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a b s t r a c t

The paper studies inference in regression models composed of nonlinear functions with unknown
transformation parameters and loading coefficients that measure the importance of each component.
In these models, non-identification and weak identification present in multiple parts of the parameter
space, resulting in mixed identification strength for different unknown parameters. This paper proposes
robust tests and confidence intervals for sub-vectors and linear functions of the unknown parameters.
In particular, the results cover applications where some nuisance parameters are non-identified under
the null (Davies (1977, 1987)) and some nuisance parameters are subject to a full range of identification
strength. To construct this robust inference procedure, we develop a local limit theory that models
mixed identification strength. The asymptotic results involve both inconsistent estimators that depend
on a localization parameter and consistent estimators with different rates of convergence. A sequential
argument is used to peel the criterion function based on identification strength of the parameters.
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1. Introduction

Economic theory and empirical studies often suggest nonlinear
relationships among economic variables. These relationships are
commonly specified in a parametric form involving nonlinear
component functions with unknown transformation parameters
and loading coefficients that measure the importance of each
nonlinear component. Generalizing the linear regression model,
these nonlinear regression models take the form

Yt =

p
j=1

gj(Xt , πj)
′βj + Z ′

tζ + Ut , (1.1)

where πj ∈ Rdπj is the unknown coefficient in the smooth nonlin-
ear function gj(·, πj), and βj ∈ Rdβj and ζ ∈ Rdζ are coefficients
of the nonlinear and linear regressors, respectively. In this model,
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∥βj∥ determines the identification strength of πj. If dβj > 1, each
element of gj(Xt , πj) depends on the whole vector of πj such that
the identification ofπj is lost only ifβj = 0. For j = 1, . . . , p,βj = 0
yields p different sources of identification failures. In finite-sample
estimation, small ∥βj∥ results in the weak identification of πj. In-
ference is non-standard because non/weak identification occurs in
multiple areas of the parameter space and the unknown parame-
ters may have mixed identification strength.

Several classes of nonlinear functions are popular in empirical
applications. One is the smooth transition autoregressive model
(STAR, see Granger and Terasvirta (1993) and Terasvirta (1994)),
where gj(x, πj) = φ(x, πj)x and φ(x, πj) is the logistic function or
exponential function with unknown location parameter πj. Each
nonlinear function links two regimes. Multiple regime STARmodel
and its applications to business cycles and real exchange rate
dynamics are studied by van Dijk and Franses (1999), McAleer
and Medeiros (2008), Bec et al. (2010) and Shintani et al. (2013),
among others. Another popular nonlinear function is the Box–Cox
transformation (Box and Cox (1964)), where gj(x, πj) = (xπj −

1)/πj. Its application to the estimation of production function and
cost function are considered by Caves et al. (1980), Clark (1984),
and Giannakas et al. (2000), etc. In the neural network (see White
(1989) and Kuan andWhite (1994)), gj(x, πj) = φ(π ′

j x), whereφ(·)
is the logistic function. Additional nonlinear transformations are
discussed in Hansen (1996).
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Mixed identification strength brings new challenges to hypoth-
esis testing and the construction of confidence sets. Take the test
H0 : βp = 0 for example. In addition to the non-identification of
πp under the null hypothesis, the nuisance parameters πj for j =

1, . . . , p−1 could be non-identified, weakly identified, or strongly
identified, depending on the unknown value of βj. In consequence,
this is a non-standard test that is different from the problem inves-
tigated in Davies (1977, 1987), Luukkonen et al. (1988), Andrews
and Ploberger (1994), and Hansen (1996), where some nuisance
parameters are not identified under the null. These classical results
apply to testing the null hypothesis H0 : β = (β ′

1, . . . , β
′
p)

′
=

0, where the nuisance parameter π = (π ′

1, . . . , π
′
p)

′ is non-
identified. When the interest is in a sub-vector of β rather than
the full vector, a uniformly valid test has not been studied in the
literature.

This paper studies uniform inference for sub-vectors or linear
functions of θ = (β ′, ζ ′, π ′)′ that is robust to weak identification.
There is a large literature on inference robust toweak identification
following Staiger and Stock (1997) and Stock and Wright (2000).
While many important results are developed for the full vector
of θ , sub-vector inference typically depends on projection or con-
centration out of strongly-identified nuisance parameters. In the
nonlinear regression model considered in this paper, the direction
of weak identification is known. Making use of this structure, we
propose robust and non-conservative tests and confidence sets for
sub-vectors of θ , allowing the nuisance parameters to be strongly
identified or weakly identified.

The paper derives a local limit theory for the least squares esti-
mator and theWald statistic when βj for j = 1, . . . , p converges to
0 at various rates or is bounded away from 0. Because the identifi-
cation strength is unknown, all convergence rates and all combina-
tions across j = 1, . . . , p are considered for uniform inference. For
confidence set construction, Andrews and Cheng (2012) consider
a broad class of models where non-identification occurs at a sin-
gle point of the parameter space, including the model in (1.1) with
p = 1. The main challenge in this paper is the multiple sources
of non/weak identification when p > 1, as illustrated by the test
H0 : βp = 0. When the number of such crucial points increases
from one to multiple, this new asymptotic theory is required for
uniform inference with mixed identification strength.

