Tool-selective lateral temporal cortex is sensitive to event relations

Anna Leshinskaya*, Mira Bajaj & Sharon L. Thompson-Schill

University of Pennsylvania

*alesh@sas.upenn.edu

left inferior parietal lobule (IPL) and lateral occipito-temporal cortex (LOTC) respond preferentially to images and names of tools relative to other categories of objects. Action-related knowledge is thought to explain these responses (Peelen et al 2011; Bracci et al 2017; Perini et al 2014; Valyear et al 2007; Mahon et al 2007). A less-explored but more specific property of tools is their ability to exert changes on the environment (i.e., a causal event relation). We cued causal event relations with event order using novel objects and events, and examined the responses of tool-selective regions.

results

Are tool-selective areas sensitive to event relations?

Preliminary data with n = 15, pre-registered target sample size = 32.

ROIs defined with tools > non-tools contrast, using intersection of group cluster, thresholded at p < .05 uncorrected and each individual’s data (up to 300 maximally responsive & contiguous voxels, thresholded at t>0).

procedure

Training

Each animation (2/condition) shown 45 times over 5 blocks.

Knowledge tested after each block with 12 questions probing event knowledge.

Participants are at ceiling prior to scan.

In-Scan Retrieval Task

Each object shown as static image 72 times over 8 blocks; 16/72 trials followed by a question probing specific and general aspects of associated event animations.

Tool Localizer

800 ms presentation + 200 ms fixation / trial; blocked design with 8 trials/condition.

conditions

Movement Type: Hand-generated vs Self-generated

Event Relation: movement precedes (Causes) or follows (Reacts to) other events

Shapes assigned in counterbalanced fashion to conditions; 2 objects/condition with one of two ambient events.

results

Are tool-selective areas sensitive to event relations?

Main effect of event relation:

M = 0.28, t(14) = 2.12, p = 0.05

Interaction between event relation and movement type:

M = 0.62, t(12) = 2.53, p = 0.03

online materials

https://osf.io/wzvn2/

This work was supported by NIH grant R01DC009209 to S.L.T-S.