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Abstract
The same concept can mean different things or be instantiated in different forms, depending on context, suggesting a degree of
flexibility within the conceptual system. We propose that a feature-based network model can be used to capture and predict this
flexibility. We modeled individual concepts (e.g., BANANA, BOTTLE) as graph-theoretical networks, in which properties (e.g.,
YELLOW, SWEET) were represented as nodes and their associations as edges. In this framework, networks capture within-concept
statistics that reflect how properties relate to one another across instances of a concept. We extracted formal measures of these
networks that capture different aspects of network structure, and explored whether a concept’s network structure relates to its
flexibility of use. To do so, we compared network measures to a text-based measure of semantic diversity, as well as to empirical
data from a figurative-language task and an alternative-uses task. We found that network-based measures were predictive of the
text-based and empirical measures of flexible concept use, highlighting the ability of this approach to formally capture relevant
characteristics of conceptual structure. Conceptual flexibility is a fundamental attribute of the cognitive and semantic systems,
and in this proof of concept we reveal that variations in concept representation and use can be formally understood in terms of the
informational content and topology of concept networks.
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The apple information evoked by Bapple pie^ is considerably
different from that evoked by Bapple picking^: The former is
soft, warm, and wedge-shaped, whereas the latter is firm, cool,
and spherical. If you scour your conceptual space for APPLE

information, you will uncover the knowledge that apples can
be red, green, yellow, or brown when old; that they can be
sweet or tart; that they are crunchy when fresh and soft when
baked; that they are naturally round but can be cut into slices;
that they are firm, but mushy if blended; that they can be found
in bowls, in jars, and on trees. Despite the complexity of this
conceptual knowledge, we can generate an appropriate APPLE

instance, with the appropriate features, based on the context

we are in at the time. In other words, the APPLE concept can be
flexibly adjusted in order to enable a near-infinite number of
specific and appropriate APPLE exemplars. This flexibility en-
ables concepts to be represented in varied and fluid ways, a
central characteristic of the semantic system.

The concept APPLE can be instantiated as a Granny Smith or as
a Macintosh, and either one can easily be brought to mind. The
fact that a single conceptual category has many distinct subordi-
nate types that differ from each other is a basic formof conceptual
variation that has been embedded within hierarchical semantic
models (e.g., Collins&Quillian, 1969). But even a representation
of a single instance of APPLE can be flexibly adjusted: activated
propertiesmight be RED and ROUNDwhile shopping,whereas they
might be SWEET and CRISPY while eating. A concept can also be
represented in varied states, each with their own distinct features:
the representation of an APPLE is FIRM versus SOFT before and after
baking, and SOLID versus LIQUID before and after juicing.
Conceptual flexibility is further evidenced in the frequent nonlit-
eral use of concepts: One should stay away from Bbad apples^
and should not Bcompare apples with oranges,^ and one can use
concepts fluidly in novel analogies and metaphors.

Typically, theories assume a Bstatic^ view of concepts, in
which conceptual information is stable across instances. But
this framework makes it hard to model the conceptual shifts

Electronic supplementary material The online version of this article
(https://doi.org/10.3758/s13428-019-01217-1) contains supplementary
material, which is available to authorized users.

* Sarah H. Solomon
sarahsol@sas.upenn.edu

1 Department of Psychology, University of Pennsylvania,
Philadelphia, PA, USA

2 Department of Psychology, Drexel University, Philadelphia, PA,
USA

Behavior Research Methods
https://doi.org/10.3758/s13428-019-01217-1

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-019-01217-1&domain=pdf
https://doi.org/10.3758/s13428-019-01217-1
mailto:sarahsol@sas.upenn.edu


over long and short time-scales that occur during context-
dependent concept activation and learning (Casasanto &
Lupyan, 2015; Yee & Thompson-Schill, 2016). By Bcontext,^
we refer to events or situations, whether in the physical envi-
ronment or in language, that could influence the ways in
which conceptual information is activated and represented.
The flexibility of meaning is also a challenge in the language
domain, and is referred to as enriched lexical processing, type-
shifting, or coercion (e.g., McElree, Traxler, Pickering, Seely,
& Jackendoff, 2001; Pustejovsky, 1998; Traxler, McElree,
Williams, & Pickering, 2005). Though conceptual flexibility
is a pervasive phenomenon, it poses a formidable challenge:
How is conceptual information organized to enable this
flexibility?

We are particularly interested in the structure of individual
concepts (e.g., APPLE, SNOW), rather than the structure of se-
mantic space more broadly. This latter pursuit—the modeling
of semantic space—has already been approached from vari-
ous theoretical orientations and methodologies. Some theoret-
ical approaches claim that the meaning of a concept can be
decomposed into features and their relationships with each
other (e.g., McRae, de Sa, & Seidenberg, 1997; Sloman,
Love, & Ahn, 1998; Smith, Shoben, & Rips, 1974; Tversky,
1977; Tyler & Moss, 2001). For example, the Bconceptual
structure^ account (Tyler & Moss, 2001) represents concepts
as binary vectors indicating the presence or absence of fea-
tures, and argues that broad semantic domains (e.g., ANIMALS,
TOOLS) differ in their characteristic properties and in their pat-
terns of property correlations (e.g., HAS-WINGS and FLIES tend
to co-occur within the ANIMAL domain). Models that represent
basic-level concepts in terms of their constituent features are
valuable because they can be implemented in computational
architectures such as parallel distributed processing models
and other connectionist models. For example, the Bfeature-
correlation^ account (e.g., McRae, 2004; McRae, Cree,
Westmacott, & de Sa, 1999; McRae et al., 1997) pairs empir-
ically derived conceptual feature statistics with a type of con-
nectionist model called an attractor network: Property statis-
tics characterize the structure of semantic space, and the model
can leverage these statistics to settle on an appropriate concep-
tual representation given the current inputs (Cree, McNorgan,
& McRae, 2006; Cree, McRae, & McNorgan, 1999).

However, most instantiations of feature-based models rep-
resent individual concepts with sets of features that are static
and unchanging—a clear limitation if one aims to incorporate
flexibility into conceptual structure. Some recent connection-
ist models have aimed to incorporate context-dependent
meaning (Hoffman, McClelland, & Lambon Ralph, 2018),
and the flexibility and context dependence of individual fea-
tures was addressed in prior work (Barsalou, 1982; Sloman
et al., 1998). For example, Sloman et al. modeled the pairwise
dependencies between features in order to ascertain the muta-
bility or immutability of features. The authors claimed that a

feature is immutable if it central to a concept’s structure: It is
harder to imagine a concept missing an immutable feature
(e.g., a robin without bones), than a mutable feature (e.g., a
jacket without buttons). The authors argued that modeling a
concept in terms of formal pairwise relationships makes it
possible for concepts to be structured as well as flexible.
Whereas the goal of these and other researchers has been to
characterize the role of individual conceptual features (Cree
et al., 2006; Devlin, Gonnerman, Andersen, & Seidenberg,
1998; Sedivy, 2003; Sloman et al., 1998; Tyler & Moss,
2001), our present goal was to examine whether a feature-
based conceptual structure can shed light on the flexibility of
a concept as a whole.

Another way to model conceptual knowledge is to use a net-
work to capture the relationships between concepts in language.
The use of networks to model semantic knowledge has a well-
established history. The early Bsemantic network^models (Collins
& Loftus, 1975; Collins & Quillian, 1969) represent concepts as
nodes in a network; links between these nodes signify associations
between concepts in semantic memory. These networks capture
the extent to which concepts are related to other concepts and
features, and can model the putatively hierarchical nature of con-
ceptual knowledge. Though these models are Bnetwork-based,̂
they are so in a rather informal way. On the other hand, network
science, amathematical descendent of graph theory, has developed
a rich set of tools to study networks in a formal, quantitative
framework (see Barabási, 2016). For example, current network
approaches characterize relationships between concepts in terms
of their word-association strengths or corpus-based co-occurrence
statistics. Word co-occurrence statistics can be extracted from text
corpora and have been used to create probabilistic models of word
meanings (Griffiths, Steyvers, & Tenenbaum, 2007), to represent
semantic similarity (Landauer & Dumais, 1997), and to character-
ize the structure of the entire lexicon (e.g., WordNet; Miller &
Fellbaum, 2007). In a similar approach, empirically-
derived word association data have been used to capture and an-
alyze the structure of semantic space (DeDeyne, Navarro, Perfors,
& Storms, 2016; Steyvers & Tenenbaum, 2005; Van Rensbergen,
Storms, & De Deyne, 2015).

