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The approximate number system (ANS) subserves estimation of the number of items in a
set. Typically, ANS function is assessed by requiring participants to compare the number of
dots in two arrays. Accuracy is determined by the numerical ratio of the sets being com-
pared, and each participant’s Weber fraction (w) provides a quantitative index of ANS acu-
ity. When making numerical comparisons, however, performance is also influenced by
non-numerical features of the stimuli, such as the size and spacing of dots. Current models
of numerosity comparison do not account for these effects and consequently lead to differ-
ent estimates of w depending on the methods used to control for non-numerical features.
Here we proffer a new model that teases apart the effects of ANS acuity from the effects of
non-numerical stimulus features. The result is an estimate of w that is a more theoretically
valid representation of numerical acuity and novel terms that denote the degree to which a
participant’s perception of number is affected by non-numerical features. We tested this
model in a sample of 20 adults and found that, by correctly attributing errors due to
non-numerical stimulus features, the w obtained was more reliable across different stim-
ulus conditions. We found that although non-numerical features biased numerosity dis-
criminations in all participants, number was the primary feature driving discriminations
in most of them. Our findings support the idea that, while numerosity is a distinct visual
quantity, the internal representation of number is tightly bound to the representation of
other magnitudes. This tool for identifying the different effects of the numerical and
non-numerical features of a stimulus has important implications not only for the behav-
ioral investigation of the ANS, but also for the collection and analyses of neural data sets
associated with ANS function.
� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The approximate number system (ANS) is a nonverbal
mechanism for estimating the number of items in a set
that develops early in human ontogeny and is shared with
a wide array of animals (Feigenson, Dehaene, & Spelke,
2004). The ANS is faster but much less accurate than verbal
counting. The ANS may serve as a neural scaffold for sym-
bolic mathematics, a proposition supported by the finding
that ANS acuity (w) predicts math achievement in both
children and adults (DeWind & Brannon, 2012; Gilmore,
McCarthy, & Spelke, 2010; Gilmore et al., 2013; Halberda,
Ly, Wilmer, Naiman, & Germine, 2012; Halberda,
Mazzocco, & Feigenson, 2008; Lyons & Beilock, 2011;
Mazzocco, Feigenson, & Halberda, 2011; Piazza et al.,
2010; Starr, Libertus, & Brannon, 2013; but see Holloway
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& Ansari, 2009; Sasanguie, Defever, Maertens, & Reynvoet,
2013; Sasanguie, Göbel, Moll, Smets, & Reynvoet, 2013)
and that extensive practice on tasks that tap the ANS
improves symbolic math performance (Hyde, Khanum, &
Spelke, 2014; Park & Brannon, 2013).

The acuity of the ANS typically is measured by present-
ing arrays of dots and requiring participants to indicate
which has more. When dot arrays differ in numerosity,
however, other properties of the stimuli—such as dot size,
dot density, and array extent—differ as well. Many prior
studies have found that non-numerical visual stimulus fea-
tures influence numerosity discrimination performance,
thus interfering with precise estimates of ANS acuity (e.g.
DeWind & Brannon, 2012; Frith & Frith, 1972; Gebuis &
Gevers, 2011; Ginsburg, 1976; Sophian, 2007; Tokita &
Ishiguchi, 2010).

While most researchers acknowledge that
non-numerical stimulus features influence numerosity
judgments, the two most commonly used models of ANS
acuity do not account for these biases (Piazza, Izard,
Pinel, Le Bihan, & Dehaene, 2004; Pica, Lemer, Izard, &
Dehaene, 2004; Whalen, Gallistel, & Gelman, 1999).
These models postulate that numerosity is represented
by the ANS as a normally distributed random variable with
a mean equal to the number being represented and a width
proportional to ANS acuity (w). Errors in numerical dis-
crimination occur when the numbers of items being com-
pared activate overlapping internal numerosity
representations. According to these models, the overlap
of these representations is entirely attributable to the ratio
of the numerosities being compared and the w term.

When the w parameter in these models is fit to accuracy
data from a dot array comparison task, all errors in the task
are implicitly assumed to be the result of imprecision of
the representation of number. However, since
non-numerical features also affect numerosity judgments,
they sometimes cause errors (or correct responses) that
cannot be attributed to numerical ratio. These responses
are incorrectly attributed to imprecision or precision in
the representation of number. As a result, the w measure
derived from the current models of numerical representa-
tion conflates the acuity of the numerical representation
with the biasing effects that non-numerical stimulus fea-
tures have on that representation. In practice, this means
w is influenced by idiosyncrasies in the way the experi-
menter has chosen to control for non-numerical stimulus
features. In its most extreme form, large differences in
the congruence or incongruence of non-numerical stimu-
lus features with number result in wildly divergent esti-
mates of w in the same individual, causing some to
question the existence of the ANS independent of
non-numerical feature cues (Szucs, Nobes, Devine,
Gabriel, & Gebuis, 2013).

Here we introduce a new ‘‘stimulus space’’ that eluci-
dates the dependencies and degrees of freedom inherent
in dot array stimuli. Utilizing the insights provided by
the stimulus space, we then propose a modification to
the logarithmic model of the ANS that explicitly accounts
for the effects of non-numerical stimulus features on
numerosity judgments. This approach allows ANS acuity
to be estimated independently of the influence of multiple
non-numerical stimulus features, thus yielding a more the-
oretically valid estimate of w that is more reliable across
stimulus sets. Improved estimation of w will help research-
ers elucidate the relative importance of ANS acuity on
mathematical cognition, the factors that may mediate that
relationship, and its developmental trajectory.

In addition to making theoretical advances in modeling
w, our model also returns coefficients describing the influ-
ence of non-numerical stimulus features, thereby provid-
ing novel quantitative parameters useful for comparing
individuals. We assessed the prevalence of non-numerical
feature bias among educated adults and statistically tested
the hypothesis implicit in the current models of the ANS:
that w and numerical ratio are the only factors that deter-
mine the discriminability of dot arrays in a numerical dis-
crimination task. The non-numerical feature coefficients
also provide a straightforward and quantitative way to
assess the use of ‘‘alternative strategies’’: that is, the reli-
ance on non-numerical features instead of numerosity to
make discriminations between stimuli. Here we are able
to provide a comprehensive unbiased assessment of the
role of ten non-numerical stimulus features in numerical
discriminations and test the hypothesis that the ability to
approximately enumerate is reducible to co-varying
non-numerical cues.

Here we model choice behavior in adults based on the
number, size, and spacing of dots; however, with slight
modification we can use those same factors to model neu-
ral dependent variables such as neuronal firing rate, elec-
troencephalography (EEG) scalp voltage, and
blood-oxygen-level-dependent (BOLD) signal. Thus, in
addition to clarifying the effect of different stimulus fea-
tures on behavior, our new modeling approach can help
elucidate which brain responses reflect number as opposed
to other features of a stimulus.
2. Theory and calculations

We applied a novel analytical technique to model
numerical discrimination performance as a function of
numerosity, item size, and item spacing. Our approach
relies on the insight that although arrays of dots have
many different features that all co-vary, the features
known to influence numerosity judgments have three
degrees of freedom. Thus, numerosity discrimination per-
formance can be modeled as a function of just three stim-
ulus features: the number of dots in the array and two
novel parameters that describe the size and spacing of
the dots within the array. From the coefficients returned
for these three features the influence of many other
non-numerical features can then be calculated. This mod-
eling approach allows a dissociation of ANS acuity from
the biasing effects of non-numerical visual features, thus
yielding a theoretically valid estimate of ANS acuity that
is more reliable across different stimulus sets.
2.1. Intrinsic and extrinsic stimulus features

Our approach requires a full understanding of the rela-
tionship among numerosity, intrinsic features of the
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stimulus, and extrinsic features of the stimulus (Dehaene,
Izard, & Piazza, 2005; Piazza et al., 2004). Intrinsic features
are parameters of the individual items within an array,
whereas extrinsic features are parameters of the array as
a whole. When the numerosity of an array is fixed, the rela-
tionship between a given pair of intrinsic and extrinsic fea-
tures is linear. For example, total surface area (an extrinsic
feature) is equal to the number of items multiplied by the
item surface area (an intrinsic feature). The same relation-
ship exists between field area (the space within which the
dots are drawn, sometimes referred to as the envelope or
the convex hull) and sparsity (average field area per item,
or the inverse of the density). For a given numerosity,
increasing sparsity necessitates a linear increase in field
area. Another way of describing these relations is to say
that numerosity, item surface area, total surface area, spar-
sity, and field area are not mutually independent of each
other, and describing all of them overdetermines the stim-
ulus. A smaller subset of these features is sufficient to
determine the full set of features, an idea we will return
to below.