Themain technical innovation of the paper is the use of sequen-
tial arguments to develop the asymptotic theory for estimators and
test statistics in the presence of mixed identification strength. This
asymptotic theory allows for the coexistence of both inconsistent
estimators and consistent estimators with different rates of con-
vergence. To implement the sequential arguments, we first con-
centrate out the loading coefficients β and ζ , which are always
strongly identified, then group the nonlinear parameters πj based
on their identification strength. Starting from the most strongly
identified group to the most weakly identified group, the sequen-
tial procedure concentrates out one group at a time. The most
weakly identified group involves inconsistent estimators that are
functionals of chi-square processes. The rate of convergence of con-
sistent estimators are derived in a sequential manner. Finally, the
process is reversed byplugging themostweakly identified group to
other groups and the test statistics. Uniformly valid tests and confi-
dence sets are suggested based on these non-standard asymptotic
distributions.

The asymptotic theory in this paper complements the mixed-
rate results developed in Lee (2005, 2010), Radchenko (2008),
and Antoine and Renault (2012). In particular, a rotation akin
to that in Antoine and Renault (2012) is used to develop the
asymptotic distribution of the Wald statistic. The asymptotic
results also relate to those considered for near weak instruments
by Hahn and Kuersteiner (2002), Caner (2010), and Antoine and
Renault (2009). In addition, mixed-rate results have a long history
for non-stationary time series, such as Phillips and Park (1988),
Sims et al. (1990) and Kitamura and Phillips (1997), just to name
a few. Different from these papers, the present problem is tied to
loss of identification and it involves both inconsistent estimators
and consistent estimators with different rates of convergence. The
Wald statistic does not always have an asymptotic chi-square
distribution. Furthermore, a different proof strategy based on
sequential peeling is used for the identification problem at hand.

This paper contributes to the growing literature on robust in-
ference with weakly identified nuisance parameters. The projec-
tion method is studied in Dufour and Taamouti (2005, 2007).
Recent development with weakly identified nuisance parameters
include Chaudhuri and Zivot (2011), Andrews and Cheng (2012,
2013, 2014), Guggenberger et al. (2012), Andrews and Mikusheva
(2012, 2015) and Chen et al. (2014), among others. Kleibergen
(2014) considers efficient subset inference in linear instrumental
variable models. In a general nonlinear model, the geometric ap-
proach in Andrews andMikusheva (2015) provides an informative
robust test.

Mixed identification strength also is considered by Andrews
and Guggenberger (2014a,b) in moment condition models. They
show that it is important to consider cases where the singular
values of the Jacobian drift to zero at different rates in order
to establish the uniform validity of an identification-robust
test. Andrews andGuggenberger (2014a,b) investigate the uniform
validity of some existing tests and proceed to propose three new
tests that are robust to both weak identification of a general
form and singular variance matrix of the moments. These papers
focus on full vector inference in a general moment condition
model, whereas the present paper studies sub-vector inference in
a nonlinear regression model. Thus, different types of robust tests
are used.

This paper also broadly relates to many other papers on non-
identification and weak identification. The weak instrument liter-
ature is related to theweak identification considered in the present
paper, e.g., seeNelson and Startz (1990), Dufour (1997), Staiger and
Stock (1997), Stock and Wright (2000), Kleibergen (2002, 2005),
Moreira (2003), Guggenberger and Smith (2005), Andrews et al.
(2006), Montiel Olea (2013) and Andrews (2013), and other pa-
pers referenced in Andrews and Stock (2007). Guerron-Quintana
et al. (2013), Andrews and Mikusheva (2012, 2015) and Qu (2014)
consider weak identification in DSGE models, an important is-
sue discussed in Schorfheide (2013) and Nelson and Startz (2007)
introduce the zero-information-limit condition, which applies to
the models considered in this paper. Ma and Nelson (2010) con-
sider tests based on linearization for nonlinear models under weak
identification. Sargan (1983), Phillips (1989), and Choi and Phillips
(1992) study simultaneous equations models where some param-
eters are unidentified. Shi and Phillips (2012) consider weak iden-
tification with integrated regressors.

The rest of the paper is organized as follows. Section 2
introduces the drifting sequences of true parameters used to
model mixed identification strength. Sections 3 and 4 develop the
asymptotic distributions of the least squares estimator and the
Wald and t statistic under mixed identification strength. Section 5
proposes a robust test based on this non-standard asymptotic
distribution. This robust test has correct asymptotic size and it is
as efficient as the standard test under strong identification. Proofs
are collected in the Appendix.

2. Uniformity and drifting sequences of distributions

We are interested in a sub-vector of θ , denoted by Rθ , where
the matrix R has full rank dr ≤ dθ . The true value of θ belongs to
a set Θ∗, which includes a neighborhood around β = 0. Thus, the
areawhere non/weak identification occurs is part of the parameter
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Fig. 1. Standard Two-Sided t Test: Finite-Sample Rejection Probability (×100) for H0 : β1 = β1,0 (left) and H0 : β2 = β2,0 (right).
space. For a fixed value ofv, we test the null hypothesisH0 : Rθ = v
using the test statistic Tn(R) and a critical value cn,1−α(v), where α
is the nominal size. For a robust test, the critical value cn,1−α(v)
may depend on both the sample size and the null value. A nominal
1 − α confidence set for Rθ is CSn = {v : Tn(R) ≤ cn,1−α(v)},
obtained by inverting tests.