In network science, units and links are referred to as Bnodes^
and Bedges,^ respectively, and the pattern of connections be-
tween nodes can be precisely described, revealing patterns of
network organization. Nodes can represent any number of things
(e.g., cities, people, neurons), depending on the system being
modeled; edges can likewise represent a range of connection
types (e.g., roads, friendship, synapses). Many diverse systems
have been described in network science terms, including the
World Wide Web (e.g., Cunha et al., 1995), social communities
(Wellman, 1926), the nervous system ofCaenorhabditis elegans
(Watts & Strogatz, 1998), and many others (see Boccaletti,
Latora, Moreno, Chavez, & Hwang, 2006). Here we will sum-
marize how network science has been applied, and can be further
extended, to the study of conceptual knowledge.
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Network structure can be characterized at different levels of
organization. For example, the large-scale organization of a
network (i.e., topology) can be characterized as a Bregular,^
Brandom,^ or Bsmall-world^ structure (Figs. 1A–C; Watts &
Strogatz, 1998). In regular networks, each node is connected
to its k nearest neighbors; in random networks, nodes are ran-
domly connected to each other. Regular networks result in long
path lengths and high local clustering (modular processing),
whereas random networks result in short path lengths and min-
imal clustering (integrated processing). Between these two ex-
tremes is the small-world network, which contains high-
clustering as well as a few random, long-range connections;
this results in the Bsmall-world^ phenomenon, in which each
node is connected to all other nodes with relatively few degrees
of separation. A small-world topology thus maximizes the effi-
cient spread of information, enables both modular and integrat-
ed processing, and supports network complexity (Bassett &
Bullmore, 2006; Watts & Strogatz, 1998). Much work has re-
vealed that naturally evolving networks have small-world to-
pology (Bassett & Bullmore, 2006), including functional brain
networks (Bassett et al., 2011; Salvador, Suckling,
Schwarzbauer, & Bullmore, 2005) and language networks (i
Cancho & Solé, 2001; Steyvers & Tenenbaum, 2005). These
systems exhibit small-world topologies presumably because
this structure facilitates local Bmodular^ processing as well as
easy communication via a few long-range connections.

The semantic network approaches described above use
nodes to represent individual words, and edges to represent their
co-occurrence statistics or association strengths. Once modeled
in this way, network structure can be quantitatively analyzed and
related to other phenomena. As we mentioned above, it has been
suggested that human language networks exhibit small-world
properties (i Cancho & Solé, 2001; Steyvers & Tenenbaum,
2005). Additionally, semantic networks appear to exhibit an
Bassortative^ structure,meaning that semantic nodes tend to have
connections to other semantic nodes with similar characteristics
(e.g., valence, arousal, and concreteness; Van Rensbergen et al.,
2015). A spreading-activation model applied to these word-
association networks makes accurate predictions of weak simi-
larity judgments—for example, between the unrelated concepts
of Bteacher^ and Bcup^ (De Deyne et al., 2016). Furthermore,
Steyvers and Tenenbaum (2005) reported that the degree of a
word in a language network (i.e., how many links it has to other
word nodes) predicts aspects of language development and pro-
cessing: A high-degree word, for instance, is likely to be learned
at a younger age and engenders faster reaction times on a lexical
decision task. These network models are valuable because se-
mantic structure can be analyzed using a rich set of network
science tools. However, current network-based implementations
do not provide the internal conceptual structure that is
necessary—we argue—to model conceptual flexibility. In other
words, it is hard to provide a model of conceptual flexibility

Fig. 1 Avisualization of network topologies and measures. Networks are
defined in terms of nodes (circles) and edges (lines). Network topologies
fall into three main categories: (A) regular, (B) small-world, and (C)
random (Watts & Strogatz, 1998). Most naturally evolving networks ex-
hibit small-world topology, including neural networks and language net-
works. Regular and small-world networks have high clustering. (D)
Modularity reflects the extent to which a network can be partitioned into
a set of densely connected Bmodules,^ represented here in distinct colors.

(E) Some nodes participate in multiple modules, reflecting a diversity of
connections; this is captured in a Bdiversity coefficient.^ A diverse node
(yellow) participates in multiple modules (green, purple), whereas other
nodes (gray) do not exhibit these diverse connections. (F) A network has
strong core–periphery structure if it can be characterized in terms of a
single densely connected Bcore^ (yellow) and a sparsely connected
Bperiphery^ (gray)
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(in the sense described above) when the features that are being
flexibly adjusted are not explicitly represented.

We believe that a feature-based conceptual framework
paired with network science techniques provides a platform
through which conceptual flexibility can be quantified and
explored. Here we introduce a new approach in which con-
cepts are represented as their own feature-based networks, and
we work through an example as a proof of concept. We cre-
ated concept-specific networks for 15 concepts (e.g.,
CHOCOLATE, GRASS, KNIFE), in which the nodes represented
conceptual features (e.g., BROWN, GREEN, METAL, SHARP,
SWEET) and edges represented how those features co-
occurred with each other within each concept. The creation
of such networks thus required the calculation of within-
concept feature statistics, which may describe how a concept’s
information may be appropriately adjusted to form valid, yet
varied, concept representations. Though here we were inter-
ested in analyzing the structure of basic-level concepts, these
concept networkmethods could theoretically be applied at any
level of the conceptual hierarchy. Our specific goals were to
(1) show that creation of such networks is possible, (2) con-
firm that these networks contain concept-specific information,
and (3) demonstrate that these networks permit the extraction
of measures that relate to conceptual flexibility.

We hand-picked a selection of measures to extract and an-
alyze from our concept networks. As we mentioned above,
small-world networks (Fig. 1B) are characterized by high net-
work clustering, such that a node’s neighbors also tend to be
neighbors with each other. Previous work has shown a rela-
tionship between the clustering within semantic networks and
individual differences in creativity (Kenett, Anaki, & Faust,
2014); because creativity relates to flexible conceptual pro-
cessing, the clustering coefficient was one of our measures
of interest. In small-world networks, this clustering paired
with random connections results in network modules, which
are communities of nodes with dense connections between
them.Modularity is a formal measure that captures the extent
to which a given network can be partitioned in this way (Fig.
1D). A network with a modular structure is able to activate
distinct, specialized sets of nodes; because this might translate
into a concept’s ability to activate distinct sets of features,
modularity was another measure of interest. In modular net-
works, each node can also be characterized in terms of its
diversity of connections across network modules (Fig. 1E).
Some nodes may have links within only one module, whereas
others may have links that are highly distributed across differ-
ent network modules. Because relatedmeasures are often used
to define network hubs that support flexible network process-
ing (Sporns, 2014; van den Heuvel & Sporns, 2013), we were
interested in exploring the relation between network diversity
and flexible concept use. Another kind of network topology is
core–periphery structure (Fig. 1F), in which a network is char-
acterized by one highly connected core and a sparsely

connected periphery. Core–periphery organization, originally
observed in social networks (Borgatti & Everett, 2000), has
been applied to functional networks in neuroimaging data
(Bassett et al., 2013). A core–periphery structure in a concept
network would reflect one set of highly associated features
(i.e., the core), but also a substantial collection of features that
are weakly associated with one another (i.e., the periphery).
We included core–periphery structure as a measure of interest
because we hypothesized that the Bstiff^ core and/or
Bflexible^ periphery of a concept network (Bassett et al.,
2013) might relate to flexible concept use.

In this proof of concept, we extracted measures of network
organization from concept-specific networks (i.e., clustering,
modularity, core–periphery, diversity) and explored what
these structural characteristics might predict about how a con-
cept is used. Conceptual flexibility manifests when a concept
is recruited to represent varied subordinate exemplars, when a
concept word is used in a variety of language contexts, and
when a concept is differentially activated depending on the
task context. We therefore aimed to relate our network mea-
sures of interest to a measure of semantic diversity (SemD;
Hoffman, Lambon Ralph, & Rogers, 2013), calculated from
text-based statistics. We also collected data on two tasks relat-
ed to conceptual flexibility—a figurative-language task (com-
prehension of novel similes) and a widely used measure of
creative cognition, the alternative-uses task (AUT)—to ex-
plore whether network structure relates to how a concept is
flexibly used in different language and task contexts. Here we
present one variation of the concept network approach,
implementing a particular set of methodological decisions on
a particular set of concepts, to show the potential of this frame-
work to provide new ways to characterize the structure and
flexibility of conceptual knowledge.

Method

Network methods

Introduction to methods

Our goal was to construct feature-based networks that would
capture each concept’s specific constellation of features and
the ways those features relate to each other. There are, how-
ever, many ways one could create such networks. Here we
walk through one possible instantiation of this method, to
reveal the feasibility of this approach and suggest the kinds
of analyses that could be used to examine the relationship
between concept network topology and conceptual flexibility.
We hope that future researchers interested in conceptual
knowledge will be able to use, improve, and expand upon
these methods. Our data and code are avai lable
online: https://osf.io/vsa2t/.
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We collected data in two rounds, and we refer to these data
as Set 1 and Set 2. We collected data for five concepts in Set 1
as a first attempt to construct concept networks. Once we
established the success of these methods, we collected data
for another ten concepts in Set 2. The concepts in Set 1 were
CHOCOLATE, BANANA, BOTTLE, TABLE, and PAPER, and the con-
cepts in Set 2 were KEY, PUMPKIN, GRASS, COOKIE, PICKLE,
KNIFE, PILLOW, WOOD, PHONE, and CAR. When statistics are
reported separately for the two sets, we report Set 1 followed
by Set 2. Once the networks are constructed and we analyze
network measures and their relation to other conceptual mea-
sures, the sets are no longer treated separately, and each con-
cept is treated as an item (N = 15). We use Spearman’s rank
correlation in all correlational analyses, due to this small sam-
ple size. All participants were compensated according to cur-
rent standard rates, and consent was obtained for all partici-
pants in accordance with the University of Pennsylvania IRB.