Fig. 1A and B plot ‘‘stimulus spaces’’ that summarize
these relationships. Stimulus parameters are plotted with
intrinsic features on the x-axis and extrinsic features on
the y-axis. Fig. 1A shows the intrinsic and extrinsic features
related to the size of the items, item surface area and total
surface area, and Fig. 1B shows the intrinsic and extrinsic
features related to the spacing of the items, sparsity and
field area. Also apparent are what we term
iso-numerosity lines (gray); all stimuli of a particular
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Fig. 1. Features thought to influence numerical estimation can be represented a
(black dots) used in this experiment plotted as item surface area by total surface
along iso-numerosity lines (gray). The slope of these lines is equal to the numero
text are labeled and indicated by gray dots with black outlines. (C and D) The s
numerosity occur along a linear axis, and two orthogonal dimensions, Size and S
provide an equally descriptive quantitative account of stimulus features as the
cardinal axes of a 3D stimulus space. Log of non-numerical stimulus features are
increase. Any dot array stimulus can be uniquely defined with respect to numeros
perimeter, field area, sparsity (and density), coverage, and apparent closeness o
numerosity lie on a single iso-numerosity line, the slope
of which is equal to the numerosity. Different points along
an iso-numerosity line correspond to stimuli that differ in
the intrinsic and extrinsic properties but have the same
numerosity. An individual stimulus occupies a single point
in both Fig. 1A and B; for example, the stimulus labeled S1
has a numerosity of 8. Location of a single stimulus in each
of the two plots is constrained by numerosity; it must fall
along the same iso-numerosity line in both plots. However,
its location along that line is independent in each of the
plots. In other words, the size of the items and spacing of
the items in an array are independent of each other.

The essential confound inherent in generating pairs of
numerosity stimuli can be appreciated visually in
Fig. 1A and B. Two stimuli must be chosen, each from a dif-
ferent iso-numerosity line; however, any two such stimuli
will also differ in the intrinsic variable, the extrinsic vari-
able, or both. It is mathematically impossible for two stim-
uli to differ only in numerosity. For example, consider
again the stimulus labeled S1 in Fig. 1A and B of numeros-
ity 8. We may want to pair this stimulus with another of
numerosity 16 in an ordinal comparison task and seek a
way to control for changes in other visual features (the
intrinsic and extrinsic variables). Now consider the two
stimuli labeled S20 and S200, both of numerosity 16. S20

has the same total surface area and field area as S1, but a
different item surface area and sparsity. In contrast, S200

has the same item surface area and sparsity as S1, but a dif-
ferent total surface area and field area. Other stimuli occu-
pying other positions along the 16 iso-numerosity line
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would differ in both intrinsic and extrinsic stimulus fea-
tures. All stimuli that differ in numerosity from S1 must
also differ in either item surface area or total surface area
and must also differ in either sparsity or field area.

2.2. Logarithmic scaling and deriving orthogonal regressors

Fig. 1A and B are redrawn in Fig. 1C and D, but with the
intrinsic and extrinsic axes log scaled. Log scaling the axis
affords two critical advantages: it makes the
iso-numerosity lines parallel (for clarity, only the
iso-numerosity lines for 8, 16, and 32 are shown), and it
makes the distance between stimulus points in the space
proportional to the ratios of their various features (numer-
ical and non-numerical). As a result, changes in numerosity
are represented as movement along a linear numerosity
dimension, and changes in the extrinsic or intrinsic fea-
tures that do not result in a change in numerosity are rep-
resented as movement along an orthogonal linear axis. We
represent these linear orthogonal stimulus dimensions as
alternative axes in Fig. 1C and D to emphasize that they
represent a quantitative way to specify the location of a
stimulus in ‘‘stimulus space’’, which contains all the same
information as specifying the values of the intrinsic and
extrinsic features. Furthermore, these three alternative
axes represent a minimally sufficient set of features for
describing the numerosity, as well as both sets of intrinsic
and extrinsic features of a stimulus. For the rest of this
manuscript we will refer to these linear orthogonal dimen-
sions as Size for the intrinsic and extrinsic variables item
surface area and total surface area and Spacing for sparsity
and field area. We use capitalization and italics to make it
clear that we are referring to a rigorously defined mathe-
matical construct, but we also wish to emphasize the close
relationship of these terms to the everyday concepts of size
and spacing. Intuitively, changes in Size are equivalent to
changing the size of a fixed number of items with fixed dis-
tances between their centers, and changes in Spacing are
equivalent to changing the distances between a fixed num-
ber of items of fixed size.

We algebraically define Size and Spacing by examining
the relationship between intrinsic and extrinsic stimulus
parameters and finding the dimension that is orthogonal
to numerosity.

log2ðnÞ ¼ log2
TSA
ISA

� �
¼ log2

FA
Spar

� �
ð1Þ

where n is the number of items, TSA is the total surface
area, ISA is the item surface area, FA is the field area, and
Spar is the sparsity. The dimensions orthogonal to log
number are

log2ðSizeÞ ¼ log2ðTSAÞ þ log2ðISAÞ ð2Þ
log2ðSpacingÞ ¼ log2ðFAÞ þ log2ðSparÞ ð3Þ

Size and Spacing capture the aspects of dot size and
spacing that are independent of numerosity. These defini-
tions support the basic logic of the regression model that
we will formulate in Section 3.6. The effect of the numeri-
cal ratio on choice behavior can be assessed, as in previous
models, by fitting the w term. We can expand that model,
however, by adding terms that will quantify the effect of
the Size ratio and Spacing ratio. By including terms that
capture the perceptual effects of item size and spacing that
are independent of the perceptual effect of numerosity
itself, we lay the basis for independently assessing their
contributions to numerosity discrimination performance.

2.3. Non-numerical stimulus features can be reduced to linear
combinations of numerosity, Size, and Spacing in a
logarithmic stimulus space

Fig. 1E represents numerosity, Size, and Spacing as cardi-
nal axes in a three-dimensional stimulus space with log
scaled axes. We can imagine generating this space by tak-
ing the two two-dimensional spaces in Fig. 1C and D and
intersecting them along the numerosity axis at right angles
to each other (in the third dimension). Any given array of
dots is described by a single position within this
three-dimensional space. The three dimensions (log of
numerosity, log of Size, and log of Spacing) are independent
of each other, and these three variables fully determine the
extrinsic and intrinsic parameters discussed above (as
illustrated in Fig. 1C and D). Importantly, several other
stimulus features are also fully specified by numerosity,
Size, and Spacing. For example, the item perimeter and total
perimeter are determined by the numerosity and Size
parameters. Coverage and apparent closeness are two fea-
tures that depend on Size and Spacing and are not related to
the numerosity of the stimulus. Coverage, sometimes
referred to as density (e.g. Gebuis & Reynvoet, 2011), is
the total surface area per field area. Apparent closeness is
the overall scaling of the stimulus, and increasing it is
equivalent to zooming in on a stimulus such that it sub-
tends a larger visual angle without changing its relative
proportions. Appendix A contains the equations that relate
each of these features to numerosity, Size, and Spacing.
These equations demonstrate that our stimulus space is
very descriptive. With just three values it specifies a stim-
ulus’s numerosity, item surface area, total surface area,
sparsity (and density), field area, item perimeter, total
perimeter, coverage, apparent closeness, Size, and Spacing.
This descriptiveness is important for the modeling
approach that we describe below, because it provides the
basis by which our model can infer the effect of any stim-
ulus feature on discrimination performance while only
containing terms for numerosity, Size, and Spacing.

It is worth noting that log scaling is not merely a math-
ematical trick; it has important behavioral, neurobiological
and theoretical bases as well. Behavioral ‘‘same-different’’
judgments in humans and monkeys are best fit by assum-
ing a log compressed mental number line rather than a lin-
ear one with scalar variability (Merten & Nieder, 2009).
Furthermore, response functions of single neurons tuned
to individual numerosities found in prefrontal cortex in
monkeys are also logarithmically compressed (Nieder &
Miller, 2003). Theoretically, the Weber–Fechner law states
that the discriminability of two stimuli is linearly related
to their ratio, equivalent to their distance on the logarith-
mic scale. For example, according to Weber–Fechner, a
stimulus of numerosity 8 and one of numerosity 16 are
equally discriminable as a stimulus of 16 and one of 32,
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because both pairs have a 1:2 ratio. In logarithmic stimulus
space the distances along the numerosity dimension
between 8 and 16 and between 16 and 32 are equal.
Thus, we can use the difference in log numerosity as a
regressor in a generalized linear model of numerical dis-
crimination. Indeed, this is the approach of the logarithmic
model developed by Piazza et al. (2004).

Critically, on a logarithmic scale, the equations relating
the numerosity, Size, and Spacing to the other
non-numerical features are all linear equations (Appendix
A). Geometrically, this means that the dimensions along
which different non-numerical features increase are
straight lines in the three-dimensional stimulus space
illustrated in Fig. 1E. Furthermore, the distance along any
of these dimensions that separates a pair of stimuli is pro-
portional to the ratio difference of that feature. Thus, one of
the benefits of the new stimulus space introduced here is
that just as a 1:2 ratio of numerosity corresponds to a fixed
distance along the numerosity dimension, here a fixed
ratio of any feature corresponds to a fixed distance along
its own dimension. For example, the distance between
two stimuli along the total surface area dimension, one
of which is comprised of 2000 pixels and the other of
4000 pixels, will be the same as the distance between a
stimulus comprised of 4000 pixels and one of 8000 pixels,
since both these stimulus pairs differ by a 1:2 total surface
area ratio. Therefore, we can extend the logic of the Piazza
et al. (2004) model to non-numerical stimulus features.
Instead of assuming that only the log of the numerical ratio
affects numerical judgments, we can determine which
stimulus feature ratios are affecting judgments, and we
can do so in a manner that does not favor any particular
feature.