Without knowing the true parameters, we aim to control
the maximum null rejection probability of a test over all true
parameters consistent with the null, called the finite-sample size
of a test. To this end, a reliable critical value should be based
on a uniform approximation of the distribution of Tn(R) over the
parameter space. However, standard asymptotic results developed
under strong identification fail to do so. To illustrate this uniformity
issue, Fig. 1 takes a simple model with p = 2 and plots the finite-
sample (n = 500) rejection probability of the standard two-sided
t test for different true values of β1 ∈ R and β2 ∈ R. The data
generating process (DGP) is specified below where the robust test
is introduced andmore simulation results are reported. This figure
confirms that the standard approximation can be excellent for
some true parameters but poor for the rest. Furthermore, the area
where standard approximation fails does not disappear even for
large samples.

The lack of uniformity also applies to approximations by some
non-standard distributions. Use the simple model p = 2 for ex-
ample. To test the null hypothesis H0 : β2 = 0, a non-standard
approximation is required due to the loss of identification of π2.
However, the finite-sample distribution also depends on the iden-
tification strength ofπ1, measured by ∥β1∥. In consequence, a non-
standard distribution that works well when β1 is far from 0 may
work poorly when β1 is close to 0. Fig. 1 demonstrates that, even
when the true value of β2 is fixed at 0, the distribution of the t
statistics vary with the true value of β1. To obtain a valid test for
H0 : β2 = 0,we should consider all possible identification strength
of π1 as well as the non-identification of π2.

To better approximate the finite-sample distribution of the test
statistic Tn(R), we consider alternative asymptotic approximations
along drifting sequences of true parameters. Let βj,n denote the
true value of βj for sample size n, for j = 1, . . . , p. Due to the
nonlinear structure of the model, πj is strongly identified only if
βj,n → βj,0 ≠ 0. For the rest, the rate at which {∥βj,n∥ : n ≥ 1}
converges to 0models the identification strength ofπj. To achieve a
uniform approximation, we consider sequences of βj,n that satisfy
one of the following conditions:

(i) βj,n → 0, n1/2βj,n → bj ∈ Rdβj ,

(weak identification) or
(ii) βj,n → 0, n1/2

∥βj,n∥ → ∞,
(semi-strong identification) or
(iii) βj,n → βj,0 ≠ 0 (strong identification). (2.1)

For j = 1, . . . , p, (i), (ii), or (iii) could be the case. In addition,
limn→∞ ∥βj,n∥/∥βj′,n∥ ∈ R ∪ {±∞} for sequences in (ii) and
(iii).1 Following the terminology in Andrews and Cheng (2012),
the sequences in (i), (ii), (iii) are associated with weak, semi-
strong, and strong identification of πj, respectively. The semi-
strong identification case provides an important link between the
two extreme cases and it is crucial for uniform results. In the rest of
the paper, we first develop asymptotic distributions of estimators
and test statistics along these drifting true parameters, under
which the p nonlinear regressors are categorized into different
identification groups. The grouping rule is specified in Section 3.1.
In particular, the semi-strong identification category is further
divided into different groups based on the rate at which ∥βj,n∥

converges to 0. In practice, the group specification depends on
the true parameters and is unknown. We show that the class
of asymptotic approximations along all group specifications is
sufficiently large to yield a uniform approximation of the finite-
sample size of a test.

3. Asymptotic distributions of estimators

The observations {Wt = (Yt , X ′
t , Z

′
t )

′
: t ≤ n} are independent

and identically distributed (i.i.d.) or strictly stationary. We assume
Ut has zero mean conditional on Xt and Zt . The true value of θ
belongs to the set Θ∗

= B∗

1 × · · · × B∗
p × Z∗

× Π∗, where

B∗

j for j = 1, . . . , p is a closed set in Rdβj that includes both zero
and non-zero values. Thus, the areawhere non/weak identification
occurs is part of the parameter space. The parameter space Π∗

is compact. For any θ ∈ Θ∗, the distribution of {Wt : t ≤ n}
is denoted by Fγ for the parameter γ = (θ, φ) ∈ Γ , where
φ ∈ Φ∗ denotes an infinite-dimensional nuisance parameter that
characterizes the distribution. The space Φ∗ is a compact metric
space with a metric that induces weak convergence of bivariate
distribution (Wi,Wi+m) for all i,m ≥ 1.2 In parametric models, the
finite-dimensional parameter θ fully specifies the distribution of
the data and φ does not exist. Let Pγ and Eγ denote the probability
and expectation under the distribution indexed by γ .