Network construction

The first step was to define our nodes. Since our nodes represent
individual conceptual properties, we compiled a list of properties
that could be applied to all of our concepts within each set.
Participants (N = 66, N = 60) were recruited from Amazon
Mechanical Turk (AMT) and were asked to list all of the prop-
erties that must be true or can be true for each concept. It was
emphasized that the properties do not have to be true of all types
of the concept. Participants were required to report at least ten
properties per concept, but there was no limit on the number of
responses they could provide. Once these data were collected,
we organized the data as follows. For each concept, we col-
lapsed across different forms of the same property (e.g., Bsugar,^
Bsugary,^ Btastes sugary^), and removed responses that were too
general (e.g., Btaste,^ Bcolor^). This was a highly data-driven
approach; however, see the Bootstrap Analysis section for an
analysis of robustness across properties. For each concept, we
only included properties that were given by more than one par-
ticipant. We then combined properties across all concepts to
create our final list of N properties (N = 129, N = 276) that were
represented as nodes in our concept networks.

The same AMT participants who provided conceptual prop-
erties also provided subordinate concepts (from now on referred
to as Bsubordinates^) for each of the concepts. For each concept,
participants were asked to think about that object and all the
different kinds, forms, types, or states in which that object can
be found. Participants were required to make at least five re-
sponses and could make up to 15 responses. For each concept,
we removed subordinates that corresponded to a property for that
concept (e.g., Bsweet chocolate^), subordinates that were highly
similar to other subordinates (e.g., Bwhite chocolate chip
cookie,^ Bchocolate chip cookie^), and responses that were too
specific, including some brand names (e.g., BChiquita banana^).
Though this was a data-driven approach, there was some degree

of subjectivity in the final subordinate lists; see the Bootstrap
Analysis section for an analysis of robustness across subordi-
nates. In Set 1, we only included responses that were given by
more than one participant; due to the increased number of par-
ticipants and responses in Set 2, we included responses that were
given by more than two participants. In both sets, we ended up
with a set of K subordinates for each concept (K:M = 17, SD =
3.14). The included and excluded subordinates for all concepts
are presented in Supplementary Table 1.

A separate set of AMT participants (N = 198, N = 108) were
presentedwith one subordinate of each of the concepts in random
order (e.g., Bdark chocolate,^ Bfrozen banana^) and asked to
select the properties that are true of the specific subordinates
(see Fig. 2A). The full list of N properties was displayed in a
multiple-choice format. For each subordinate, responses were
combined across participants; we thus know, for each subordi-
nate, howmany participants reported each of theN properties. In
the networks we report here, we used weighted subordinate vec-
tors in which values indicate the percentage of participants who
reported each property. However, to reduce noise, a subordinate
property was only assigned a > 0 weight if it was reported by
more than one participant; if only one participant reported a
particular property for a particular subordinate, the weight = 0.
For each concept, we excluded properties that were not present in
any of its subordinates, resulting in a smaller set of Nc properties
that were present in ≥ 1 subordinates (Nc:M = 126, SD = 32.2).
Each concept’s data thus included a set ofK subordinates, each of
which corresponded to an Nc-length vector that indicates each
property’s weight in that subordinate.

Importantly, these data for each concept can also be consid-
ered a set of Nc properties, each corresponding to a vector indi-
cating that property’s weight in each of the subordinates. For
example, if a concept was described by ten subordinates (K)
and 100 meaningful properties (Nc), we have 100 ten-element
vectors, each of which represents the contribution of a single
property across the subordinates of the concept. The premise
behind this concept-network construction was that the ways in
which these patterns of property contributions relate to each oth-
er, within a single concept, might be an important aspect of
conceptual structure. Our networks thus captured the pairwise
similarities between properties—that is, between the Nc K-ele-
ment vectors. To do this, many different distance metrics could
be used (e.g., Euclidean, Mahalanobis, or cosine); we used the
pdist() function in MATLAB, which includes many distance
measure alternatives. In the analysis and results we report here,
we constructed our networks on the basis of Mahalanobis dis-
tance, a measure suited for high-dimensional data and that takes
the variance between subordinates and the correlations between
subordinates into account. However, there are many other op-
tions, the choice of which might depend on other analysis deci-
sions. For example, if the subordinate concepts are binary instead
of weighted, a Bmatching^ measure such as the Jaccard distance
might be more appropriate.
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First, the distance between each of the Nc K-element vectors
was calculated. This resulted in a square, symmetrical Nc × Nc
matrix that contains the distance between each pair of properties.
These values were scaled between 0 and 1 and converted to a
similarity measure by subtracting these values from 1. We thus
created a network for a single concept that captures pairwise
property–property similarities; this represents the patterns of
property relationships across subordinateswithin a given concept
(see Fig. 2). Here we used weighted networks, where edges
represent similarity measures between 0 and 1, though it would
also be possible to use unweighted networks by binarizing these
similarity values according to a given threshold.We repeated this
(weighted) network construction process for each of the 15 con-
cepts. These final networks were then analyzed using standard
network science methods (see the Network Analysis section).

A simple measure of concept stability The subordinate-
property data for each concept enabled us to calculate a simple
measure of conceptual stability that did not involve treating
concepts as networks. For each concept, we counted the
number of properties that were represented across all of that
concept’s subordinates (i.e., weighted value greater than zero).
We then divided this number by Nc in order to calculate the
proportion of properties that were universally consistent for that
concept. We interpreted this measure as a measure of concep-
tual stability, because higher values indicate that a large number
of properties are not variable across conceptual instances. We
refer to this measure as a concept’s simple stability and consider
it to be an inverse measure of conceptual flexibility.

Classification analysis

Our main goal was to extract concept-specific measures from
our networks, and this goal would only be justified if the
network structures themselves were concept-specific. Even
though different sets of data contributed to the different con-
cept networks, it was not necessarily the case that the resulting
networks would differ from each other. It could theoretically
be that property relationships are consistent across the entire
semantic domain; indeed, this has been the premise of the
neural-network models of semantic knowledge created thus
far (e.g., Cree et al., 2006; Cree et al., 1999; McClelland &
Rogers, 2003). However, our goal was to capture concept-
specific property relationships, so our first task was to test
whether we succeeded in this goal.

If our concept network models captured concept-specific
information, the networks should be able to successfully dis-
criminate between new concept exemplars. Exemplar data
were generated from sets of photographs for each concept
(see Fig. 3); all subordinates were represented. AMT partici-
pants (N = 60, N = 30) were shown one image per concept and
asked to imagine interacting with this object in the real world
and to consider what properties it has. The full list of N prop-
erties was displayed in multiple-choice format, and partici-
pants were asked to select the properties that they believed
applied to the object in the image. Individual participants’
responses to each exemplar image were represented as N-
length property vectors and were used as test data in the clas-
sification analysis. The test data comprised 300 property

Fig. 2 Visualizing the CHOCOLATE network. (A) The CHOCOLATE concept
can be broken down into a range of subordinates, which can each be
defined as a property vector (columns). Each property can also be defined
as a vector (rows), which can be used to calculate within-concept property
relationships. Only a small set of potential subordinates and properties are
shown here, for simplicity. (B) A simple schematic of the CHOCOLATE

network that reveals a selection of potential property relationships.
Certain properties might cluster together in the network—for example,

EDIBLE, SWEET, BROWN, CREAMY and MESSY, LIQUID, HOT. (C) The actual

CHOCOLATE network we constructed on the basis of the empirical property
statistics. Our constructed CHOCOLATE network was binarized (threshold =
90%) to reduce the number of properties in order to ease visualization.
Properties are arranged in order of degree (number of links), from low
degree (white) to high degree (blue). The image was generated using
cytoscape (Shannon et al., 2003)
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vectors (Set 1, 60/concept; Set 2, 30/concept); classification
analyses were run separately for Sets 1 and 2.