It may be tempting to simply include regressors for the
log ratio of all of the non-numerical features in a general-
ized linear model and have them compete with numerosity
to explain the variance in behavioral discrimination perfor-
mance. Although any two stimulus features are only par-
tially collinear, some combinations of two features are
fully collinear with a third, making such a model overspec-
ified. Instead, we can take advantage of the linear equa-
tions that relate the log ratios of all the other features to
the log ratios of numerosity, Size, and Spacing (Appendix
A). These linear relationships mean that we can use the
log of the S1 to S2 numerosity ratio, the log of the S1 to
S2 Size ratio, and the log of the S1 to S2 Spacing ratio as
regressors in a generalized linear model of numerosity dis-
crimination. From the coefficients returned we can then
infer the effect of a ratio difference of any feature on
numerosity discrimination performance.

In short, previous models of numerical comparison pre-
dict that accuracy in a numerical ordinal comparison task
is a function of the numerical ratio. The model, which we
introduce in the methods section below, allows instead
that accuracy is a function of the numerical ratio, the Size
ratio, and the Spacing ratio. The effects of Size and Spacing
ratio on accuracy would be of little interest by themselves,
since they are merely novel mathematical constructs.
However, by virtue of the relationship between Size and
Spacing and the other non-numerical features, estimating
the effect of Size and Spacing on accuracy is mathematically
equivalent to estimating the effects of all the
non-numerical stimulus features on accuracy.

To evaluate our new modeling approach, we tested 20
adult participants using a standard non-symbolic numeri-
cal ordinal comparison task. Participants were instructed
to choose the array that contained more dots. Our stimuli
were generated such that numerical ratio, Size ratio, and
Spacing ratio were varied independently across stimulus
pairs. We developed a generalized linear model that
allowed us to fit choice curves that modeled each partici-
pant’s sensitivity to each of those ratios. We hypothesized
that numerosity ratio would be the main determinant of
choices given the task instructions, but that Size and
Spacing ratio would have some influence.
3. Methods and materials

3.1. Participants

Participants were 20 adults (mean 22.9 years, range
19.6–26.8 years) recruited from the Duke University com-
munity. Eleven of the 20 participants were female. All par-
ticipants gave written informed consent in accordance
with a Duke IRB approved protocol.
3.2. Design

Five participants completed ten sessions within 11 days
and performed a maximum of three sessions in one day.
Another 15 participants completed a single session in one
day. Each session lasted about 1 h and consisted of 750 tri-
als broken into three blocks of 250 trials each. Participants
were required to take a five-minute break between blocks.
Participants were compensated 10 USD for each session.
3.3. Task

Participants were seated in front of a computer and
instructed to indicate the side of the screen that contained
the greater number of dots using the arrow keys on a stan-
dard keyboard. Instructions were given verbally at the
beginning of the session and in written format on the com-
puter screen at the beginning of each block. At the begin-
ning of each trial, a readiness cue was presented in the
center of the screen (500 ms) followed by two arrays of
white dots on a black background presented simultane-
ously to the right and left of the readiness cue (eccentricity
�8.5 degrees) for 250 ms. A response prompt was then
presented, and responses were followed by a 2 second
inter-trial interval.

Participants were given eight easy practice trials (1:4
numerical ratio) at the beginning of each block. Practice
trials were identical to the experimental trials except that
they had a longer readiness cue time (1 s), longer stimulus
display time (1 s) and a longer inter-trial interval (4 s). In
the rare event that a participant responded incorrectly on
any practice trial, the script terminated with a prompt to
see the experimenter. The experimenter then repeated
the instructions and the block restarted.
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3.4. Stimuli

We constructed a stimulus set that divided two octaves
of numerosity, Size, and Spacing into 13 levels, approxi-
mately evenly spaced on a logarithmic scale. The range of
stimulus parameters is shown in Fig. 1A–D, with all of
the stimuli plotted in the stimulus space described in
Section 2.2. For 7 of the 13 numerosities, stimuli were gen-
erated at 7 different Sizes and 7 different Spacings yielding
a total of 7 � 7 � 7 = 343 stimuli. For the other 6 numerosi-
ties, stimuli were generated at 6 Sizes and 6 Spacings for a
total of 6 � 6 � 6 = 216 stimuli. Thus there were 559
unique stimulus parameter combinations. On each trial
the experimental program randomly picked one of 4 differ-
ent numerical ratios (closest whole numbers to 1:21/6,
1:21/3, 1:21/2, or 1:2 ratios), one of 13 Size ratios (all possi-
ble pairings), and one of 13 Spacing ratios (all possible
pairings).

In order to spread stimuli evenly along a logarithmic
scale, the values were rounded to the nearest whole num-
ber. For example, 32 is 25 and 8 is 23. However, we wanted
11 more powers of two spaced evenly between 23 and 25,
such as 24.5. 24.5 is approximately 22.627 which we
rounded to 23. Similarly, dot diameters and field diameters
were rounded to the nearest whole pixel so they could be
drawn properly on a monitor.

After defining the number, Size, and Spacing of a stimu-
lus, the algorithm created an instantiation of that stimulus.
First the field area and item surface area were calculated
(see Appendix A for the relations between number Size
and Spacing and the other visual magnitudes). Dots of the
appropriate size were drawn at random locations within
a circular field of the appropriate area. The only constraint
on placement was that all dots were separated by at least
one pixel and that all the dots were completely within
the circle defining the stimulus field. It is worth noting that
the circular field was not necessarily the smallest circle
that could encompass all the dots in the array, although
across multiple stimuli the field area and the smallest
encompassing circle area were closely correlated.
3.5. Modeling choice behavior with existing models

We compared our model to the two standard models for
estimating numerical acuity (w). The first model, termed
here the ‘‘logarithmic model,’’ assumes numerosities are
represented as normally distributed random variables on
a log compressed mental number line with means equal
to the logarithm of the number represented and a fixed
standard deviation (Piazza et al., 2004, 2010). That model
pðChooseRightÞ ¼ ð1� cÞ 1
2

1þ erf
bside þ bnumlog2ðrnumÞ þ bSizelog2ðrSizeÞ þ bSpacinglog2ðrSpacingÞffiffiffi

2
p

� �� �
� 1

2

� �
þ 1

2
ð6Þ
was used to fit data in which participants compared a devi-
ant value to a fixed standard value (either 16 or 32). The
probability of choosing ‘‘larger’’ for the deviant stimulus
was the proportion of the numerosity distribution lying
on the greater side of the standard. The probability of this
occurring at different numerosities is a cumulative normal
distribution with a standard deviation that is equal to the
standard deviation of the representation of numerosity, w.

In contrast participants in our task were asked to pick
the larger of two numerosities that both varied from trial
to trial with no fixed reference value. To accommodate this
change in paradigm, we modified the model used by Piazza
et al. (2010) to include two numerosity distributions on a
log-compressed number line, each with equal variance w.
According to this version of the logarithmic model, the
probability of choosing a stimulus was the proportion of
its numerosity distribution lying on the greater side of
the other stimulus distribution (not a fixed referent). The
probability of this happening at different log right to left
numerosity ratios is a cumulative normal distribution with
standard deviation of w multiplied by root two.

pðChooseRightÞ ¼ 1
2

1þ erf
log2ðrnumÞffiffiffi

2
p
ð
ffiffiffi
2
p

wÞ

 !" #
ð4Þ

where rnum is the ratio of the right side to the left side stim-
ulus and erf is the error function.

The second model, termed here the ‘‘linear model,’’
assumes that number is represented on a mental number
line that is linearly spaced but has variance that scales lin-
early with magnitude (Halberda et al., 2008; Pica et al.,
2004). In this model w is the scalar that relates the
numerosity to the standard deviation.

pðChooseRightÞ ¼ 1
2

1þ erf
ðrnum � 1Þffiffiffi

2
p

w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

num þ 1
p

 !" #
ð5Þ

It should be noted that w refers to different mathemat-
ical constructs in the logarithmic and linear models, mak-
ing direct comparisons meaningless. Indeed, the same
accuracy data fit by these two models produces different
numerical values for w.