1 Without loss of generality, we assume βj,n ≠ 0∀n for sequences in (ii) and (iii).
2 For example, the Prokhorov metric on probability measures induces weak

convergence. The compactness assumption is not restrictive following the
Prokhorov’s Theorem (Theorem 6.1 of Billingsley (1968)). If a set of probability
measures is tight, its closure is sequentially compact, which gives a convergent
subsequence and is equivalent to compact on a metric space.
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In addition to the drifting sequences {βj,n : n ≥ 1}, we allow
other parameters to change with the sample size, following the
approach in Andrews and Guggenberger (2009a, 2010). As such,
we not only obtain uniform results over B∗

1 × · · · × B∗
p , but also

over γ ∈ Γ . Specifically, for sample size n, the true parameters are

θn = (β ′

n, ζ
′

n, π
′

n)
′
∈ Rdθ , βn = (β ′

1,n, . . . , β
′

p,n)
′
∈ Rdβ ,

πn = (π ′

1,n, . . . , π
′

p,n)
′
∈ Rdπ , and γn = (θn, φn)

(3.1)

where θn → θ0 = (β ′

0, ζ
′

0, π
′

0)
′, γn → γ0 ∈ Γ , and the subscript

0 denotes the limit of true values.3 We consider rescaling βj,n as
in (2.1) rather than other parameters because the distributions are
non-standard only when some elements of β are close to 0.

The least squares sample criterion function4 is

Qn(θ) =
1
2n

n
t=1


Yt −

p
j=1

gj(Xt , πj)
′βj − Z ′

tζ

2

. (3.2)

The least squares estimatorθn minimizes Qn(θ) over θ ∈ Θ , where
Θ = B1×· · ·×Bp×Z×Π,Bj for j = 1, . . . , p are closed intervals,
and Z andΠ are compact sets. To focus on the identification issue
rather than the boundary effect, we assume all true values in Θ∗

are in the interior of Θ . We derive asymptotic distributions along
sequences of true parameters {γn ∈ Γ : n ≥ 1}, assuming that the
following assumptions hold for any γ ∈ Γ .

Let gjℓ(x, πj) ∈ R denote the ℓ-th element of gj(x, πj) ∈ Rdβj .
Assumptions 1, 2, and 2∗ holds for all j and ℓ.

Assumption 1. gjℓ

x, πj


is twice continuously differentiablewith

respect to (wrt) πj,∀πj ∈ Πj and any x in its support. We
denote the first and second order derivatives of gjℓ


x, πj


wrt πj

by gπjℓ

x, πj


and gππjℓ


x, πj


, respectively. For some non-stochastic

function Mjℓ(x) ∈ R, ∥gππjℓ (x, πj) − gππjℓ (x, π j)∥ ≤ Mjℓ(x)∥πj −

π j∥,∀πj, π j ∈ Πj.

For time series data, the following assumption holds. Let dθ
denote the dimensional of θ . Let C denote a generic finite constant.

Assumption 2. (i) {Wt : t ≥ 1} is a strictly stationary and strong
mixing sequence with mixing coefficients αm ≤ Cm−r for some
r > dθq/(q − dθ ) and some q > dθ ≥ 2.
(ii) Eγ (Ut |Ft−1) = 0 and Eγ |Ut |

2q
≤ C , where Ft−1 is the sigma

field to which Xt , Zt , and Ut−1 are adapted.

(iii)Eγ (supπj∈Πj
[gjℓ


Xt , πj

2q
+∥gπjℓ


Xt , πj


∥
2q

+∥gππjℓ


Xt , πj


∥
2q

]

+ Mjℓ(Xt)
2q) ≤ C .

For i.i.d. data, the following assumption holds in place of
Assumption 2 for some δ > 0. In the asymptotic results below,
we use Assumption 2 to represent both of them.

Assumption 2∗. (i) {Wt : t ≥ 1} is i.i.d.
(ii) Eγ (Ut |Xt , Zt) = 0,Eγ |Ut |

4+δ
≤ C .

(iii) Eγ (supπj∈Πj
[gjℓ(Xt , πj)

4+δ
+ ∥gπjℓ (Xt , πj)∥

4+δ
+ ∥gππjℓ (Xt , πj)

∥
4+δ

] + Mjℓ(Xt)
4+δ) ≤ C .

Let g(Xt , π) = (g1(Xt , π1)
′, . . . , gp(Xt , πp)

′)′ denote the collec-
tion of all nonlinear regressors.

3 The metric dΦ∗ on Φ∗ must satisfy: if γ → γ0 , then (Wi,Wi+m) under γ
converges in distribution to (Wi,Wi+m) under γ0 . Note thatΓ is ametric spacewith
metric dΓ (γ1, γ2) = ∥θ1 − θ2∥ + dΦ∗ (φ1, φ2), where γj = (θj, φj) ∈ Γ for j = 1, 2.
The same metric is used in Andrews and Cheng (2012).
4 The constant 1/2 is added to simplify the asymptotic results presented below.
Assumption 3. ∀π, π0 ∈ Π and some ε > 0, Pγ ([g(Xt , π)
′, g(Xt ,

π0)
′, Z ′

t ]a = 0) ≤ 1 − ε for any a ≠ 0 and π ≠ π0.

Assumptions 1 and 2 are standard regularity assumptions on
dependence, smoothness, and moment conditions. In subsequent
analysis, they are necessary to obtain the uniform law of large
numbers (ULLN) and the weak convergence of some empirical
processes. Assumption 3 is for the identification of β and ζ and
the identification of π when β is different from 0. Assumption 3
requires no multi-collinearity between g(Xt , π), g(Xt , π0), and Zt
for any π ≠ π0, which rules out the case where g(Xt , π) is a
linear inπ . These are standard assumptions in nonlinear regression
analysis.