By performing eigen-decomposition on each adjacency
matrix (i.e., concept network) we could assess the extent to
which a vector would be expected given an underlying net-
work structure (e.g., Huang et al., 2018; Medaglia et al.,
2018). For each adjacency matrix A, V was the set of Nc
eigenvectors, ordered by eigenvalue. M was the number of
ordered eigenvectors to include in the analysis and designated
a subset of V. For each eigenvector v, we found the dot product
with signal vector x, which gave us the projection of x on that
dimension in the eigenspace of A. That is, it gave us an
Balignment^ value for that particular signal and that particular
eigenvector. We could include all eigenvectors inM by taking
the sum of squares of the dot products for each eigenvector.
The alignment value for each signal was defined as

~x ¼ ∑M
i¼1 vi∙xð Þ2 ð1Þ

where x is a property vector, M is the number of eigenvec-
tors to include in alignment (sorted by eigenvalue), vi is one
of the M eigenvectors of the adjacency matrix, and ~x is the
scalar alignment value for signal x with adjacency matrix A,
given the eigenvectors 1–M. In our case, signal x was a
property vector corresponding to a particular exemplar im-
age (e.g., Fig. 3), which we aligned with each of the concept
networks. Each exemplar was restricted to the properties
included in each concept model before transformation; that
is, the exemplar data (x) were reduced to NC-length vectors.
The concept network that resulted in the highest alignment
value (~xÞ was taken as the Bguess^ of the classifier; each
exemplar was classified either correctly (1) or incorrectly
(0). We averaged these data across all exemplars to calculate
the average classifier accuracy.

To calculate a baseline measure of classification accuracy,
we created traditional vector models for each concept. These
models were similar to those used elsewhere in the literature
(McRae, 2004; McRae et al., 1999; McRae et al., 1997; Tyler
& Moss, 2001). For each concept, we averaged the K subor-
dinate vectors resulting in an Nc-length vector containing
mean property strength values. Each concept’s traditional vec-
tor model and network model contained the same conceptual
properties. We ran a separate classification analysis using
these traditional models and a correlational classifier. Each
exemplar property vector was correlated with each of the tra-
ditional concept vector models; the concept model that result-
ed in the highest correlation value was taken as the guess of
the classifier. We calculated average measures of classifier
performance using the same methods described above.

Network analysis

We extracted network metrics from our concept networks using
the Brain Connectivity Toolbox (Rubinov & Sporns, 2010). In
the discussion below, the set of nodes in each network is desig-
nated as N, and n is the number of nodes. The set of links is L,
and l is the number of links. The existence of a link between
nodes (i, j) is captured in aij: aij = 1 if a link is present and aij =
0 if a link is absent. Theweight of a link is represented aswij, and
is normalized such that 0 ≤wij ≤ 1. lw is the sum of all weights in
the network. The network metrics we extracted included cluster-
ing coefficients, modularity (Q), core–periphery structure, and
diversity coefficients (Fig. 1), for the reasons described above.

The clustering coefficient captures the Bcliquishness^ of a
network—that is, the extent to which a node’s neighbors are also
neighbors of each other. The clustering coefficient is calculated
for each node individually (Ci), by calculating the percentage of

Fig. 3 Example images used to generate test data in the classification
analysis. The test data used in the classification analysis were generated
from participants who made property judgments on images of conceptual

exemplars. A yellow cross indicates the object to be considered. The
example images are for grass (top) and cookie (bottom)
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potential pairwise connections among the neighbors of node i. A
Btriangle^ is formedwhen node i is linked to j and hwhile j and h
are also linked to each other; the number of existing triangles can
be calculated for each node (ti; Eq. 2), which is used to calculate
the proportion of possible triangles that exist for each node. This
proportion is averaged across nodes to result in the clustering
coefficient (C; Eq. 3) for a network (Rubinov & Sporns, 2010;
this can also be calculated for weighted networks):

ti ¼ ∑h; j∈Naijaihajh ð2Þ

C ¼ 1

n
∑i∈NCi ¼ 1

n
∑i∈N

2ti
ki ki−1ð Þ ð3Þ

Modularity (Q) is a metric that describes a network’s com-
munity structure. We can attempt to partition a weighted net-
work into sets of nonoverlapping nodes (i.e., modules) such
that within-module connections are maximized and between-
module connections are minimized. Some networks exhibit
more of a modular structure than others; Qw is a quantitative
measure of modularity for each weighted network (Eq. 4;
Rubinov & Sporns, 2010), which is defined as

Qw ¼ 1

lw
∑i; j∈N wij−

kwi k
w
j

lw

� �
δmi;m j ð4Þ

where mi is the module containing node i, and δmi;m j = 1 if

mi =mj, and 0 otherwise. The modularity calculation is sto-
chastic; in our analysis we performed a modularity partition
10,000 times and averaged across these iterations to calcu-
late a mean Q coefficient for each concept . Nodes may have
connections to many different modules, or have very few

such connections. The diversity coefficient (h�i Þ is a mea-
sure ascribed to individual nodes that reflects the diversity of
connections that each node has to modules in the network.
This is a version of the participation coefficient, and is cal-
culated using normalized Shannon entropy; we have previ-
ously used entropy to model property flexibility, and so
predicted that diversity would be a good candidate for a
network-based measure of conceptual flexibility. The diver-
sity coefficient (Eq. 5; Rubinov & Sporns, 2011) for each
node is defined as

h�i ¼ −
1

logm
∑u∈Mp

�
i uð Þlogp�i uð Þ ð5Þ

where p�i uð Þ ¼ s�i uð Þ
s�i

, s�i uð Þ is the strength of node i within

module u, and m is the number of modules in modularity
partition M. We averaged diversity coefficients across nodes
in a network to obtain a mean measure of diversity for each
concept network. The diversity coefficient is based on Q,
which is stochastic; we thus calculated a diversity coefficient
for each of the 10,000 modularity partitions, and averaged
across these iterations for each concept.

Core–periphery structure is another way to describe the
structure of a network. Here, we attempted to partition a net-
work into two nonoverlapping sets of nodes such that connec-
tions within one set were maximized (i.e., the Bcore^) and
connections in the other were minimized (i.e., the
Bperiphery^). Core–periphery fit (QC) is a quantitative mea-
sure of how well each network can be partitioned in this way
(Eq. 6), and for weighted networks is defined as

QC ¼ 1

vc
∑i; j∈CC

wij−γCw
� �

−∑i; j∈Cp
wij−γCw

� �h i
ð6Þ

where Cc is the set of all nodes in the core,Cp is the set of nodes
in the periphery, w is the average edge weight, γC is a parameter
controlling the size of the core, and vC is a normalization con-
stant (Rubinov, Ypma, Watson, & Bullmore, 2015).

Bootstrap analysis

The properties and subordinates used to create these net-
works were chosen by study participants, not the experi-
menters. However, there was a certain degree of subjec-
tivity in how the final lists were constructed, and the
properties and subordinates reported by the participants
are unlikely to fully represent the total possible sets. We
thus ran bootstrap analyses to explore whether relation-
ships between network and non-network measures were
dependent on the particular sets of properties and subordi-
nates used in our network construction.

Bootstrapping over subordinates The goal of this analysis
was to generate a distribution of correlation values for a spe-
cific pair of measures. In each iteration of the analysis, new
networks were constructed; for each concept, a random sub-
ordinate was removed before network construction. Network
measures were extracted from these 15 concept networks and
correlated with another measure of choice, and this correlation
value was recorded. We performed 1,000 iterations of this
analysis, resulting in a distribution of 1,000 correlation values
along with a 95% confidence interval.

Bootstrapping over properties The goal of this analysis was to
generate a distribution of correlation values for a specific pair
of measures. In each iteration of the analysis, new networks
were constructed; for each concept, a random 10% of its
meaningful properties were removed (NC) before network
construction. Network measures were extracted from these
15 concept networks, and correlated with another measure of
choice: this correlation value was recorded. We performed
1,000 iterations of this analysis, resulting in a distribution of
1,000 correlation values along with a 95% confidence
interval.
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Figurative-language task (similes)

The structure and flexibility of a concept likely has implica-
tions for how the concept can be used in creative contexts,
such as in figurative-language comprehension (e.g., Sloman
et al., 1998). We therefore set out to collect data reflecting the
extent to which a given concept is easily interpreted in a fig-
urative context, and to explore the characteristics of concep-
tual structure that may facilitate this creative process.

Participants

A total of 300 AMT participants contributed data to this study
and were compensated according to current standard rates.
Consent was obtained for all participants in accordance with
the University of Pennsylvania Institutional Review Board
(IRB).

Stimuli

Experimental similes of the form BX is like a Y^ were con-
structed using the 15 target concepts in the Bvehicle^ (Y) po-
sition. Fifteen additional concepts were used in the Btenor^ (X)
position of the similes: TRUTH, TIME, CONVERSATION, SADNESS,
CITY, LIFE, DREAM, CAREER, FAMILY, FRIENDSHIP, GOVERNMENT,
SCHOOL, HAPPINESS, CELEBRATION, BOREDOM. These tenor con-
cepts were chosen to minimize sensorimotor content, but oth-
erwise were chosen randomly. The 15 target concepts and 15
tenor concepts were fully crossed, resulting in 225 novel sim-
iles (e.g., BTruth is like a key,^ BHappiness is like chocolate,^
BBoredom is like a bottle^). The experimental similes were
split into 15 lists consisting of 15 similes each; each target
concept and each tenor concept occurred once within each
list. An additional ten similes were taken from Blasko and
Connine (1993) and were used as control similes; five were
Bhigh-apt^ similes (e.g., BA book is like a treasure chest^) and
five were Bmoderate-apt^ similes (e.g., BStars are like
signposts^). Each list (and therefore each of the experimental
similes) was seen by 20 participants. The control similes were
seen by all 300 participants.