3.6. A novel model of numerosity discrimination that accounts
for the effect of non-numerical features

We compared the two models above with the model we
developed that was designed to accommodate the empiri-
cal fact that the size and spacing of dots within an array
affect subjective numerosity. We fit a generalized linear
model to choice data with regressors for the log of the ratio
of numerosity, Size, and Spacing of the stimulus appearing
on the right and the stimulus appearing on the left. The
model formatted as a function of a linear expression:
This equation looks rather different, but it can be
thought of as simply an elaboration of Eq. (4). This can
be better appreciated if we rearrange it:
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has the following coefficients: w = 0.3 (bnum � 2.36), bSize = 0.5,
bSpacing = 0.5, bside = 0. Stimulus S1 and S2 are represented internally as
normally distributed random variables on a logarithmically compressed
mental number line. The standard deviation of these representations is
fixed and equal to w. When Size and Spacing are equal in S1 and S2, the
model is equivalent to the logarithmic model (Eq. (4); Piazza et al., 2010).
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The log2(rnum) term is equivalent between Eqs. (4) and
(7). The standard deviation of Eq. (4) was w multiplied by
root two, whereas here the standard deviation is the recip-
rocal of bnum:

r ¼ 1
bnum

ð8Þ

Therefore we can compute w from the new model
parameters according to:

w ¼ rffiffiffi
2
p ¼ 1ffiffiffi

2
p

bnum

ð9Þ

This makes sense: the w term depends only on bnum, the
term capturing participants’ sensitivity to number. There
are also meaningful differences between the models. In
Eq. (4) log2(rnum) alone determines the x-axis position
along a single choice curve where the indifference point
is at 0 (a 1:1 ratio). The greater the numerical ratio of right
to left, the greater the probability of choosing right. In
Eq. (7) this is still true, but there is now a large term sub-
tracted from the x-axis position. This value determines the
indifference point of the choice curve, which can now vary
according to several new terms. In the context of a cumu-
lative normal choice curve, the indifference point is the
mean and is given by:

l ¼
�bside � bSizelog2ðrSizeÞ � bSpacinglog2ðrSpacingÞ

bnum
ð10Þ

These new terms include the log ratios of Size and
Spacing as well as all the b terms. bside is an offset term that
accounts for any side bias a participant might have. bSize

and bSpacing modulate the degree to which the Size and
Spacing ratios affect the indifference point, and bnum scales
the effect of all factors such that the greater the numerical
acuity the smaller the effect of everything else.

The other new term in the model is the c. Because our
task was fast paced to allow many trials to be collected
within a reasonable amount of time, we assumed that par-
ticipants occasionally looked away from the screen or were
momentarily distracted and failed to process the stimuli. In
this case participants’ choices would be random and not
related to any stimulus characteristics. To accommodate
this we included c, a guessing term (Halberda &
Feigenson, 2008; Pica et al., 2004). This term allows choice
curves to asymptote below 100% and above 0%, since the
more a participant guesses, the more the entire choice
curve is compressed toward 50%. In the extreme example
of a participant who responded randomly, the c term
would be 1, the proportion of rightward responses would
be 50%, and no other term in the model would matter.

It is worth noting that if c and all the b terms besides
bnum are zero, the new model completely reduces to the
logarithmic model in Eq. (4). However, if the b terms for
Size and Spacing are non-zero, the indifference point will
not be at a 1:1 numerical ratio. In other words, the partic-
ipant can be biased, choosing one of two numerically equal
arrays more than 50% of the time if that array has, for
example, more spaced out dots.

The logarithmic model of choices in Eq. (4) is based on a
particular hypothesis regarding the underlying internal
representation of numerosity (Piazza et al., 2004).
According to this hypothesis an approximate numerosity
is represented as a normally distributed random variable.
The distribution is centered on the actual value it is repre-
senting, but it is imprecise and probabilistic. The standard
deviation of the numerosity random variable is the term w.
When two numerosities are compared, as in a task like the
one used here, the overlap in the two distributions causes
confusability. Thus, the distance between the two numbers
on the logarithmic mental number line (equivalent to the
ratio) and the w term determine the confusability of two
numerosities and therefore the error rate.

The changes proposed to get from Eq. (4) to Eq. (7) cor-
respond to an equivalent change in the hypothetical
underlying mental representation of numerosity. Instead
of the numerosity normal random variable being centered
on the actual number being represented, we propose that,
in people who are biased by non-numerical features, the
mean can vary depending on the Size and Spacing of the
stimulus. Thus, the size and spacing of the items in a
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stimulus array can be thought of as increasing or decreas-
ing the perceived numerosity depending on whether a par-
ticular participant has a positive or negative bSize and
bSpacing.

Fig. 2 helps to elucidate the effects of Size and Spacing
on the overlap of the internal representation of two
numerosities, S1 and S2, in a hypothetical participant. If
S1 and S2 differ by a numerical ratio of 1:2, but do not dif-
fer in Size and Spacing, then the model reduces to the log-
arithmic model (Piazza et al., 2004, 2010) expressed in Eq.
(4). The overlap will depend only on w as illustrated by the
S2 distribution in black in Fig. 2. If the Size and Spacing
ratios of S1 to S2 are both 2:1, however, the participant’s
bias causes the mean of the numerosity representation of
S20 to shift to the left as given by Eq. (10) (blue distribu-
tion). As a result, the overlap between S1 and S20 increases
and accuracy decreases, just as is actually observed in
experiments in which non-numerical features are incon-
gruent with numerosity. Conversely if the Size and
Spacing ratios are 1:2, as in congruent trials, the distribu-
tions grow farther apart and accuracy improves (distribu-
tion S20 0 in red). These changes in accuracy occur despite
no change in numerical ratio and no change in w, and
therefore cannot be modeled using previous approaches.
Only a framework that takes non-numerical stimulus fea-
tures into account can model these effects on error rate.

We have provided code in the supplementary materials
that computes the Size and Spacing parameters and will fit
the model in Eq. (7) to behavioral data sets.

3.7. The discrimination vector, discrimination dimension, and
testing for non-numerical alternative strategies

The three value vector defined by bnum, bSize, and bSpacing

reflects the degree to which the distance between two
stimuli along the three cardinal dimensions in Fig. 1E affect
the probability of choosing a particular stimulus as the
more numerous one. We will refer to this vector as the par-
ticipant’s discrimination vector and the dimension it
defines in Fig. 1E stimulus space as the discrimination
dimension. Pairs of stimuli that differ along the discrimina-
tion dimension are most easily discriminated, and partici-
pants are indifferent between pairs of stimuli that differ
along the dimensions orthogonal to the discrimination
dimension. If a participant has no bias, then her discrimi-
nation dimension will be identical to the numerosity
dimension, and the magnitude of the discrimination vector
will be identical to bnum. However, if bSize or bSpacing is not
zero then the discrimination dimension will differ from
the numerosity dimension. A participant who has a signif-
icant bnum (p < 0.01) and no significant effect of bSize or
bSpacing (p > 0.1) can be considered to be making unbiased
numerosity judgments.

Participants who fail to meet the criteria for unbiased
numerical discrimination may be primarily relying on
numerosity but have a non-numerical bias; alternatively,
they may be responding primarily on the basis of one of
many possible non-numerical stimulus features.
Geometrically, this is equivalent to asking which of the
named dimensions in the Supplementary Animated
Figure is closest to the discrimination vector. To test this
statistically we projected the discrimination vector onto
the numerosity dimension (equal to bnum) and onto each
of the other dimensions. Participants whose numerosity
vector projection was significantly greater than all other
vector projections (p < 0.05) were considered to be primar-
ily relying on numerosity but biased by a non-numerical
feature. Those whose numerosity vector projection was
significantly smaller than another vector projection
(p < 0.05) were considered to be primarily relying on a
non-numerical strategy. Any participant whose numeros-
ity vector projection was not significantly different from
another vector projection was categorized as having an
indeterminate response strategy.
4. Results

We fit the accuracy data of individual participants per-
forming an ordinal approximate number discrimination
task with choice curves with terms for side (left or right),
guessing rate, numerical ratio, Size ratio and Spacing ratio.
The Size and Spacing variables are defined mathematically
in Section 2.2. Intuitively, Size can be thought of as the
aspect of the stimulus that changes with the size of a fixed
number of items at fixed locations, and Spacing can be
thought of as the parameter that changes when a fixed
number of items of fixed size are spread out over a greater
or lesser area of space.
4.1. Model fits account for performance variations due to non-
numerical stimulus features

Fig. 3A shows the model fit for the five participants who
were tested with 7500 trials. As the numerical ratio of
items in the right array to items in the left array increased,
participants became more likely to choose the right stimu-
lus, as instructed. The effect of numerical ratio on the prob-
ability of choosing ‘‘right’’ was well fit by the model across
trials (black data points and fit lines in Fig. 3A). In order to
examine the effects of Size and Spacing and to evaluate how
well the model accounted for these effects, we examined
the subset of trials in which the non-numerical features
differed dramatically. The red markers and green markers
in Fig. 3A reflect trials with large Size and Spacing ratios
respectively (greater than an 8:3 or less than a 3:8 ratio).
Critically, the model was only fit once for each participant
to his or her full dataset; the red and green lines represent
the predictions of the model for these subsets of trials. As
can be visualized in the offset of the red and green lines
from the black lines, all of these participants were influ-
enced by Size, Spacing, or both. These red and green lines
represent an explanation of variance in numerosity judg-
ments that cannot be accounted for with either the loga-
rithmic or linear models of the ANS used in previous
studies.