3.1. Grouping rules and reparameterization

To derive asymptotic resultswithmixed identification strength,
we first group g1(Xt , π1), . . . , gp(Xt , πp) based on the order of
magnitude of ∥β1,n∥, . . . , ∥βp,n∥. The grouping rule is specified
based on ∥βj,n∥, but the grouping result applies to the jth regressor
and it categorizes the identification strength of πj. Without loss of
generality, we assume ∥βj′,n∥ = O(∥βj,n∥)∀j′ > j.

The grouping rule is as follows.

(i) All ∥βj,n∥ that have a non-zero limit are put in the first group. If
all ∥βj,n∥ have zero limits, the first group is empty.

(ii) All ∥βj,n∥ that are O(n−1/2) are put in the last group.

(iii) For those that converge to 0 but at a rate slower than n−1/2,
members in group k converge to 0 slower than members in group
k′ for any k′ > k and members in the same group converge to 0 at
the same rate.

Following this grouping rule, the first group is associated
with strong identification, the last group is associated with weak
identification, and the middle groups are associated with semi-
strong identification, ordered by the rate of convergence. Note
that the group index k is a property associated with the drifting
sequence {βj,n : n ≥ 1}. Therefore, the group index k does not
change with the sample size n.

A reparameterization follows the grouping rule. Suppose there
are K groups and βk1 , . . . , βkpk

are the elements in group k. Let

Ik = {k1, . . . , kpk} (3.3)

denote the indices for group k. For example, suppose p = 7, β1,n =

3, β2,n = 1, β3,n = n−1/4, β4,n = n−1/3, β5,n = 2n−1/3, β6,n =

n−1/2, and β7,n = n−1. The group indices are I1 = {1, 2}, I2 =

{3}, I3 = {4, 5}, I4 = {6, 7}, and the number of groups is K = 4.
In this simple example, βk1 , . . . , βkpk

are all scalars, but the general
results allow them to be vectors.

Following the group indices in (3.3), we use the subscript Ik to
denote a sub-vector associated with group k, e.g.,

βIk = (β ′

k1 , . . . , β
′

kpk
)′ ∈ Rdk

and πIk = (π ′

k1 , . . . , π
′

kpk
)′ ∈ RdπIk . (3.4)

For notational simplicity, we use dk to denote the dimension of
βIk . For the drifting sequences, βIk,n denotes the true values of βIk
when the sample size is n and βIk,0 denotes its limit. The grouping
rule implies that

between groups : ∥βIk′ ,n∥ = o(∥βIk,n∥) for k′ > k,
within group : ∥βj,n∥ ≍ ∥βIk,n∥ for j ∈ Ik

and k = 1, . . . , K − 1, (3.5)
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where≍ represents convergence at the same rate.5 In the presence
of weak identification, βIk = O(n−1/2) for k = K . If all regressors
are in the semi-strong or strong identification category, the second
line of (3.5) also applies to k = K .

Example. Consider a two-regressor model where Yt = β1g(Xt ,
π1)+ β2g(Xt , π2)+ Ut and β1, β2 ∈ R.
(i) If β1,n → β1,0 ≠ 0 and β2,n → β2,0 ≠ 0, I1 = {1, 2}.
(ii) If n1/2β1,n → b1 ∈ R, n1/2β2,n → b2 ∈ R, I1 = ⊘, I2 = {1, 2}.
Here I1 = ⊘ because both β1,n and β2,n have zero limits.
(iii) If β1,n → 0, |n1/2β1n| → ∞, β2,n ≍ β1,n, I1 = ⊘ and
I2 = {1, 2}.
(iv) If β1,n → β1,0 ≠ 0 and β2,n → 0, I1 = {1}, I2 = {2}.
(v) If β1,n → 0, β2,n → 0, |n1/2β1n| → ∞, β2n/β1n → 0, I1 =

⊘, I2 = {1}, I3 = {2}.
In cases (i)–(iii), π1 and π2 have the same identification strength.
In case (iv) and (v), the identification strength of π1 and π2 is
mixed. �

3.2. Sequential peeling of the criterion function

The minimization of the sample criterion function Qn (θ) can
be viewed in a sequential way. With the grouping notations, the
model can be equivalently written as

Yt =

K
k=1

gIk(Xt , πIk)
′βIk + Z ′

tζ + Ut . (3.6)

Define the first and second order derivatives as

gπk(Xt , πIk) =
∂

∂π ′
Ik

gIk(Xt , πIk) ∈ Rdk×dπIk and

gππk(Xt , πIk) =
∂

∂π ′
Ik

vec(gπk(Xt , πIk)
′) ∈ R(dkdπIk

)×dπIk . (3.7)

When analyzing πIk , we use πk− to denote elements of π in
previous groups and πk+ to denote elements of π in subsequent
groups, i.e.,

πk− = (π ′

I1
, . . . , π ′

Ik−1
)′ and πk+ = (π ′

Ik+1
, . . . , π ′

IK
)′. (3.8)

It follows that π = (π ′

k− , π
′
Ik
, π ′

k+)
′. The identification strength of

πk− , πIk , πk+ is in a decreasing order by definition.
According to the grouping rule, πI1 is strongly identified. We

put all strongly identified elements of π in this group because they
can be analyzed together with β and ζ , which are also strongly
identified following Assumption 3. The semi-strongly identified
andweakly-identified elements ofπ are analyzed differently using
the sequential procedure proposed below. If no elements of π are
strongly identified, I1 = ⊘ and πI1 disappears.

