Coalition-Proof Risk Sharing Under Frictions

Harold L. Cole1 Dirk Krueger1 George J. Mailath1,2 Yena Park3

1University of Pennsylvania
2Australian National University
3University of Rochester

The 31st International Conference in Game Theory
Stony Brook-virtual, 20–24 July 2020
Introduction

- All institutions (including Pareto-improving ones) are essentially self-enforcing agreements (based on a shared belief in future cooperation).

- A belief in the possibility of future cooperation can also encourage coalitional deviations, undermining the institution.

- But such belief may be tenuous and difficult to achieve. We refer to the ease with a community can achieve a belief in future cooperation as its social capital.

- We investigate the role of social capital in the endogenous formation of self-enforcing insurance arrangements.
Related Literature

2. Risk sharing with limited contract enforcement: many contributions, closest is Krueger and Perri (2011)

3. Risk sharing with endogenous outside option: Fewer contributions, closest is Krueger and Uhlig (2006)

Main Results

As social capital increases from no social capital (so no agreement):

1. Initially, the ex ante value of insurance is strictly increasing, with first best insurance being implemented if agreement when reached (which is unlikely, so coalitional deviations are not a concern).

2. For higher social capital, coalitional deviations are a binding concern. Equilibrium insurance is imperfect and nonstationary (poor agents’ consumption is decreasing in the time they have been poor). The ex ante value of this imperfect insurance is strictly increasing.

3. For highest social capital, the threat of coalitional deviations implies that the ex ante value of equilibrium insurance is constant with the insurance requiring increasing utility burning as social capital increases.
Classic Insurance Economy

- Continuum population of ex ante identical risk averse agents subject to income risk.

- Each individual has low income ℓ and high income $h > \ell$ with equal probability. Set $Y := \{\ell, h\}$, and $\bar{y} := \frac{1}{2}(\ell + h)$.

- Large (i.e., positive measure) coalitions have no aggregate risk.

- Individual’s utility function is a strictly concave u, and she maximizes the average expected discounted sum of utility, discount factor β.

- Autarkic utility:

$$V^A = \frac{1}{2}(u(\ell) + u(h)).$$
Coalition Formation and Deviation

- Initial period, $t = 0$, is the planning/contracting period.

- **Social capital** measured by π: Coalition only forms with prob $\pi \in [0, 1]$.

- If initial coalition does not form, then in autarky forever.

- If coalition does form, then it agrees to a *social norm* of time paths of consumption, and starting in the next period:
 - Any attempt to form new coalition (deviation) requires exit from old coalition.
 - Attempt succeeds with probability π.
 - If attempt fails, then autarky forever after.

- Any agreement reached is done cognizant of the possibility that a (further) subset of agents may secede.
Allocations

- A consumption allocation is $c : \bigcup_{t=1}^{\infty} Y^t \rightarrow \mathbb{R}_+$.
- Ex ante utility from an arbitrary allocation c is

$$W^0(c) := (1 - \beta) \sum_{\tau=1}^{\infty} \sum_{y^\tau} \beta^{\tau-1} \Pr(y^\tau) u(c(y^\tau)).$$

- Continuation utility from c at a history $y^t \in Y^t$ is

$$W(y^t, c) := (1 - \beta) \left\{ u(c(y^t)) + \sum_{\tau \geq 1} \sum_{y^\tau} \Pr(y^\tau) \beta^{\tau} u(c(y^t y^\tau)) \right\}.$$

- Secession utility from c at history $y^t = (y_1, \ldots, y_t)$ is

$$(1 - \beta) u(y_t) + \beta [\pi W^0(c) + (1 - \pi) V^A].$$
Equilibrium

Definition

An allocation is an equilibrium if it solves

$$\max_c W^0(c)$$

subject to

1. resource feasibility: $$\sum_{y^t} c(y^t) \Pr(y^t) = \bar{y}$$ for all $$t \geq 1$$, and
2. internal-incentive feasibility: for all $$t \geq 1$$ $$y^t \in Y^t$$,

$$W(y^t, c) \geq (1 - \beta)u(y_t) + \beta[\pi W^0(c) + (1 - \pi)V^A]$$.
Complete Insurance

- Ex ante utility with complete insurance is

\[V^{FB} := u(\bar{y}). \]

- For complete insurance to be an equilibrium, need

\[V^{FB} \geq (1 - \beta)u(h) + \beta(\pi V^{FB} + (1 - \pi) V^A). \]

- First best fails to be an equilibrium when \(\pi \) is too large.