On any given trial, the influence of Size or Spacing may
help or hinder performance. If a participant has a signifi-
cant positive effect of Size ratio or Spacing ratio, as do most
of the participants in our sample, then larger and more
spaced-out dots are perceived as more numerous (a nota-
ble exception is participant 1 who has a negative Size



A B

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

p(
C

ho
os

e 
R

ig
ht

)

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

−1 −0.5 0 0.5 1
0

 0.2

0.4

0.6

0.8

1

p(
C

ho
os

e 
R

ig
ht

)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

p(
C

ho
os

e 
R

ig
ht

)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

p(
C

ho
os

e 
R

ig
ht

)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

p(
C

ho
os

e 
R

ig
ht

)

Numerosity ratio (log2)

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1
Ac

cu
ra

cy

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

Numerosity ratio (log2 and rectified)

All trials
Size Congruent
Size Incongruent
Spacing Congruent
Spacing Incongruent

Data (color indicates subset) 
Guessing rate asymptote

New Model Congruent
New Model Incongruent
Log Model Congruent
Log Model Incongruent

Congruent Data
Incongruent Data

Fig. 3. Modeling Size and Spacing explains congruity effects. Each row of plots is a single participant’s data. (A) Data (open circles) and model fit (black, red,
and green lines). Dashed gray lines indicate model asymptote due to guessing rate (c). The probability of choosing the stimulus array presented on the right
is modeled as a function of the log of the left array to right array ratio of numerosity, Size, and Spacing. Black indicates the average of all data and the
corresponding model fit. Red shows data and model fit for the third of trials with the greatest absolute ratio in Size and green shows the same for Spacing.
Dashed lines indicate Size or Spacing was congruent with number, and dotted lines indicate incongruent. All model predictions (lines) are derived from the
parameters fit once to the entire participant’s dataset. (B) Data from the same participants plotted as accuracy. Upward pointing triangles indicate average
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coefficient). As a result, when numerosity is congruent
with Size or Spacing, a participant will be more likely to
correctly identify the stimulus with the larger numerosity,
as illustrated by the dashed red and green model fit lines in
Fig. 3A. In contrast, when Size or Spacing is incongruent,
performance decreases as shown by the dotted red and



256 N.K. DeWind et al. / Cognition 142 (2015) 247–265
green lines. In these trials, the larger and more spaced out
dots make the less numerous stimulus appear more
numerous and thus reduce accuracy. When the numerical
ratio is difficult and the changes in Size and Spacing are
large and incongruent to numerosity, participants can be
induced to consistently incorrectly choose the less numer-
ous stimulus at a rate greater than chance.

4.2. Modeling the effect of Size and Spacing improves w
reliability across stimulus sets

One clear inadequacy of the previous models of numer-
ical discrimination is that they are incapable of modeling
below chance performance. In particular, when stimulus
features are very incongruent to numerosity and the
numerical ratios are difficult, the current models of
numerosity discrimination will sometimes fail to converge,
essentially estimating an absurdly large or infinite w
(Szucs, Nobes, et al., 2013). We fit our model as well as
the standard logarithmic (Piazza et al., 2010) and linear
models (Pica et al., 2004) separately to only the congruent
trials and only the incongruent trials to see if accounting
for non-numerical feature bias helped reduce the variabil-
ity in w estimates obtained from different stimulus sets.
We considered a congruent trial as one in which the array
containing more dots also had a larger Size and larger
Spacing and incongruent as one in which the array contain-
ing more dots had the smaller Size and Spacing. As shown
in Fig. 3B, our model provides much better fits to the data
than the standard logarithmic model (the fit of the linear
model was not plotted because it overlapped so closely
with the log model that it was difficult to distinguish).
The fit is especially better on the difficult incongruent tri-
als, on which some participants performed consistently
below chance on the difficult numerical ratios.

Furthermore, the inter-method reliability of w was
higher and w was more similar to the w obtained from fit-
ting the full stimulus set for our model compared to the
two other models. Fig. 4 summarizes these results. When
Cong Incong Cong Incong Cong Incong
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Fig. 4. Modeling the effects of non-numerical features increases the inter-
method reliability of w over changes in stimulus set. The w coefficients
calculated for the five participants who completed 7500 trials by fitting
the model presented in this paper, the logarithmic model (Piazza et al.,
2004, 2010), and the linear model (Pica et al., 2004). Models were fit
separately to just the data from congruent trials and incongruent trials.
using the logarithmic and linear models, w obtained from
incongruent trials tended to be much larger than for con-
gruent trials; however, w obtained from our model was
quite similar across stimulus sets, with no discernable
increasing or decreasing trend across the five participants.
Thus, our model is capable of explaining large differences
in performance originating from non-numerical features.
Furthermore, it properly attributes these performance
effects to non-numerical model parameters with no sys-
tematic impact on the estimation of numerical acuity.
4.3. Numerosity is the best explanation of performance but
bias is universal

Fig. 5 summarizes the effect of numerical ratio, Size
ratio, and Spacing ratio on choice behavior for all of our
20 participants. Beta estimates are plotted in pairs as
bnum � bSize, bnum � bSpacing, and bSize � bSpacing in Fig. 5A–C
respectively (see the Supplementary Animated Figure for
a fully three dimensional plot). The coefficients are plotted
as standard error ellipses to denote the confidence of the
estimate. The small ellipses represent more precise beta
estimates derived from the five participants who per-
formed 7500 trials (some errors are so small they may
appear as points), and larger ellipses reflect the 15 partic-
ipants who performed 750 trials each. These three beta
estimates comprise the discrimination vector of each par-
ticipant. The direction of the discrimination vector (the
discrimination dimension) represents what stimulus fea-
tures a participant is utilizing to make her choices, and
the magnitude of the discrimination vector represents
the participant’s acuity in discriminating that feature (see
Section 3.7 for further explanation).

The hypothesis that numerosity is the sole factor driv-
ing behavior is equivalent to the hypothesis that the beta
for numerosity is significantly different from zero, and
Size and Spacing betas are not different from zero.
Although the choices of all of the participants in our sam-
ple were significantly influenced by numerosity
(p� 0.001), none of them met our criterion for ‘‘pure’’
numerosity discriminators. In other words, we could not
rule out the possibility that Size and Spacing might also
be influencing behavior (p < 0.1 for all participants), and
so we categorized them as ‘‘biased’’. Thus, we could rule
out what we consider to be the implicit hypothesis of the
two dominant models of numerosity discrimination: that
the ratio of the numerosities and ANS acuity (w) are the
only factors affecting numerosity discrimination
performance.

The beta space represented in Fig. 5A–C, Supplementary
Fig. 1, and the Supplementary Animated Figure is analo-
gous to the stimulus space in Fig. 1E. In particular, the
log ratios of the non-numerical stimulus features can be
expressed as linear combinations of the log ratios of
numerosity, Size, and Spacing. Thus, the hypothesis that a
particular stimulus feature contributes to choice behavior
is equivalent to the hypothesis that a particular linear com-
bination of log numerosity, Size, and Spacing shape choice
behavior. These linear combinations are represented as
‘‘feature’’ dimensions in Fig. 5A–C, Supplementary Fig. 1,
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and the Supplementary Animated Figure and labeled with
the stimulus feature to which they correspond.

This produces a simple graphical representation of the
features driving individual participants’ choice behavior.
For example, if we had found a participant who made
choices based only on the number of dots while ignoring
the dots’ size and spacing, the discrimination vector error
ellipse for that participant would lie on the numerosity
feature dimension in both Fig. 5A and B and at the origin
in Fig. 5C. Alternatively, if a participant always and only
relied on total surface area to discriminate stimuli, her beta
parameters for numerosity and Size would be significantly
positive and equal, but the parameter for Spacing would be
near zero. The exact numerical values of the numerosity
and Size beta parameters would indicate the participant’s
acuity in discriminating total surface area. As a result such
a participant’s discrimination vector would fall along the
‘‘total surface area’’ dimension in Fig. 5A. The slope of each
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Fig. 6. The advantages of the new model are evident even with fewer
trials. (A) The proportion of participants in whom we could detect bias is
plotted against number of trials (navy). The proportion of participants for
whom one of the ten features explains the significantly greatest portion of
the variance (determinate strategy; teal) is also plotted against the
number of trials used in the analysis. (B) Extending the analysis in Fig. 4
to all participants, w was calculated separately for congruent and
incongruent trials (wCong and wIncong respectively). The mean of the ratio
of wIncong to wCong is plotted on a log scale for the three models. Error bars
denote standard errors of the means (n = 20 participants).
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of these feature dimension lines in Fig. 5 is determined by
the linear equations in Appendix A. Geometrically, asking
which stimulus feature is determining behavior is equiva-
lent to asking which feature dimension a participant’s dis-
crimination vector lies on. If the discrimination vector is
significantly offset from all features lines, we may ask
which feature best explains behavior. This is the equivalent
of asking to which feature dimension the discrimination
vector is closest. The three dimensional nature of the coef-
ficient space can be better appreciated in the
Supplementary Animated Figure.