We now describe the sequential procedure and introduce some
notations.
(i) For k = 1, conditional on π1+ , minimizing Qn(θ) = Qn(β, ζ ,

πI1 , π1+) over β, ζ , and πI1 yieldsβ(π1+),ζ (π1+), andπI1 (π1+).
The concentrated criterion function Qn(β(π1+),ζ (π1+),πI1 (π1+) , π1+) is written as Q c

n (π1+) = Q c
n (πI2 , π2+) because

π1+ = (π ′
I2
, π ′

2+)
′.

(ii) Continue the procedure for k = 2, . . . , K − 1 sequentially.
For each k, conditional on πk+ , minimize Q c

n (πIk , πk+) over πIk

5 For two sequences of non-zero constants {an : n ≥ 1} and {bn : n ≥ 1},
we say an and bn converge to 0 at the same rate and write an ≍ bn if and only if
lim infn→∞

an
bn

≠ 0 and lim infn→∞
bn
an

≠ 0.
to obtain πIk (πk+). Concentrating out πIk , the criterion function
Q c
n (πIk (πk+) , πk+) is written as Q c

n (πk+) = Q c
n (πIk+1 , π(k+1)+).

(iii) For k = K , the criterion function is Q c
n (πIK ) and its minimizer

isπIK .

(iv) Reverse the order of the procedure. Sequentially plug in the
estimators from πIK to πI2 , we obtain πIK−1 = πIK−1

πIK


,

. . . ,πI1 = πI1(πI2 , . . . ,πIK ), β = β(πI2 , . . . ,πIK ), and ζ =ζ (πI2 , . . . ,πIK ).
This is an equivalent representation of the standard least

squares estimator andθ = (β ′,ζ ′,π ′

I1
, . . . ,π ′

IK
)′. (3.9)

This sequential representation is necessary for deriving the
asymptotic results with mixed identification strength.

The asymptotic analysis starts with the uniform consistency of
the strongly identified parameters. Roughly speaking, the sample
criterion function Qn(θ) uniformly converges to its population
counterpart Q (θ), which identifies the true values of β, ζ , πI1 but
does not depend on π1+ because βIk,n → 0 for k > 1. By an
extension of standard arguments for the consistency of extremum
estimators, we obtain the uniform consistency for the strongly
identified parameters.

Lemma 1 (Consistency for Strong Identification Groups). Suppose As-
sumptions 1–3 hold. Then, under γn → γ0,

sup
π+

1 ∈Π
+

1


∥ζ (π1+)− ζn∥ + ∥β(π1+)− βn∥

+ ∥πI1(π1+)− πI1,n∥

→p 0.

To obtain consistency for the semi-strong identification groups,
we analyze the concentrated criterion function Q c

n (πIk , πk+)
sequentially for k = 2, . . . , K − 1. We show that, after proper
recentering and rescaling,Q c

n (πIk , πk+) has a non-degenerate limit
that identifies the true value of πIk . This limit is non-degenerate
in πIk but is degenerate in πk+ . In consequence, parameters with
different identification strength are analyzed sequentially.

Before presenting asymptotic results for the semi-strong
identification groups, we first define some notations. Analogous to
πk− and πk+ , define

βk− = (β ′

I1
, . . . , β ′

Ik−1
)′ and βk+ = (β ′

Ik+1
, . . . , β ′

IK
)′, (3.10)

which are associated with the coefficients before and after βIk .
When analyzing Q c

n (πIk , πk+), the parameters that have been
concentrated out are collected in

ψk− = (β ′, ζ ′, π ′

k−)
′
∈ Rk− . (3.11)

The true value of ψk− is denoted by ψk−,n. Let ψk−(πIk , πk+)
denote the estimator of ψk− conditional on (πIk , πk+). Following
the description of the sequential procedure, Q c

n (πIk , πk+) =

Qn(ψk−(πIk , πk+), πIk , πk+).
Define

ψ0
k−,n = (β ′

k−,n, β
0′
Ik
, β0′

k+ , ζ
′

n, π
′

k−,n),

with β0
Ik

= 0 and β0
k+ = 0. (3.12)

Note that the difference between ψ0
k−,n and ψk−,n, the true value

ofψk− , lies in βIk and βk+ . To derive the asymptotic distribution of
the concentrated criterion function,Qn(ψk−(πIk , πk+), πIk , πk+) is
centered around Qn(ψ

0
k−,n, πIk , πk+). We set β0

Ik
= 0 and β0

k+ =

0 in ψ0
k−,n so that the centering term Qn(ψ

0
k−,n, πIk , πk+) does

not depend on (πIk , πk+). To make it clear, Qn(ψ
0
k−,n, πIk , πk+) is

abbreviated to Qn(ψ
0
k−1,n).
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To study the local expansion of the sample criterion function
around ψ0

k−,n, define a vector associated with the first order
derivative with respect to ψk− :

dψk,t(π, ωk−)

= (g(Xt , π)
′, Z ′

t , ω
′

1gπ1(Xt , πI1), . . . , ω
′

k−1gπk−1(Xt , πIk−1))
′,

(3.13)

where

ωk = βIk/∥βIk∥ and ωk− = (ω′

1, . . . , ω
′

k−1)
′ (3.14)

are the angle parameters for each group. The angle parameters
ω1, . . . , ωk−1 show up in (3.13) because the norm ∥βI1∥, . . . ,
∥βIk−1∥ are taken out for renormalization in the results developed
below.