Task

Each participant read 25 total similes (10 control similes, 15
experimental similes) presented in a randomized order. On
each trial, the simile was presented at the top of the screen,
with two sliding-scale questions beneath. To assess simile
meaningfulness, participants were asked: BHow meaningful
is this figurative sentence?^ ranging from BIt does not have
any meaning at all^ to BIt has a very strong meaning.^ To
assess simile familiarity, participants were asked: BHow famil-
iar is this figurative sentence?^ ranging from BIt is not familiar
at all^ to BIt is very familiar.^ These questions were motivated

by prior work on simile comprehension (Blasko & Connine,
1993). For both questions, participants were asked to slide a
bar in order to make their desired response. Values on both
questions ranged from 0–100, but these values were not
displayed to participants.

Analysis

Meaningfulness and familiarity ratings for each simile were sep-
arately averaged across participants (experimental: N = 20, con-
trol: N = 300). Inspection of the control similes borrowed from
Blasko and Connine (1993) revealed that our measures were
sensitive to simile characteristics reported elsewhere: The five
high-apt similes were judged as being more meaningful than the
five moderate-apt similes [t(8) = 7.20, p < .0001]; they were also
judged as being more familiar [t(8) = 5.60, p < .001].

The meaningfulness and familiarity ratings across all ex-
perimental and control similes are shown in Fig. 4. Here it is
clear that the meaningfulness and familiarity ratings of our
experimental similes are not categorically different from the
similes reported in the literature, suggesting that our construct-
ed similes—though novel and pseudo-randomly generated—
were meaningful enough for further analysis. The control sim-
iles were not included in any subsequent analysis.

Across the 225 experimental similes, the meaningfulness
and familiarity ratings were highly correlated [r(223) = .83, p
< .0001]; since this tight correspondence made it difficult to
tease apart the separate measures, we averaged the meaning-
fulness and familiarity measures within each simile to con-
struct a composite measure we refer to as simile Bgoodness.^

Fig. 4 Simile ratings. The relationship between simile meaningfulness
and familiarity ratings for the target similes (blue) and control similes.
As expected, the high-apt control similes (red) were rated as more mean-
ingful than the moderate-apt control similes (pink). The range of mean-
ingfulness and familiarity ratings for our target similes subsumes the
range of the control similes. Since meaningfulness and familiarity were
highly correlated, we averaged these measures to create a single measure
of simile goodness
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These simile goodness measures were then averaged with re-
spect to each target concept; that is, the goodness ratings for
the 15 similes that contained the same target concept (e.g.,
Bchocolate^) were averaged together (e.g., BTruth is like
chocolate,^ BHappiness is like chocolate^). This resulted in
a single simile goodness measure for each of our 15 target
concepts.

Alternative-uses task

The AUT is a widely used measure of creative cognition in
which participants generate novel uses for common objects.
To further explore the relationships between conceptual struc-
ture and flexible concept use, we set out to collect data
reflecting the extent to which a given concept can be re-
imagined in creative ways.

Participants

A total of 28 AMT participants generated novel uses in the
AUT, and an additional 25 AMT participants provided ratings
on these responses. All participants were compensated accord-
ing to current standard rates. Consent was obtained for all
participants in accordance with the University of
Pennsylvania IRB.

Alternative-uses task

Participants (N = 28) generated alternative uses for the 15
concepts. They were instructed to think of as many novel uses
of each object as they could, that their responses should be
plausible but significantly different from the common use of
the object, and that there were no right or wrong answers. On
each trial, the concept label appeared above blank response
boxes. Participants had 60 s to answer with as many alterna-
tive uses as they could. After 60 s had passed, the next trial
immediately began. The presentation order of the 15 concepts
was randomized.

After these data were collected, we removed responses that
were not task-relevant (e.g., BI can’t think of anything^) and
terminal responses that were incomplete (due to the strict 60-s
time limit). The number of responses given by each participant
for each concept was recorded, and these values were aver-
aged across participants: this resulted in a measure that
reflected the mean number of alternative uses generated for
each of the 15 concepts (M = 3.24, SD = 0.39).

From the full set of responses, we selected the first response
from each participant for each of the 15 concepts: this resulted
in a set of 420 alternative uses (28 per concept). These re-
sponses were edited such that they began with a verb (e.g.,
BUse as a hat,^ BUse as a bowling ball,^ BMake pie^). This set
of responses was rated by an additional set of participants in
the next stage of this study.

Alternative-use ratings

An additional set of participants (N = 25) provided ratings on
the alternative-use data described above. Participants were
told that they would be judging other participants’ responses
on an AUT, which was used to study creative thinking. On
each trial, they were presented with a concept label (e.g.,
PUMPKIN) and one alternative-use response beneath (e.g.,
BUse as a hat^). Participants were asked to make three
multiple-choice responses on each trial. The first two ques-
tions were: BWould this work?^ (yes/maybe/no) and BHave
you seen someone use this object to do this before?^ (yes/no).
These questions were not central to our aims of this study, and
the corresponding data will not be reported here. The third
question, which provided our main measure of creativity,
asked participants to rate each response as one of the follow-
ing: (1) Very obvious/ordinary use, (2) Somewhat obvious use,
(3) Nonobvious use, (4) Somewhat imaginative use, and (5)
Very imaginative/recontextualized use. The design of this
question was motivated by Hass et al. (2018), in which good
reliability was obtained for ratings on a similar AUT. Each
participant rated 80 total responses, which were approximate-
ly evenly distributed across the 15 concepts; trials were pre-
sented in a randomized order. Each alternative-use response
was rated by five different participants.

For the main creativity measure, ratings (1–5) for each
alternative-use response were averaged across the five partic-
ipants. The mean ratings of creativity for each alternative use
were then averaged within each concept, resulting in a mea-
sure that reflects the mean creativity score of alternative-use
responses for each of the 15 concepts (M = 2.91, SD = 0.45).

Results

Classification results

To determine whether our concept networks contained
concept-specific information, we ran a classification analysis
using eigen-decomposition for both Set 1 and Set 2. We ran
multiple analyses using different ranges of eigenvectors,
which were sorted by eigenvalue (positive to negative). We
started by only using the first eigenvector in each of the con-
cept networks and determined whether this dimension alone
could be used to classify the property vector as one of the five
concepts in Set 1 or ten concepts in Set 2. One dimension was
enough to classify exemplars in both Set 1 (mean accuracy =
.31, SE = .03, chance = .20) and Set 2 (mean accuracy = .53,
SE = .03, chance = .10). Classification accuracy in both Set 1
and Set 2 continued to increase as more eigenvectors were
included in the analysis (Fig. 5), with performance leveling
off around 22–25 eigenvectors. The network-based classifica-
tion accuracy reached the performance of a more traditional
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vector-based classifier (rightmost point on each graph), which
was successful at classifying the exemplars in Set 1 (mean
accuracy = .85, SD = .06, chance = .20) and Set 2 (mean
accuracy = .84, SD = .10, chance = .10). The successful clas-
sification of conceptual exemplars using our concept network
models suggests that the structures of these networks are con-
cept-specific. We can now extract and analyze traditional net-
work science measures from these concept-specific networks
in order to examine the relationships between network topol-
ogy and flexible concept use.

Network measures of conceptual structure

We extracted network measures from 15 concept networks and
explored how they relate to text-based and empirical measures
of conceptual flexibility. The correlations between all network
measures, along with their means and standard deviations, are
shown in Table 1. Hoffman et al. (2013) used word co-
occurrence statistics to quantify the context-dependent varia-
tions in word meanings found in language. To capture
Bsemantic ambiguity^ and Bflexibility of word usage^ in a
computational framework, the authors provide a measure of
semantic diversity (SemD) based on latent semantic analysis
(LSA; Hoffman et al., 2013). A high-SemD item is a word that
occurs in diverse language-based contexts—that is, the verbal
context surrounding instances of the word are relatively dissim-
ilar in meaning. Based on the assumption that flexibility of
word usage reflects flexibility of meaning, we extracted
SemD values for our 15 concepts to determine whether SemD
predicts any of our network measures of interest.

We hypothesized that network modularity, network diversi-
ty, core–periphery structure, and network clustering might re-
late to conceptual flexibility, andwe tested whether our network

measures correlated with SemD (Hoffman et al., 2013) across
our 15 concepts. First we examined modularity and diversity—
these measures capture the extent to which a network can be
partitioned into distinct clusters of nodes (Bmodules^) and the
extent to which individual nodes participate in these modules,
respectively; SemD was not predicted by network modularity
(p > .2), nor by network diversity (p > .5).