To determine if a participant’s discrimination vector
was significantly closer to a non-numerical feature dimen-
sion or to the numerosity dimension, we projected the dis-
crimination vectors onto each feature dimension. We then
tested whether bnum was significantly larger than all the
other vector projections using linear contrast hypothesis
testing. If a particular vector projection was significantly
larger than bnum we could conclude that the participant
was more influenced by that parameter than by numeros-
ity. Fig. 5D shows the difference between bnum and the
magnitude of the discrimination vector projected onto
each of the other stimulus features. Two out of twenty par-
ticipants were significantly better described as basing
choices on total perimeter rather than numerosity
(p = 0.009 and p� 0.001 for linear contrast). One addi-
tional participant could not be categorized and was either
a numerosity or a total perimeter discriminator (p = 0.31).
All 17 other participants were significantly better
described as discriminating numerosity than as discrimi-
nating any other stimulus feature (p < 0.05).

4.4. Advantages of new model hold with fewer trials

We ran our participants on many trials to ensure that
we were able to precisely quantify their response strate-
gies and bias terms. However, most studies of numerical
cognition run fewer trials. If we hope for broader adoption
of our modeling approach then it would be useful to know
if the main advantages outlined here apply when fewer tri-
als are used. We reran our analyses on reduced numbers of
trials for all participants. Fig. 6A shows the proportion of
the 20 participants that met the criteria outlined above
for the effect of non-numerical features. We tested for bias:
that some factor besides numerosity affects choices, and
for strategy: that numerosity or some other factor is the
statistically significant best determinate of choices.
Although the ability to detect bias and strategy decreases
with fewer trials, both measures were effective to as few
as 250 trials, which our participants completed in about fif-
teen minutes. It is worth noting that a study designed with
larger Size and Spacing ratios would be more sensitive to
bias using even fewer trials.

Fig. 6B recapitulates the finding in Fig. 4 for all partici-
pants and using fewer trials. Inter-method reliability of w
is higher using our new model than for either the logarith-
mic or linear models, both of which overestimate w when
non-numerical stimulus features are incongruent with
number. On average this is true regardless of the number
of trials, but the standard error of the ratio increases with
fewer trials.
5. Discussion

Here we put forward an elaboration of the logarithmic
model of approximate enumeration comparisons (Piazza
et al., 2004) to account for the effect of non-numerical fea-
tures associated with the size and spacing of items in a
visual array. At its heart the logarithmic model is a gener-
alized linear model of error rate using the log of the
numerical ratio as its sole regressor. Our key innovation
is that we added regressors for the size and spacing of
the items, so that variance in choice probability can be
attributed to non-numerical features of the stimulus. The
main complication arises from the multitude of visual fea-
tures related to size (item surface area, total surface area,
item perimeter and total perimeter), spacing (field area
and sparsity/density), or both (coverage and apparent
closeness) that could influence discrimination. To disen-
tangle the roles of these various features we designed the
size and spacing regressors such that they were linearly
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related to all features. As a result, discriminations based on
a particular visual feature, such as total perimeter, result in
a unique ratio of number, Size, and Spacing regression coef-
ficients returned by the model (these ratios are geometri-
cally equivalent to the gray feature dimension lines in
Fig. 5 and the Supplementary Animated Figure). By testing
which of these unique ratios of coefficients is most similar
to a particular set of coefficients (equivalent to which fea-
ture dimension line a participant’s performance is closest
to), we can determine whether a participant is discriminat-
ing based on number or some other visual feature of the
stimuli. By examining how far the coefficients are from
the unique coefficient combination associated with num-
ber, we can quantify the extent of non-numerical bias.

This model and the stimulus space on which it is based
represent an advance over previous approaches in four
important ways. First, the stimulus space itself identifies,
for the first time, the three degrees of freedom available
to nonverbal numerical cognition researchers in designing
stimuli, and elucidates the tradeoffs and partial collineari-
ties inherent to arrays of dots. Second, the model recon-
ciles the concept of numerosity as an internal random
variable on a log scale mental number line with the fact
that non-numerical features also affect discrimination per-
formance by allowing the mean of the numerosity random
variable to shift with changes in the size and spacing of the
dots within the stimulus arrays. Third, by correctly
attributing correct and incorrect responses caused by con-
gruence or incongruence of non-numerical features to the
Size and Spacing parameters, the model yields a w that is
a more valid estimate of numerical acuity and is more
reliable over different stimulus sets. Fourth, our model
provides a quantitative assessment of the role of
non-numerical stimulus features in numerosity judg-
ments. Rather than attempting to control for
non-numerical features by equating different dimensions
in different trial subsets, our approach is to intentionally
vary non-numerical features and to model their effects
on performance.

Our model applied to the data set presented here
demonstrates that all participants were influenced, to
some extent, by non-numerical features while attempting
to perform a numerical discrimination. Although the effect
of non-numerical features on numerical estimation and
comparison has been well documented in the literature,
our data show that these effects are nearly universal even
among educated adults. Our data further show that for at
least 17 out of 20 subjects, number, out of the comprehen-
sive list of ten stimulus features tested, best explained
behavior. We consider this strong evidence that numeros-
ity does exist as an internal magnitude. Number cannot be
explained away as ‘‘merely’’ the derived effect of other fea-
tures even if other features inarguably affect numerical
perception.

5.1. Stimulus space and modeling

The two dominant models of numerosity discrimination
do not adequately account for the effects of non-numerical
stimulus dimensions on accuracy. Both the logarithmic
(Piazza et al., 2004, 2010) and linear (Halberda et al.,
2008; Pica et al., 2004) models posit that numerosity is
internally represented as a distribution or random variable
along a mental number line, with a mean equal to the
number represented. The width of the distribution may
be fixed (log model) or may vary with the magnitude being
represented (linear model). In either case w is proposed to
be a measure of the fuzziness of the internal representation
of number intrinsic to the individual. Critically, both mod-
els posit that performance in a numerical ordering task is
determined only by w and the numerical ratio.
Empirically, however, many groups have demonstrated
that non-numerical stimulus features do indeed affect per-
formance in numerical ordering tasks (e.g. DeWind &
Brannon, 2012; Frith & Frith, 1972; Gebuis & Gevers,
2011; Ginsburg, 1976; Sophian, 2007; Tokita & Ishiguchi,
2010).

Here we extend the standard logarithmic model of
numerosity perception and discrimination to include
terms that capture the effects of the size and spacing of
the dots in the stimulus arrays. In our new revised loga-
rithmic model, numerosity is represented as a random
variable on a log compressed mental number line.
However, the size and spacing of the dots in the stimulus
array can cause the mean of this distribution to be shifted
to a position greater or less than the actual number of
items in the stimulus. As a result, the overlap of two
numerosity distributions, and therefore the predicted error
rate, may be larger or smaller depending not only on
numerical ratio but also on whether non-numerical fea-
tures are congruent or incongruent with numerosity (see
Fig. 2 for a hypothetical example). By accommodating the
effects of non-numerical features, our model is able to cap-
ture variance in numerical discrimination behavior that
went unaccounted for in previous models.

Extending the logarithmic model of numerosity, how-
ever, is not as straightforward as simply adding regressors
for each non-numerical feature that might influence
numerical perception. Such a model would be overdeter-
mined due to the partial collinearity of these features. It
was therefore essential to identify the mutually indepen-
dent regressors that fully describe the stimulus features
that could affect performance on a numerosity discrimina-
tion task.

Relying heavily on the framework of intrinsic and
extrinsic features pioneered by Dehaene et al. (2005), we
developed a novel stimulus space. For the first time we
provide a comprehensive description of dot array stimuli
that encompasses the critical features affecting numerical
discrimination. This space has three dimensions that
describe the number, size, and spacing of the dots in an
array, a formulation that is complete but not redundant.
This space provides ANS researchers with a powerful new
tool for understanding the tradeoffs and collinearities
inherent to dot array stimuli and a basis for quantifying
the effects of ten different stimulus features on numerical
discrimination.

5.2. A more valid and reliable w

In previous studies fitting the logarithmic or linear
models, estimates of w have failed to account for the effect
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of non-numerical features in a systematic and quantifiable
way. As a result, w estimates derived from these models
are an amalgamation of the effects of number and
non-numerical features. Our model estimates w indepen-
dently of the effects of Size and Spacing, and in this sense
it is a more valid measure of numerical acuity itself.