For any πIk ,πIk ∈ ΠIk , define a covariance matrix

Hk(πIk ,πIk |πk+) = Eγ0dψk,t(πIk , πk+)dψk,t(πIk , πk+)
′ (3.15)

where dψk,t(πIk , πk+) abbreviates dψk,t(π, ωk−) when πk− =

πk−,0 andωk− = ωk−,0 take the limits of the true values as n → ∞.
Assumption 4 is similar to Assumption C4 in Andrews and Cheng
(2012).

Assumption 4. λmin(Hk(πIk , πIk |πk+)) ≥ ε for some ε > 0 for
any πIk ∈ ΠIk , πk+ ∈ Πk+ , γ0 ∈ Γ for k = 1, . . . , K .

The following Lemma establishes consistency for the semi-
strong identification groups using the limit of Q c

n (πIk , πk+). This
Lemma is proved by induction. In step k, part (a) of the Lemma
is used to show the consistency in part (b) and the rate of
convergence in part (c). The latter two in turn are used to obtain
part (a) for step k+ 1. Let dβ , dζ , and dk− denote the dimensions of
β, ζ , and βk− .

Lemma 2 (Consistency for Semi-Strong Identification Groups by
Induction). Suppose Assumptions 1–4 hold. Then, under γn → γ0,
for k = 2, . . . , K − 1,
(a) the concentrated sample criterion function satisfies

∥βIk,n∥
−2

Q c
n (πIk , πk+)− Qn(ψ

0
k−,n)


→p −

1
2
∆′

kHk(πIk , πIk,0|πk+)
′

Hk(πIk , πIk |πk+)

−1

×Hk(πIk , πIk,0|πk+)∆k,

where ∆k = (01×dk− , ω
′

k,0, 01×(dζ+dk− ))
′ and ωk,0 = limn→∞

βIk,n/∥βIk,n∥ is the angle parameter;
(b) the estimator of πIk satisfies

sup
πk+∈Πk+

πIk(πk+)− πIk,n
→p 0;

(c) the estimator of ψk− = (β ′, ζ ′, π ′
I1
, . . . , π ′

Ik−1
)′ satisfies

∥βIk,n∥
−1


βk−(πk+)− βk−,nβIk(πk+)− βIk,nβk+(πk+)ζ − ζn

B∗

βk−,n


(πk−(πk+)− πk−,n)

→p 0,

where

B∗(βk−) = diag{(1dπI1
∥βI1∥, . . . , 1dπIk−1

∥βIk−1∥)
′
}. (3.16)

Comments. 1. Part (a) is obtained by a quadratic expansion of
Qn(ψk−(πIk , πk+), πIk , πk+) around the centering term Qn(ψ

0
k−,n).
This expansion relies on the consistency of ψk−(πIk , πk+), which
follows from Lemma 1 and part (b) up to step k − 1.

2. This quadratic expansion has some non-standard features.
First, the expansion is around ψ0

k−,n instead of the true value of
ψk− . The choice ofψ0

k−,n ensures that the left hand side of part (a) is
minimized byπIk(πk+). The right hand side of part (a) is uniquely
minimized at πIk = πIk,0 by a matrix Cauchy–Schwarz inequality.
Therefore, the argmax continuous mapping theorem (Theorem
3.2.2 in van der Vaart and Wellner (1996)) gives consistency in
part (b). For models with only one point of identification failure,
Assumption C1 of Andrews and Cheng (2012) suggest centering
the criterion function at β = 0. The specification of ψ0

k−,n
generalizes this one-group strategy to cases where we have to
consider βk−,n, β

0
Ik
, β0

k+ for each k, with βk− at the true value and
βIk and βk+ both at 0. The rate of convergence for the criterion
function is based on the group specific identification strength. A
similar rate is derived in Lemma 3.2 of Andrews and Cheng (2012)
when there is only one group. Second, in this quadratic expansion,
both the first and second order derivatives have mixed rate of
convergence. This is different from the one-group case in Andrews
and Cheng (2012).

3. Part (c) provides the rate of convergence of ψk−(πIk(πk+),
πk+), which is crucial for deriving the asymptotic distribution in
part (a) for step k + 1. As k gets larger, the rate of convergence
∥βIk,n∥

−1 also gets faster and this rate is improved in a sequential
manner.