Next, we examined core–periphery structure—this mea-
sure reflects the extent to which a network can be partitioned
into one densely connected core and a sparsely connected
periphery; SemD was positively predicted by core–periphery
fit (r = .71, p = .003; Fig. 6A). Core–periphery fit was not
significantly related to eitherK (p = .16),Nc (p > .3), or simple
stability (p > .3). Furthermore, core–periphery fit predicted
SemD when separately controlling for each of these measures
in a general linear model (all ps < .035). Our interpretation of
the positive relationship between SemD and core–periphery
fit is that the presence of a Bperiphery^—that is, a set of weak-
ly associated features—relates to increased variation of poten-
tial word meanings.

The last network measure we explored was the clustering
coefficient, which reflects the overall connectivity of a network;
SemD was negatively predicted by clustering (r = – .70, p =
.004; Fig. 6B). Clustering was not significantly related to either
K (p = .18),Nc (p> .4), or simple stability (p > .7). Furthermore,
clustering predicted SemD when separately controlling for each
of these measures in a general linear model (all ps < .04), except
for K (p = .12). We interpret this negative relationship between
SemD and network clustering as reflecting the fact that networks
with high clustering are too intraconnected to facilitate the flex-
ible activation of varied sets of features.

Core–periphery fit and network clustering were signifi-
cantly negatively related to each other (r = – .56, p = .03).

Fig. 5 Classification results. We ran a range of classification analyses
using different numbers of eigen-dimensions from our concept networks.
The classification was successful using ≥ 1 dimensions in both Sets 1 and

2. Classification performance increased as more dimensions were added,
such that the performance of the networkmodels reached the performance
of the vector-based models (single data points)
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No other measures of interest were significantly correlated,
though there was a trend toward a negative relationship be-
tween modularity and clustering (r = – .46, p = .08), and
diversity and core–periphery fit were marginally positively
correlated (r = .45, p = .095).

Finally, we explored whether SemD related to our simple
stability measure, which reflects the extent to which the prop-
erties in a concept are represented across all of that concept’s
subordinates. We observed a significant negative relationship
between SemD and simple stability (r = – .52, p = .046).
Simple stability did not relate significantly to any of the net-
work measures of interest (ps > .3).

Bootstrap analysis

We ran bootstrap analyses to test the robustness of the
network–SemD relationships when only a subset of sub-
ordinates or a subset of properties was used to create the
concept networks. These tests were done to confirm that

the network measures we report here are not dependent on
the exact subordinates and the exact properties that went
into network construction.

The results of the leave-one-out subordinate analysis
are shown in Fig. 7A. For each of the four network
measures of interest, the bootstrap analysis resulted in a
distribution of correlations with SemD (blue histograms),
along with a mean and 95% confidence interval (pink
bars). The distribution of core–periphery correlations
with SemD was significantly greater than zero (p = 0),
and the distribution of connectivity–SemD correlations
was significantly less than zero (p = 0). These results
confirm that the correlations reported above are robust
to variations in the set of subordinates for each concept.
Though modularity was not significantly related to
SemD, the distribution of SemD correlations was signif-
icantly above zero (p = .01). On the other hand, the
distribution of diversity–SemD correlations was not sig-
nificantly different from zero (p = .23).

Fig. 6 Network predictors of semantic diversity. The semantic diversity measures, calculated using word co-occurrence statistics (Hoffman et al., 2013),
were (A) positively predicted by core–periphery structure (r = .71, p = .003) and (B) negatively predicted by network clustering (r = – .70, p = .004)

Table 1 Statistics and correlations between network measures

Modularity Diversity Core–Periphery Clustering

Mean (SD) 0.01 (0.002) 0.96 (0.007) 0.17 (0.025) 0.48 (0.042)

Modularity – – – –

Diversity .154 – – –

Core–periphery – .089 .446+ – –

Clustering – .461+ – .186 – .561* –

The mean and standard deviation across 15 concepts is shown for each network measure of interest in the top row. Beneath are the Spearman correlation
values between the four network measures. The only significant relationship is between core–periphery structure and network clustering. + p < .10. * p < .05.
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The results of a leave-10%-out property analysis are shown
in Fig. 7B. For each of the four network measures of interest,
the bootstrap analysis resulted in a distribution of correlations
with SemD (blue histograms), along with a mean and 95%
confidence interval (pink bars). The distribution of core–
periphery correlations with SemD was significantly greater
than zero (p = 0), and the distribution of connectivity–SemD
correlations was significantly less than zero (p = 0). These
results confirm that the correlations reported above are robust
to variations in the set of properties for each concept. The
distributions of SemD correlations were not different from
zero for either modularity (p = .12) or diversity (p = .32).

In both of these bootstrap analyses, the variability in corre-
lations between network diversity and SemD is striking. This
instability of network diversity across bootstraps might indi-
cate that network diversity is driven by a small number of
nodes with highly varied connections whose presence varies
over each iteration. However, the particular local and global
structures of a concept network that contribute to network
diversity—and the stability of this measure across different
concepts and methods of network construction—is an open
question for future work.

Similes

Interpreting a simile (e.g., BX is like a Y^) involves context-
dependent activation of conceptual meaning: The explicit
comparisons contained in a simile imply that X is similar to
Y with respect to a certain dimension or a subset of properties
of Y, thus requiring the interpreter to select a likely subset of

Y’s properties that is being asserted for X. For example, to
interpret the simile BTruth is like a knife,^ one must decide
which properties of KNIFE can also apply to TRUTH. Since this
process involves within-concept property structures and flex-
ible conceptual meaning, we asked which of our measures, if
any, predict the simile goodness measure we constructed for
each of our 15 target concepts.

SemD did not predict simile goodness (r = – .14, p > .6).
The two network measures that were significantly related to
SemD—core–periphery and clustering—did not predict simi-
le goodness, either (core–periphery: r = .04, p > .8; clustering:
r = .25, p > .3), nor did network modularity (r = – .11, p > .7).
Interestingly, network diversity positively predicted simile
goodness across the 15 target concepts (r = .54, p = .04; Fig.
8A). Network diversity still predicted simile goodness when
controlling for both K (p = .04) and Nc (p = .03) separately, as
well as simultaneously (p = .04). However, the bootstrapped
distributions of network-diversity and simile-goodness corre-
lations were not significantly greater than zero (Supplemental
Figs. 1 and 2), suggesting that this relationship might not be
robust to variations in subordinates and properties used during
network construction. The relationships between concept net-
work structure and figurative-language comprehension should
be further explored in future work.

Alternative uses

Generating alternative uses for common objects involves
thinking about those objects in new, creative ways
(Chrysikou & Thompson-Schill, 2011). Theories posit that

Fig. 7 Results of bootstrap analyses: Distributions of correlations
between SemD and network measures when multiple networks were
constructed using subsets of (A) subordinates or (B) properties. The pos-
itive relationship between core–periphery structure and SemD is robust to

variations in subordinates and properties, and the negative relationship
between network clustering and SemD is also robust to variations in
subordinates and properties
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the generation of novel uses requires one to suppress the typical
function of the object and to pay attention to its sensorimotor
properties. For example, the common use of CHOCOLATE is Bto
eat^—to realize that it can also be used Bas paint,^ one must
activate the CHOCOLATE properties of MELTABLE and BROWN.
Since this process involves consideration of a concept’s proper-
ties and property relationships, we asked which of our measures,
if any, would predict performance on an AUT.

First, we analyzed the average number of responses given
for each of the 15 concepts in the AUT. SemD positively pre-
dicted the number of responses (r = .67, p = .006), such that if a
concept label (e.g., Bkey^) occurs in a diverse range of textual
contexts, participants will generate more potential alternative
uses for that concept (e.g., will give more responses for what
novel things to do with a KEY). None of the network measures
predicted number of alternative-use responses (all ps > .1).

Second, we analyzed the average creativity ratings for the
first response given for each of the 15 concepts. Mean crea-
tivity was strongly negatively predicted by the mean number
of responses (r = – .77, p < .001), suggesting that concepts that
inspire more responses also tend to inspire less creative
(initial) responses. SemD did not predict mean creativity (r =
– .41, p = .13). The two network measures that were signifi-
cantly related to SemD—core–periphery and clustering—did
not predict creativity, either (core–periphery: r = – .32, p > .2;
clustering: r = .40, p = .14). A negative relationship between
network modularity and creativity was observed, but it did not
reach statistical significance (r = – .50, p = .056). Interestingly,
network diversity was a negative predictor of creativity (r = –
.56, p = .03; Fig. 8B). Network diversity still predicted

creativity when controlling for K (p = .041) and Nc (p =
.036) separately, and it was marginally reliable when both
were controlled for simultaneously (p = .053). As in the pre-
vious analysis, the bootstrapped distributions of network-
diversity and creativity correlations were not significantly less
than zero (Supplemental Figs. 3 and 4), suggesting that this
relationship might not be robust to variations in the subordi-
nates and properties used during network construction.
However, the other network measures were reliably related
to creativity in the bootstrap analyses, suggesting that a con-
cept’s network structure might relate to people’s ability to use
the concept in creative ways.