The practical corollary of a more valid measure of
numerical acuity is an increase in ‘‘inter-method’’ or
‘‘alternate-form’’ reliability. This type of reliability refers
to the tendency of different tests to generate the same
result. In this case the different tests of numerical acuity
are different stimulus sets that vary non-numerical fea-
tures in different ways. To assess inter-method reliability
we compared the w estimates for the new revised logarith-
mic model to the two standard models for congruent and
incongruent trials separately. For both standard models,
w estimates were much higher in the incongruent com-
pared to the congruent condition. In contrast, our new
revised logarithmic model returned similar estimates for
the two trial types and therefore showed greater
inter-method reliability. The discrepancy in w estimates
for incongruent and congruent trials observed under the
standard models has been observed previously and has
been interpreted to mean there is no stable internal repre-
sentation of numerical magnitude; it has even been offered
as evidence against the existence of the ANS (Szucs, Nobes,
et al., 2013). Our model demonstrates that w is in fact
stable over these stimulus conditions and that the instabil-
ity observed in previous studies was due to the conflation
of acuity and bias.

There are several potential benefits of a more reliable,
valid, and cross-paradigm comparable measure of numeri-
cal acuity. Recently, there has been interest in the predic-
tive power of numerical acuity on mathematical
achievement (DeWind & Brannon, 2012; Gilmore et al.,
2010, 2013; Halberda et al., 2008, 2012; Lyons & Beilock,
2011; Mazzocco et al., 2011; Park & Brannon, 2013;
Piazza et al., 2010; Starr et al., 2013). These correlations,
however, are relatively weak and only predict a small
amount of variance in mathematical performance. Some
researchers have also suggested that non-symbolic numer-
ical abilities are part of a larger suite of visual-perceptual
abilities that predict mathematics performance (Tibber
et al., 2013). Others have argued that ANS acuity provides
unique variance to predicting mathematical performance
and that other similar perceptual tasks do not (Agrillo,
Piffer, & Adriano, 2013), or that both ANS acuity and other
perceptual tasks provide unique variance (Lourenco,
Bonny, Fernandez, & Rao, 2012). Parsing out
non-numerical bias from numerical acuity may improve
these correlations by reducing the effect of bias on w esti-
mates. Alternatively, bias itself might be a mediating fac-
tor. Participants who cannot clearly differentiate
numerosity from other magnitudes may have impaired
performance on other perceptual tasks or with symbolic
mathematics itself. For example, some have suggested that
the ‘‘stroop like’’ aspect of numerosity discriminations
with strong non-numerical feature incongruity reveals dif-
ficulties inhibiting prepotent responses (Fuhs & McNeil,
2013; Szucs, Devine, Soltesz, Nobes, & Gabriel, 2013).
They suggest that previous correlations between w and
math achievement may be mediated by failure to inhibit
responses to other stimulus features. Isolating bias from
numerical acuity will allow these hypotheses to be tested
more directly.

5.3. Stimulus control

The goal of stimulus control in numerosity experiments
has been to ensure that numerosity is driving choice
behavior. In the literature there are two standard ways of
accomplishing stimulus control in dot array comparison
tasks. Both of these methods have drawbacks, and neither
gives an objective measure of non-numerical feature bias.
Our modeling approach, in contrast, provides a clear quan-
titative measure of both numerical acuity and bias and can
detect alternative response strategies that are based pri-
marily on non-numerical features of the stimulus.

The most common method for controlling non-
numerical features is to divide trials into sets that each
control for a different non-numerical stimulus feature, an
approach adopted by many research groups (e.g. Ansari &
Dhital, 2006; Halberda et al., 2008; Izard, Sann, Spelke, &
Streri, 2009; Libertus, Woldorff, & Brannon, 2007; Piazza
et al., 2010; Santens, Roggeman, Fias, & Verguts, 2010).
For example, if total surface area were fixed in one set of
trials, numerosity and item surface area would vary
together. In another set of trials, item surface area would
be fixed and total surface area would vary with numeros-
ity. If a participant were relying on one of these features
as a proxy for numerosity, then choice behavior would be
at chance on the subset of trials on which that feature is
fixed. This basic logic certainly works for ruling out total
reliance on a particular feature; however, the analysis is
underpowered since it relies on a subset of trials.
Furthermore, for practical reasons, most studies do not
control all possible parameters in different trial subsets, a
problem which is particularly salient given our finding that
total perimeter, a rarely controlled parameter, is subserv-
ing a non-numerical strategy in some people.

Another common approach to stimulus control is to
have subsets of trials in which a particular non-numerical
stimulus feature is varied in a manner either congruent
with or incongruent with numerosity (e.g. Cantlon &
Brannon, 2005; DeWind & Brannon, 2012; Hurewitz,
Gelman, & Schnitzer, 2006; Rousselle & Noël, 2008;
Szucs, Nobes, et al., 2013). Ruling out a non-numerical
strategy is particularly problematic using this paradigm.
It depends on observing above chance performance in
incongruent trials, but as can be seen in Fig. 3B, partici-
pants with any bias at all can be induced to consistently
choose the incorrect stimulus when numerical ratios are
very difficult and the ratio of incongruent non-numerical
features is very large. Thus, the test for non-numerical
strategies is too sensitive and can interpret small effects
of non-numerical features as total reliance on them (as in
Szucs, Nobes, et al., 2013). The sensitivity of the test
depends on paradigm idiosyncrasies such as the difficulty
of the numerical ratios and the degree of variation in
non-numerical features. Furthermore, like the first
method mentioned above, a design that attempts to
control for all non-numerical stimulus features using a
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congruent-incongruent paradigm would require a multi-
tude of conditions (e.g., perimeter congruent, surface area
incongruent, etc.). A recent paper claimed to have resolved
the problem of stimulus control for dot arrays using this
congruent-incongruent approach (Gebuis & Reynvoet,
2011). While their approach succeeds in reducing the over-
all correlation between number and non-numerical fea-
tures, it still suffers from the same intrinsic problem
outlined above.

A critical insight derived from our stimulus space and
modeling approach is that non-numerical bias, which we
define as the marginal effect of a non-numerical feature
on choices, and a non-numerical strategy, which we define
as the primary reliance on non-numerical features, exist on
a continuum. By varying numerical and non-numerical
stimulus features and modeling their effect on choices,
our paradigm provides a quantitative measure of
non-numerical feature bias. If these terms are sufficiently
large, then choices will be better described by the ratio of
a non-numerical feature than by the ratio of numerosity
itself, and we consider such a participant to be utilizing a
non-numerical strategy. Furthermore, these analyses are
made based on the entire dataset, rather than subsets of
trials, and therefore have more statistical power.

This study represents the most comprehensive effort of
which we are aware to simultaneously quantify the effect
of as many non-numerical features as possible on the
internal representation of number. Thus, although bias
was universal among our participants, it is worth noting
that 17 out of 20 participants used numerosity more than
any other feature to make their discriminations. We take
this as evidence that numerosity is not reducible to
‘‘merely’’ the effects of other stimulus features as sug-
gested by some (Gebuis & Reynvoet, 2012b,c; Szucs,
Nobes, et al., 2013), but is itself an important determinant
of behavior. Two of the twenty participants, however, had
such large Size bias that it was more parsimonious to
describe them as discriminating total perimeter than as
discriminating numerosity. This finding makes the impor-
tance of controlling total perimeter in ANS studies
apparent.

We also found a large and relatively consistent effect of
Spacing on numerosity judgments. Nineteen out of twenty
participants viewed arrays with more spaced out dots as
more numerous. This effect has been noted before (Allïk
& Tuulmets, 1991; Dakin, Tibber, Greenwood, Kingdom, &
Morgan, 2011; Kramer, Di Bono, & Zorzi, 2011) and may
provide some insight into the processes by which
numerosity is extracted from the visual scene.

5.4. Approximate number system or an approximate
magnitude system?

We use the term ANS throughout this paper; however,
it is important to emphasize that our model and data set
are not designed to test for the existence or lack of an inde-
pendent representational system for number. A recent
study purported to provide evidence against the existence
of an ANS based on low within subject reliability between
stimulus sets for which non-numerical variables were
congruent or incongruent with number (Szucs, Nobes,
et al. 2013). However, as we explained in Sections 5.2
and 5.3, the low reliability they obtained can be attributed
to failing to model non-numerical features, not the insta-
bility of the numerical representation. Instead, we found
that number was a significant determinate of choices,
and non-numerical features had a ubiquitous but sec-
ondary role.

One of the advantages of our stimulus space and model
is that it illustrates the close relationship between number
and other features of the stimulus. In Fig. 5A–C especially,
it is clear that a small effect of Size or Spacing can be con-
sidered a marginal biasing effect on numerical discrimina-
tion, but a sufficiently large effect is better described as an
alternative response strategy (albeit likely an unconscious
one). This continuum of effects and the fact that a minority
do indeed rely on perimeter in making numerical judg-
ments may lend support to the idea that, rather than an
ANS, there is a more general approximate magnitude sys-
tem that allows approximate enumeration, but also sub-
serves approximation of other continuous properties of a
stimulus. From this perspective, our findings can be seen
as supporting Walsh’s theory of magnitude (ATOM), which
suggests that all magnitudes share a common currency, or
at least overlapping representation in the brain (Bueti &
Walsh, 2009; Cantlon, Platt, & Brannon, 2009; Walsh,
2003).