- At \(\pi = \pi^{FB}(\beta) < 1 \), \(h \)-incentive feasibility is just binding, while \(l \)-incentive feasibility is slack.

- Even \(\pi = 0 \) is too large if \(\beta \) is too small (\(\beta < \beta^{FB} \), where \(\pi^{FB}(\beta^{FB}) = 0 \)).
Equilibrium (Possibly Incomplete) Insurance

Definition

An allocation c is an equilibrium if c maximizes $W^0(c)$ subject to resource feasibility and for all $t \geq 1$ $y^t \in Y^t$,

$$W(y^t, c) \geq (1 - \beta)u(y_t) + \beta[\pi W^0(c) + (1 - \pi)V^A].$$
Equilibrium (Possibly Incomplete) Insurance

Definition

An allocation c is an equilibrium if c maximizes $W^0(c)$ subject to resource feasibility and for all $t \geq 1$ $y^t \in Y^t$,

$$W(y^t, c) \geq (1 - \beta)u(y_t) + \beta[\pi W^0(c) + (1 - \pi)V^A].$$

- The program defining equilibrium allocations is not concave (in particular, the constraint correspondence is not convex valued).
- We follow an indirect route, via fixed points of a mapping $T(\cdot; \pi)$.
Exogenous Incentive Feasibility

Fix $F \in \mathbb{R}_+$. Maximize $W^0(c)$ over resource feasible allocations c satisfying F-incentive feasibility: for all $t \geq 1 \ y^t \in Y^t$,

$$W(y^t, c) \geq (1 - \beta)u(y_t) + \beta F.$$

Denote the set of feasible c by $C(F)$ and the value of this program $V^*(F)$. If c^\dagger is an equilibrium allocation, then

$$W(y^t, c^\dagger) \geq (1 - \beta)u(y_t) + \beta[\pi W^0(c^\dagger) + (1 - \pi) V^A],$$

and so so $c^\dagger \in C(F^\dagger)$ for $F^\dagger = \pi W^0(c^\dagger) + (1 - \pi) V^A$.
Exogenous Incentive Feasibility

Fix $F \in \mathbb{R}_+$. Maximize $W^0(c)$ over resource feasible allocations c satisfying \(F\)-incentive feasibility: for all $t \geq 1 \ y^t \in Y^t$,

\[
W(y^t, c) \geq (1 - \beta)u(y_t) + \beta F.
\]

Denote the set of feasible c by $\mathcal{C}(F)$ and the value of this program $V^*(F)$.

Theorem

Suppose F is a fixed point of

\[
T(F; \pi) := \pi V^*(F) + (1 - \pi) V^A,
\]

and $c^\dagger \in \mathcal{C}(F)$ is the argmax, i.e., $V^*(F) = W^0(c^\dagger)$. Then F is the only fixed point and c^\dagger is the unique eq allocation and F is its *ex ante* value.
The Fixed Point

Suppose c^\dagger is the eq allocation associated with the fixed point F.

Then c^\dagger is a self-enforcing social norm in a strong sense: it survives the threat of secession by any coalition that reoptimizes over all possible coalition-proof allocations (this is external-incentive feasibility, which is stronger than internal-incentive feasibility).

Fixed point exists as long as the constraint set is nonempty for F in the “relevant” region, which rules out large π.
Properties of $\mathcal{C}(F)$

- Observe that $\mathcal{C}(V^A) \neq \emptyset$.
- Define $\bar{F} := \sup\{F \mid \mathcal{C}(F) \neq \emptyset\}$.
- If $\beta u'(\ell) < u'(h)$ (no incentive to smooth income), then $\bar{F} = V^A$.
Properties of $\mathcal{C}(F)$

- Observe that $\mathcal{C}(V^A) \neq \emptyset$.
- Define $\bar{F} := \sup\{ F \mid \mathcal{C}(F) \neq \emptyset \}$.
- If $\beta u'(l) < u'(h)$ (no incentive to smooth income), then $\bar{F} = V^A$.
- If $\beta u'(l) > u'(h)$, then, $\bar{F} > V^A$: The simple ladder allocation

$$c(y^t) = \begin{cases}
 h - \varepsilon, & y_t = h, \\
 l + 2\varepsilon, & y_{t-1} = h, y_t = l, \\
 l, & y_{t-1} = y_t = l, \\
 l + \varepsilon, & y_t = l, t = 1.
\end{cases}$$

is strictly exogenous incentive feasible at $F = V^A$ (for $\varepsilon > 0$ small).