Discussion

Here our goal was to model basic-level concepts using graph-
theoretical networks. A model structured using within-
concept feature statistics provides a framework in which var-
ied yet appropriate instantiations of a concept may be flexibly
activated. An APPLE network may contain a strong connection
between CRUNCHY + FRESH and between SOFT + BAKED, en-
abling the conceptual system to know what sets of properties
should be activated in a particular APPLE instance—for exam-
ple, in the representations evoked by Bapple picking^ versus
Bapple pie.^ The property-covariation statistics for a given
concept will determine which sets of properties tend to co-
occur, and how individual properties relate to those sets and
to each other. Here we have demonstrated (1) how to create
these concept network models, (2) that these models are

Fig. 8 Network predictors of creative concept use. (A) Network diversity positively predicted the goodness of similes containing the target concept in the
vehicle position. (B) Network diversity negatively predicted the creativity of initial responses in an alternative-uses (AU) task
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concept-specific, and (3) structural characteristics of these net-
works can predict other measures of conceptual processing.

The concept network approach we describe here is a gen-
eral one, and there are many different ways in which feature-
based concept networks can be constructed. We have walked
through one potential way to do so, in a proof of concept that
reveals the feasibility and potential utility of this approach.
The specific methodological decisions used in this worked-
through example are described above, and we hope that other
researchers interested in modeling and capturing conceptual
flexibility will use variations of these methods—for example,
different concepts, distance metrics, or network measures—to
further explore how conceptual structure relates to flexible
concept use.

There would be no point in attempting to extract concept-
specific measures of conceptual flexibility if the networks
themselves did not contain concept-specific feature relation-
ships. Our approach assumes that this is the case, though this
was not a theoretical certainty. In fact, many feature-based
models of conceptual knowledge rely on feature correlations
across the entirety of semantic space or within a large semantic
domain, and represent many concepts within this single corre-
lational feature space. For example, it could have been the case
that the property BLACK relates to SOFT and ROTTEN across all
concepts. However, our analyses suggest that properties relate
to each other in different ways across basic-level concepts. For
example, BLACK might relate to SOFT and ROTTEN in BANANA,
but to FIRM and BITTER in CHOCOLATE. We found that our 15
concept networks could successfully discriminate between new
conceptual exemplars, suggesting that within-concept feature
statistics differ reliably between basic-level concepts. These
results emerged out of a classification analysis based on
eigen-decomposition of our concept networks. Eigen-
decomposition of graphs has previously been used to assess
the correspondences between anatomical brain network struc-
ture and patterns of functional activation (Medaglia et al.,
2018); here we adapted this method to assess the correspon-
dences between conceptual structure and feature-vectors for
individual conceptual exemplars. Empirically demonstrating
that networks contain concept-specific feature statistics enabled
us to analyze each concept’s network structure and relate struc-
tural characteristics to aspects of conceptual processing.

The kinds of structure we analyzed here included network
clustering, modularity, core–periphery, and diversity. To ex-
plore whether these network structures could predict interest-
ing aspects of conceptual processing, we examined three ex-
ternal measures: a text-based measure of semantic diversity
(SemD; Hoffman et al., 2013), empirical measures of simile
goodness, and empirical measures of creativity on an AUT.
We found reliable relationships between network measures
and each of these three external data sets, highlighting the
potential of this approach to capture aspects of flexible con-
cept use.

Network clustering, quantified in a clustering coefficient,
captures the extent to which nodes are linked to its nearest
neighbors. A network characterized by high clustering is one
in which network nodes form Bcliques^ in which nearby
nodes are linked to each other (Watts & Strogatz, 1998).
This is intuitive in social networks, in which friends of one
person tend to be friends with each other. High network clus-
tering has been observed in text-based semantic networks
(Steyvers & Tenenbaum, 2005), and semantic networks ex-
hibit greater clustering in high- versus low-creative individ-
uals (Kenett et al., 2014). Here, we observed that feature-
based concept networks with greater clustering exhibit less
text-based semantic diversity (SemD). That is, words that do
not occur in many text-based contexts correspond with con-
cepts whose features exhibit strong clustering. This result was
robust to variations in properties and subordinates used in
network construction. This finding suggests that dense local
feature associations within a concept network reduce the ex-
tent to which word meaning can vary across instances.

Network modularity, quantified in coefficient Q, captures
the extent to which a network can be partitioned into densely
connected modules (i.e., sets of nodes) with sparse connec-
tions between them. Modularity is a defining characteristic of
Bsmall-world^ networks (Bassett & Bullmore, 2006) and has
been observed in semantic networks (Kenett et al., 2014) as
well as functional brain networks (Bassett et al., 2011). Here
we did not observe direct relationships between network mod-
ularity and our other measures, though our additional boot-
strap analyses suggest that stronger relationships between
modularity and conceptual processing may be found when a
larger set of concept networks are analyzed.

Core–periphery structure, quantified in a core-fit measure,
reflects the extent to which a network can be partitioned into
one set of densely connected nodes (core), with sparse con-
nections between all other nodes (periphery). This kind of
network structure, originally observed in social networks
(Borgatti & Everett, 2000), has also been observed in func-
tional brain networks (Bassett et al., 2013). Here, we found
that concept networks with stronger core–periphery structures
exhibit greater text-based semantic diversity (SemD); this re-
sult was robust to variations in properties and subordinates
used in network construction. This finding suggests that the
presence of one set of highly associated features (Bcore^) in
addition to a substantial set of weakly associated features
(Bperiphery^) is predictive of conceptual flexibility. In partic-
ular, this structure might enable substantial variation in the
activation of individual periphery features across instances
of concept representation.

Network diversity, quantified in a diversity coefficient, re-
flects the extent to which nodes in a network participate in few
or many network modules. This a version of a Bparticipation^
coefficient calculated using Shannon entropy (Rubinov &
Sporns, 2011). In functional brain networks, these measures
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are typically used to define network Bhubs^ (Sporns, 2014;
Power, Schlaggar, Lessov-Schlaggar, & Petersen 2013),
which are particularly important for transitioning between net-
work states (i.e., patterns of activity in a network). Here, we
observed that network diversity positively predicted simile
goodness judgments and negatively predicted creativity of
responses in an AUT. However, these results were not robust
to variations in properties and subordinates used in network
construction, so these specific relationships should be
interpreted with caution until they are replicated in a larger
set of concept networks.

We observed relationships among non-network measures
that are interesting in their own right. First, we found that the
distributional, corpus-based measure of SemD (Hoffman
et al., 2013) was negatively correlated with our simple stabil-
ity measure, which is the proportion of properties that are
present in all of a concept’s subordinates. As was discussed
in Landauer and Dumais (1997), two important aspects of
word meaning are usage and reference; measures of distribu-
tional semantics (e.g., LSA, SemD) are constructed on the
basis of usage only, and do not contain nor point to informa-
tion in the world to which a word refers. Feature-based mea-
sures (e.g., McRae et al., 1997; Tyler & Moss, 2001), on the
other hand, do incorporate reference into word meaning by
pointing to the sets of features contained in each concept.
Though distributional semantic approaches have their bene-
fits, it is often difficult to knowwhat their respective measures
relate to from a cognitive or psychological standpoint. Our
finding that the distributional, corpus-based statistic of seman-
tic diversity was negatively related to a feature-based statistic
of conceptual stability provides some insight into how usage-
and reference-based measures of conceptual diversity and sta-
bility might converge.

The AUT also resulted in findings that warrant further in-
vestigation. First, we found that the SemD of a word is a
positive predictor for the number of alternative-use responses
participants can generate for that item. One interpretation of
this finding is that if a word is found in more diverse text-
based contexts it is easier to think of alternative uses of the
object to which the word refers. We additionally found that the
mean number of alternative-use responses for a concept is
negatively correlated with the creativity of the initial
alternative-use response. Though further analysis of these
findings is beyond the scope of the present report, this might
be a relevant finding for those interested in the AUT task and
creativity more generally.

Taken together, these results reveal the ability of feature-
based concept networks to capture meaningful aspects of con-
ceptual structure and use. The analyses reported here were
exploratory; we did not have any strong a priori predictions
of which network measures would relate to each additional
conceptual measure, and in what direction. However, we did
predict that network measures—which capture different kinds

of conceptual structure—would predict the ways in which
concepts are flexibly used in language and thought. We have
thus demonstrated how to create concept-specific networks,
and that the structures of these networks can be related to other
concept-specific measures. The external measures we report
here (SemD, simile goodness, AUT) are intended to serve as
examples of measures that could be related to concept network
structure. We look forward to future work further exploring
the utility of this concept network framework in the study of
conceptual knowledge.