A related question is how the representation of number
and continuous variables emerges over human develop-
ment. One possibility is that numerosity is conflated with
other magnitudes early in development, but that over
development, numerosity becomes more differentiated
(Lourenco & Longo, 2010; Walsh, 2003). Within the context
of our model, confusion of different stimulus dimensions
would manifest itself in the magnitude of the Size and
Spacing coefficients. The classic Piagetian view is that early
in development children attend to size and volume and
only later come to appreciate number as an abstract vari-
able. Seemingly consistent with this view, a handful of
studies found that perimeter or area is more readily
encoded by infants than number (Clearfield & Mix, 1999,
2001; Feigenson, Carey, & Spelke, 2002). However, other
data is inconsistent with this view and suggests that
infants spontaneously encode both kinds of information.
For example, Libertus, Starr, and Brannon (2014) used a
visual change detection paradigm and found that when
infants were shown two streams of visual images where
one stream alternated numerically and the other alter-
nated in total surface area, infants preferred to look at
the numerically changing stream (see also Cordes &
Brannon, 2009). We hope that our model can be used to
assess the relative influence of number and continuous
variables in young children’s decision-making and track
changes in numerical sensitivity and bias over
development.

Relatedly, comparative studies of other species have
examined relative use of number and other features.
Monkeys and many other animal species can be trained
to attend to number and largely ignore other visual fea-
tures (e.g. Brannon & Terrace, 1998; Cantlon & Brannon,
2006). It has been suggested, however, that this ability is
not part of animals natural behavioral repertoire and only
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results from extensive training (e.g. Seron & Pesenti, 2001).
Cantlon and Brannon (2007) offered evidence against this
view. They trained rhesus monkeys to match stimuli based
on numerosity and a redundant non-numerical variable
such as color, shape, or surface area. Once monkeys reli-
ably matched these redundant cue stimuli, they were given
a choice between one stimulus that matched the sample
numerically and another stimulus that matched based on
the previously redundant variable (e.g., color, shape, or
surface area). The monkeys’ decisions were strongly influ-
enced by the numerical distance between the sample and
incorrect numerical match (Cantlon & Brannon, 2007).
Furthermore, this was true even for one monkey who
had no prior numerical training. These data suggest that
number is a salient discrimination cue even when mon-
keys can rely on other visual features. In contrast, research
with some other species such as mosquito fish suggests
that their quantitative judgments may be more influenced
by continuous variables (Agrillo, Piffer, & Bisazza, 2011).

Thus, the preponderance of recent developmental and
comparative evidence suggests that number is more than
a ‘‘last resort’’ strategy for disambiguating stimuli. We
hope that our model can be used to quantify the role of
number versus non-numerical variables on behavioral
decisions, as well as to study species differences and
changes as a function of development and experience.

5.5. Future directions

An important future direction is to see how well
non-numerical bias can be estimated in previously col-
lected published datasets on numerical cognition and to
see how these bias estimates, as well as the new estimates
of numerical acuity that account for bias related errors,
change or clarify previous hypotheses. Our modeling
approach does not depend on a particular esoteric arrange-
ment of stimulus parameters. We orthogonalized number,
Size, and Spacing ratios to increase power; however, as long
as these features are not perfectly collinear, our modeling
approach can be applied to data sets acquired using diverse
stimulus control paradigms. To facilitate the adoption of
our model, we have included computer code in a supple-
ment to this research article.

An important advantage inherent to our model of
choice behavior is that it easily accommodates more
regressors to model other important aspects of choice
behavior. We argue that the advance made in this paper
is the observation that the continuous parameters thought
to affect numerical discriminations can be reduced to three
regressors that can be varied independently. A fourth
regressor was added to account for side bias. More regres-
sors could be added for other variables that can be varied
independently from numerosity, Size, and Spacing: for
example, brightness, contrast ratio, or item shape.

The standard way of measuring w is to present pairs of
dot arrays and require participants to make an ordinal
judgment. The number of parameters that can freely vary
between research groups without being expressly modeled
is shrinking. Here we modeled the effects of Size and
Spacing for the first time and, by extension, all of the
derived features in Appendix A. Our model, however,
cannot explain some other features known to affect the
perception of numerosity. First, our model does not
account for the effect of stimulus exposure time. Inglis
and Gilmore (2013) demonstrated that stimulus exposure
time is a critical variable that must be accounted for when
estimating w, and they provide a model for doing so.
Second, although our model contains a term for item spac-
ing, it cannot account for the effect of items ‘‘clumping’’
within the array. The solitaire illusion (Frith & Frith,
1972) and the regular-random illusion (Ginsburg, 1976)
demonstrate that clumping does affect numerosity esti-
mates. The occupancy model (Allïk & Tuulmets, 1991) pro-
vides a modeling framework for explaining these effects.
Other effects that our model does not address are the effect
of the absolute magnitude of the values being compared
separate from ratio (Prather, 2014) and hysteresis,
whereby the difficulty and perceptual qualities of the pre-
vious trial affect current discrimination (Cicchini, Anobile,
& Burr, 2014; Odic, Hock, & Halberda, 2014). Integrating
the effects of these visual features into our model is
beyond the scope of this paper. However, future work
should explore the interactions between exposure time,
clumping, absolute magnitude, hysteresis, and numerical
acuity and bias to further reconcile different paradigms,
aid in comparisons across paradigms and research groups,
and deepen our understanding of the mechanisms of
approximate enumeration.

Although most investigations into the ANS use static
arrays of dots, similar stimulus control problems exist for
aural or visual numerical stimuli presented sequentially.
The extrinsic variables analogous to total surface area
and field area would be total event duration and total stim-
ulus duration respectively. The intrinsic variables analo-
gous to item surface area and sparsity would be
individual event duration and mean event period (equiva-
lently total stimulus duration per event or the reciprocal of
frequency). Numerosity-independent variables analogous
to Size and Spacing could be generated by the same equa-
tions, and a regression model closely analogous to the
one presented here could be adopted.

We focused on choice behavior in this study; however,
the stimulus space and model could be used on any depen-
dent variable that might vary with Size, Spacing and
numerosity. For example, various studies have looked at
the effects of dot array numerosity on BOLD signal
(Cantlon, Brannon, Carter, & Pelphrey, 2006; Jacob &
Nieder, 2009; Piazza, Pinel, Le Bihan, & Dehaene, 2007;
Piazza et al., 2004), EEG (Gebuis & Reynvoet, 2012a), and
the firing rates of individual neurons (Nieder & Miller,
2004; Roitman, Brannon, & Platt, 2007). Currently, non-
numerical features are treated as nuisance variables that
must be controlled. Our approach of quantifying non-
numerical features allows the stimulus space dimensions
affecting neurological dependent variables to be teased
apart. We hope that applying similar modeling approaches
to the one used here will lead to a better understanding of
how low level visual features processed early in the cortical
visual stream are transformed into the numerosity signals
seen in the intraparietal sulcus and prefrontal cortex.

Finally, we anticipate that this model will be useful for
looking at changes in the salience of non-numerical
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features over development and individual differences in
the influence of non-numerical variables on numerical dis-
crimination at a given age.
6. Conclusions

We extended the logarithmic model of numerical acuity
to dissociate the biasing effects of Size and Spacing from w.
Instead of merely controlling for non-numerical stimulus
features, the model allows a quantification of the effect
of non-numerical stimulus features on choices. The model
applied to our data set demonstrates that non-numerical
features widely affect numerical discriminations in adults,
but that for most individuals these effects are relatively
small.
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Appendix A

Stimulus features in terms of the three cardinal fea-
tures, numerosity (n), Size (Sz), and Spacing (Sp), or the
ratios of those features (rfeature).
Stimulus
feature

Feature in terms of three
cardinal features

Log of feature in ter
cardinal features

Total surface
area (TSA)

TSA ¼
ffiffiffiffiffiffiffiffiffiffiffi
Sz � n
p

logðTSAÞ ¼ 1
2 logðSzÞ þ

Item surface
area (ISA)

ISA ¼
ffiffiffiffi
Sz
n

q
logðISAÞ ¼ 1

2 logðSzÞ �

Field area
(FA)

FA ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Sp � n

p
logðFAÞ ¼ 1

2 logðSpÞ þ

Sparsity
(Spar)

Spar ¼
ffiffiffiffi
Sp
n

q
logðSparÞ ¼ 1

2 logðSpÞ

Total
perimeter
(TP)

TP ¼ 2
ffiffiffiffi
p
p
� Sz

1
4 � n3

4 logðTPÞ ¼ logð2
ffiffiffiffi
p
p
Þ

Item
perimeter
(IP)

IP ¼ 2
ffiffiffiffi
p
p
� Sz

1
4 � n�1

4 logðIPÞ ¼ ðlogð2
ffiffiffiffi
p
p
Þ

Coverage
(Cov)

Cov ¼
ffiffiffiffi
Sz
Sp

q
logðCovÞ ¼ 1

2 logðSzÞ

Apparent
closeness
(AC)

AC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sz � Sp

p
logðACÞ ¼ 1

2 logðSzÞ þ
Appendix B. Supplementary material

Supplementary data associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/
j.cognition.2015.05.016.
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