for tit-fot-tat is valuable
(while a reputation for always cooperate is not!), Kreps,
Milgrom, Roberts, and Wilson (1982).

The bound of surprises arguments still hold with long-lived
player 2 (as does the disappearing reputation result), but
player need not best respond to the belief that on the
equilibrium path, player 1 plays like an action type.
There are some positive results, but few and make strong
assumptions.
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Persistent Reputations

How to rescue reputations?

Limited observability
Suppose short-lived players can only observe the last L
periods. Then reputations can persist and may cycle (Liu
2011, Liu and Skrzypacz 2014).
Changing types
Yields both cyclical reputations (Phelan 2006) and
permanent reputations (Ekmekci, Gossner, and Wilson
2012).
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Reputation as Separation

Are reputations always about scenarios where uninformed
players assign positive probability to “good” types?
Sometimes reputations are about behavior where informed
players are trying to avoid a “bad” reputation.
But avoidance of bad reputations is hard: Mailath and
Samuelson (2001), Morris (2001), and Ely and Valimaki
(2003).

26 / 26



Further Reading

    -                 

Repeated Games
and Reputations

George J. Mailath
Larry Samuelson
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