Linking back to cognitive theories of conceptual knowl-
edge, this concept network approach has similarities to theo-
ries that aim to characterize the flexibility of individual fea-
tures. Sloman et al. (1998) captured pairwise relations be-
tween features in order to model the feature-based structure
of individual concepts. These authors were interested in the
role of individual features with respect to conceptual coher-
ence, which relates to notions of centrality in the Bintuitive
theory^ view of concepts (e.g., Keil, 1992; Murphy &
Medlin, 1985). Sloman et al. (1998) simplified this previous
notion of centrality by basing conceptual structure on asym-
metrical dependency relationships between features; this
structure captures the concept-specific Bmutability^ of a fea-
ture, and offers a framework in which concepts can be struc-
tured yet flexible. In the present article, our concept networks
are defined by symmetrical feature co-occurrence statistics
rather than asymmetrical dependency relationships.
However, it would be possible to capture feature dependencies
in directed concept networks (i.e., with asymmetrical links).
The use of network science tools enables us to analyze not
only a concept’s global structure, but also the characteristics of
individual feature nodes (e.g., mutability, centrality). These
kinds of structures have implications for flexible concept use
such as analogies, metaphors, and conceptual combination
(Sloman et al., 1998).

Though we believe that a feature-based concept network
approach will provide a new set of useful tools with which to
study conceptual flexibility, it is not the only way to do so.
Other frameworks have the potential to capture the flexibility
of the conceptual system, including attractor networks (e.g.,
Cree et al., 2006; Cree et al., 1999; Rodd, Gaskell, &Marslen-
Wilson, 2004) and recent updates of the hub-and-spoke model
(Hoffman et al., 2018; Lambon Ralph, Jefferies, Patterson, &
Rogers, 2017). The concept network framework proposed
here is not in opposition with these other approaches; the
development and implementation of all of these methods will
greatly benefit our understanding of the semantic system.
However, we do believe that a network science approach to
conceptual knowledge has unique advantages. The ability of
graph-theoretical network science to model a vast range of
systems enables us to examine conceptual structure across
cognitive, linguistic, and neural levels of analysis. The struc-
ture of behavioral, feature-based networks (as discussed here)
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can be analyzed and compared with the structure of functional
brain networks within specific cortical sites (e.g., anterior tem-
poral lobe; ATL) or across the brain as a whole. There is the
additional possibility of analyzing Binformational^ brain net-
works, in which networks are constructed on the basis of simul-
taneous pattern discriminability across cortical sites (informa-
tional connectivity; Coutanche, Solomon, & Thompson-Schill,
2013). Network neuroscientists have previously forged links to
cognitive processes such as motor-sequence learning (Bassett
et al., 2011) and cognitive control (Medaglia et al., 2018),
setting a precedent for the application of network science to
cognitive neuroscience.

Recent work exploring the intersection of network science
with control theory suggests another possible future direction.
Network controllability refers to the ability to move a network
into different network states; this idea has been applied to
structural brain networks in order to shed light on how the
brain may guide itself into easy- and difficult-to-reach func-
tional states (Gu et al., 2015). There have been additional
attempts to link brain network controllability to cognitive con-
trol (Medaglia, 2018). The application of control theory to
concept networks might provide an additional way to quantify
conceptual flexibility by identifying nodes that are well-

positioned to drive the brain into diverse, specific, or integrat-
ed states. Perhaps concept networks that are more controllable
overall—that is, networks in which it is easier to reach varied
network states—correspond to concepts that are more cogni-
tively flexible.

So far, we have discussedmainly event context—a BANANA

representation will be slightly different while one is painting
as opposed to eating, and it will be different before and after a
peeling event has occurred. However, language itself can pro-
vide a context: Language is inherently interactive, and the
meaning of a word (i.e., the corresponding conceptual con-
tent) depends on the words surrounding it (e.g., McElree et al.,
2001; Pustejovsky, 1998; Traxler et al., 2005). Researchers
interested in conceptual combination aim to understand how
the meaning of a combined concept (e.g., Bbutterfly
ballerina^) can be predicted on the basis of the meaning of
its individual constituents (Coutanche, Solomon, &
Thompson-Schill, 2019). This is not a unique challenge for
noun–noun compounds, but also for adjective–noun com-
pounds; even the (putatively) simple concept RED has different
effects when combined with the concepts TRUCK, HAIR, and
CHEEKS (see Halff, Ortony, & Anderson, 1976). Combining a
noun concept with an adjective concept might not simply

Fig. 9 Predicting conceptual combination. (A) The within-concept fea-
ture statistics of BANANA are encoded in its concept network. These data
can also be used to define a transition probability matrix that encodes the
probabilities that activation will spread from one node to another. We can
use these data in a (e.g., random-walk) spreading-activation model to
predict network states in different contexts. For example, we can predict
the state of the BANANA network during adjective–noun combinations:
Here, the adjectives Bgreen^ and Bsoft^ are represented as single-node

activations. (B) Activating a single node will cause the spread of activa-
tion throughout the network according to the transition probabilities. For
example, activating the GREEN node (in Bgreen banana^) will likely cause
the activation of FIRM and SWEET (top), whereas activating the SOFT node
(in Bsoft banana^) will likely cause the activation of BROWN and SWEET

(bottom). Thus, the structure of the BANANA network enables the activa-
tion of a range of states, subsequently generating varied, yet appropriate,
representations of bananas
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involve the reweighting of a single property node, but a more
complex interaction governed by within-concept statistics.

These predictions could be generated using models of sig-
nal propagation, such as spreading activation (e.g., Collins &
Loftus, 1975; De Deyne et al., 2016) or information diffusion
(e.g., Bakshy, Rosenn, Marlow, & Adamic, 2012). In graph-
theoretical networks, spreading activation can be formalized
by simulating Brandom walks^ over the network (Abbott,
Austerweil, & Griffiths, 2015; De Deyne et al., 2016). The
edges in the network can be used to define a transition prob-
ability matrix (e.g., Fig. 9A), which contains the probabilities
of transitioning from one node to another node. A random
walk begins at an initial node and then continues to a new
node by following one of that node’s edges at random.
Eventually the random walk will end (e.g., determined by a
maximum path length), and the resulting path and activated
nodes can be observed. This approach, which has been used to
analyze word association data over large-scale semantic net-
works (Abbott et al., 2015; De Deyne et al., 2016), can also be
used to analyze the concept networks proposed here. Random
walks over concept networks could be used to predict the
properties activated for a concept in a given context—
starting with an initial property node, we could trace the acti-
vation of associated properties to predict the cluster of prop-
erties that would likely be activated in that instance. For ex-
ample, a randomwalk over the BANANA network starting at the
node GREEN would likely include GREEN, SWEET, and FIRM,
whereas a random walk starting at SOFT would be more likely
to include SOFT, SWEET, and BROWN (Fig. 9). These methods
could thus be used to predict interpretations of conceptual
combinations.

Finally, interesting differences might exist in the flexibility
of concept networks across individuals or in the neural net-
works that support their processing. It has previously been
suggested that individual differences in functional neural net-
works relate to differences in psychopathology (Lynall et al.,
2010; van den Heuvel, 2013), and that the structures of se-
mantic networks differ between low- and high-creative per-
sons (Kenett et al., 2014). Though these networks are different
in kind from the ones proposed here, the same kinds of com-
parisons could be explored. The ability to shift a concept net-
work from one state to another—that is, the ability to flexibly
modify the activation of certain properties—could relate to an
individual’s ability to generate or comprehend novel meta-
phors or to generate novel uses for common objects. The
flexibility of person-specific concept networks and neural net-
works could be explored in relation to performance on these
kinds of tasks. More generally, the structure and flexibility of
individuals’ concept networks might differ in meaningful
ways, and this could be a fruitful avenue for future research.

We acknowledge that our proposed concept network model
framework has some limitations. A large amount of data had
to be collected, such that we could calculate within-concept

statistics and run a classification analysis. Here we were only
able to construct and analyze 15 concept networks, a small
sample with which to work. However, the primary bottlenecks
were related to the classification analysis, which required that
the concepts within a set be initially defined by the same set of
properties, as well as requiring other tasks related to stimulus
design and data analysis. Here we have provided evidence that
concept networks are concept-specific, and thus classification
analyses are not an essential part of the pipeline moving for-
ward. This will greatly reduce the effort and time needed to
construct concept networks in future work.

Additionally, a certain degree of experimenter subjectivity
is involved in the final selection of properties and subordinate
concepts. Both our properties and subordinates were reported
by participants and not determined by the experimenters.
However, some decisions had to be made, such as whether a
response should be considered a subordinate or a property
(e.g., Bnuts^ with respect to CHOCOLATE) and deciding an ap-
propriate level of specificity of subordinates (e.g., excluding
some brand names). To mitigate these concerns, we have re-
ported bootstrap analyses in which subsets of subordinates or
properties were excluded, in order to assess the robustness of
networkmeasures and their relationships. These kinds of anal-
yses can be used in the future to flag any potentially idiosyn-
cratic effects in a given data set. Despite these limitations, we
believe that the construction and analysis of concept networks
will provide useful insights as to the relationship between
concept structure and flexible concept use.

In this proof of concept, we constructed concept network
models, confirmed their ability to capture concept-specific
information, and extracted network measures that relate to
external text-based and behavioral measures. We believe that
the application of network science to conceptual knowledge
will provide a set of tools that will enable the intrinsic flexi-
bility of the conceptual system to be explored and quantified.
We hope that other researchers will be able to use these tools
to further our understanding of conceptual flexibility and of
the conceptual system more broadly.
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