(Memoryless allocations do not work: need larger lower bound on β.)
Finding the Fixed Point (fixed $\beta > \beta^{FB}$)

$$V = F$$

V^{FB}

V^A

F^{FB}

\bar{F}
Finding the Fixed Point (fixed $\beta > \beta^{FB}$)

$$V^A \leq V = F \leq F^{FB}$$

$$T(F; \pi) = \pi V^*(F) + (1 - \pi) V^A$$

$V^*(F)$

V^F_{FB}

V^A

F^{FB}

$F(\pi) \bar{F}$
Finding the Fixed Point (fixed $\beta > \beta^{FB}$)

\[V = F \]

\[V^F \]

\[V^A \]

\[T(F; \pi) = \pi V^*(F) + (1 - \pi) V^A \]

\[T(F, \pi) = \pi V^*(F) + (1 - \pi) V^A \]

\[F^{FB} \]

\[F(\pi) \]

\[F \]
Finding the Fixed Point (fixed $\beta > \beta^{FB}$)

$$V^F = F$$

$$V^A = T(F; \pi^{FB})$$

$$V = \pi V^*(F) + (1 - \pi) V^A$$

$$T(F; \pi) = \pi V^*(F) + (1 - \pi) V^A$$

$$T(F; 0) = V^A$$

$$T(F; \pi^{FB}) = V^F$$

$$F^{FB}$$

$$F(\pi) \bar{F}$$
Theorem

Equilibrium exists for all $\pi \in [0, 1]$.

1. If $\beta \leq u'(h)/u'(\ell)$, there is no risk sharing in equilibrium.

2. If $\beta > u'(h)/u'(\ell)$, risk sharing occurs in equilibrium. There exists $\bar{\pi} \in (0, 1)$ such that

 1. for $\pi \in [0, \bar{\pi}]$, equilibrium is unique, its ex ante value is increasing in π, equaling $\bar{F} > V^A$ at $\bar{\pi}$, and

 2. for $\pi \in (\bar{\pi}, 1]$, equilibrium allocations are not unique, but all have the same ex ante value of \bar{F}.
Characterizing equilibrium allocations for $\pi^{FB} < \pi \leq \bar{\pi}$

- Allocation discourages secession by h-agents by allocating insurance payments towards the more recently poor. This gives sufficiently high h-agent continuation utility with $c(y^t h) < h$ (the balance $h - c(y^t h)$ goes to current poor agents).

- ℓ-agents’ consumption is initially strictly decreasing in the time they have been poor.

- But at some point, ℓ-agent consumption hits a floor $c_\ell > \ell$.

- c_ℓ is determined by ℓ-incentive feasibility: Be seceding, an ℓ-agent restarts the consumption ladder, which may be more attractive than being longtime poor with significant probability.
What if $\pi > \bar{\pi}$?

- Recall that if c is an equilibrium allocation, then $c \in C(F)$ for $F = \pi W^0(c) + (1 - \pi) V^A$.

- Since

$$\bar{F} = \bar{\pi} V^*(\bar{F}) + (1 - \bar{\pi}) V^A,$$

if $\pi > \bar{\pi}$, equilibrium requires utility burning:

$$W^0(c) < V^*(\bar{F}).$$

- Can be achieved in several ways. For example:

 Postpone the start of risk sharing for just enough periods so that the discounted payoff is \bar{F}.
Summarizing

Utility burning: $W^0(c) < V^*(F)$

Partial insurance: $W^0(c) = V^*(F)$

First best insurance: $W^0(c) = V^*(F)$
Conclusion

1. **Low social capital societies,** $\pi \leq \pi^{FB}(\beta)$.
 - There is a low probability of forming a coalition.
 - Ex ante welfare is linearly increasing in π.
 - Conditional on coalition formation, complete insurance.

2. **Intermediate social capital societies,** $\pi^{FB}(\beta) < \pi \leq \bar{\pi}(\beta)$.
 - There is a medium probability of forming a coalition.
 - Ex ante welfare is increasing in π but at a decreasing rate.
 - Conditional on coalition formation, incomplete insurance declining in π.
 - Allocations feature wasteful inequality but are intertemporally efficient.

3. **High social capital societies,** $\pi > \bar{\pi}(\beta)$.
 - There is a high probability of forming a coalition.
 - Ex ante welfare is flat in π.
 - Conditional on coalition formation, incomplete insurance declining in π.
 - Allocations feature significant inefficiencies (incl. intertemporal).
Thank you!