Constructing complex social categories from distinct group membership information

Alice Xia¹, Sarah H. Solomon¹, Sharon L. Thompson-Schill¹, Adrianna C. Jenkins¹
¹Department of Psychology, University of Pennsylvania

MOTIVATION
HOW ARE COMPLEX SOCIAL CATEGORIES CONSTRUCTED FROM INFORMATION ABOUT THEIR CONSTITUENT GROUPS?

Previous research has examined how inferences about compound objects (e.g., fuzzy chair) are produced from their constituent concepts, but little is known about the combinatorial processes that subserve our ability to evaluate complex social categories (e.g., Irish Musician).

Capitalizing on the observation that social perceptions can be organized along dimensions of warmth and competence, we test the abilities of two different models to predict ratings of 25 nationality-occupation concepts in those dimensions. For comparison, we also examine 25 combined animal habitat-animal type concepts (e.g., cave rat) in the ferocity and size dimensions, which have been shown to organize the animal concepts space.

MODEL CONSTRUCTION
10 social concepts, 10 animal concepts

Stimulus set normed on Amazon Mechanical Turk (MTurk) (n = 100)

Survey ratings
2 groups of MTurk raters for social and animal concepts (n = 258, n = 242)

Baseline non-combinatorial models

If participants use only one concept to make combination ratings:

Combinatorial models

Additive model: Weighted average of simple concept ratings
Bayesian model: Combines distributions created from min/max ratings to predict combined concept ratings; variance (i.e., concept uncertainty) used to adjust weight of one concept relative to the other

MODEL COMPARISON
Predictions in warmth and competence dimensions

Both models predict that participants will weight occupation more than nationality, in both the warmth and competence dimensions

Predictions in ferocity and size dimensions

Both models predict that participants will weight animal type more than animal habitat in the ferocity dimension; both models performed better in the size dimension, relative to ferocity (t = -3.41, p = .002); optimal Bayesian model outperforms optimal additive model in size dimension (t = 2.1104, p = .05)

CONCLUSIONS & FUTURE DIRECTIONS

- Participants tend to prioritize head concepts more than modifier concepts in their evaluations of both the social and animal combinations
- Additive and Bayesian models show that occupation is weighted more than nationality in social combinations, in both the warmth and competence dimensions
- As people gain more experience with a social combination, they may develop a new concept for that combination that shares fewer and fewer features with its constituent concepts, but the opposite appears to be true for animal combinations
- More familiar social combinations are characterized by higher model prediction errors as well as greater distance between the combination and its constituent occupation concept in 2D warmth and competence space
- Model predictions will guide hypotheses about patterns of brain activation associated with combinatorial processes in a planned fMRI study

FAMILIARITY WITH COMBINATIONS

Familiarity modulates model performance

Composite prediction error derived from averaging errors of both models; higher composite error for more familiar social combinations, but only when nationality and occupation are weighted equally

More familiar social combinations are located farther from their constituent occupation concepts in 2D warmth-competence space