To sum up, Lemma 2 shows that all parameters in the semi-
strong identification groups can be consistently estimated, uni-
formly over πK ∈ ΠK , i.e.,

sup
πK∈ΠK

πK−(πK )− πK−,n
→p 0. (3.17)

3.3. Asymptotic distribution in the reparameterized model

Next we show the asymptotic distribution of the least squares
estimator under mixed identification strength. There are two
cases: (a) The last group involves weak identification, i.e.,
n1/2βIK → bIK ∈ RdK . (b) There are no weakly-identified parame-
ters and the last group only involves strong or semi-strong identifi-
cation. In case (a),πIK cannot be consistently estimated because its
signal does not dominate the noise from the error. In case (b), we
apply the arguments in Lemma 2 to k = K and obtain consistency
ofπIK .

To characterize the non-standard distribution under weak
identification, let G(πIK ) be a mean-zero Gaussian process with
covariance kernel

Ω(πIK ,πIK ) = Eγ0U
2
t dψK ,t(πIK )dψK ,t(πIK )

′, (3.18)

where dψK ,t(πIK ) abbreviates dψK ,t(πIK− ,0, πIK , ωK−,0) defined in
(3.13) for k = K . Building on this Gaussian process, define

τ(πIK ) =

HK (πIK , πIK )

−1 HK (πIK , πIK ,0)SIK bIK + G(πIK )

,

χ(πIK ) = −
1
2
τ(πIK )

′HK (πIK , πIK )τ (πIK ),

π∗

IK
= argmin

πK∈ΠK

χ(πIK ), (3.19)

where SIK = [0dK×dK−
, IdK , 0dK×(dζ+dK− )]

′ selects βIK out of ψK− .
We assume that each sample path of the non-central chi-square
process χ(πIK ) has a unique minimizer with probability one and
call this minimizer π∗

IK
. In the presence of weak identification,

Theorem 1 shows that χ(πIK ) appears in the limit of the
concentrated criterion function Q c

n (πIK ). In contrast to the right
hand of part (a) in Lemma 2, χ(πIK ) cannot identify the true value



X. Cheng / Journal of Econometrics 189 (2015) 207–228 213
of πIK . The localization parameter bIK represents the signal to
noise ratio.

To define the joint distribution ofθ in case (b), define covariance
matrices

Σ(π, ω) = H−1(π, ω)Ωθ (π, ω)H−1(π, ω), (3.20)

where

H(π, ω) = Eγ0dθ,t(π, ω)dθ,t(π, ω)
′,

Ωθ (π, ω) = Eγ0U
2
t dθ,t(π, ω)dθ,t(π, ω)

′ with
dθ,t(π, ω)

= (g(Xt , π)
′, Z ′

t , ω
′

1gπ1(Xt , πI1), . . . , ω
′

Kgπk−1(Xt , πIK ))
′. (3.21)

Assumption 5. (i) λmin(H(π, ω)) ≥ ε, λmin(Ωθ (π, ω)) ≥ ε, for
some ε > 0 ∀π ∈ Π , ∥ωk∥ = 1, and γ0 ∈ Γ for k = 1, . . . , K .
(ii) Each sample path of the stochastic process {χ(πIK ) : πIK ∈

ΠIK } is minimized at a unique point with probability one.

A similar condition is used in Assumption C6 of Andrews and
Cheng (2012) and some sufficient conditions are discussed.

Theorem 1 (Asymptotic Distribution of Estimators). Suppose As-
sumptions 1–5 hold. Then, under γn → γ0,
(a) with weakly identified parameters: If n1/2βIK → bIK ∈ RdK ,

n

Q c
n (πIK )− Qn(ψ

0
K ,n)


⇒ χ(πIK ),

and
n1/2B(βK−,n)

ψK− − ψK−,n


πIK


⇒


τ(π∗

IK
)− SIK bIK
π∗

IK


,

where ψK− = (β ′, ζ ′, π ′
I1
, . . . , π ′

IK−1
)′,

SIk = [0dk×dk− , Idk , 0dk×(dζ+dk− )]
′, and B(βK−) = diag{(1dβ+dζ ,

1dπI1
∥βI1∥, . . . , 1dπIK−1

∥βIK−1∥)
′
}.

(b) without weakly identified parameters: If ∥n1/2βIK ∥ → ∞,
Lemma 2 applies to k = K and

n1/2B(βn)
θ − θn


→d N(0,Σ(π0, ω0)),

where B(β) = diag{(1dβ+dζ , 1dπI1
∥βI1∥, . . . , 1dπIK−1

∥βIK ∥)′}.

Comments. 1. In case (a), ψK− = (β ′,ζ ′,π ′
I1
, . . . ,π ′

IK−1
)′ is

consistent but it has a non-standard asymptotic distribution. The
distribution involves the Gaussian process τ(πK ) and the inconsis-
tent estimator π∗

IK
, which minimizes the sample paths of the non-

central chi-squared process χ(πIK ) defined in (3.19). In addition,
the rate of convergence ofπI2 , . . . ,πIK−1 are all slower than n−1/2.

2. Without weakly identified parameters, the distribution
in part (b) is analogous to standard results except for the
rescaling matrix B(βn). Asymptotic distributions with mixed rate
of convergence also appear in Antoine and Renault (2012).

Example (Cont.). In the example yt = β1g1(Xt , π1)+β2g2(Xt , π2)+
Ut , consider the distribution of the least squares estimator when
β1,n → 0, |n1/2β1,n| → ∞, and n1/2β2,n → b2 ∈ R. Following the
grouping rule, the group indices are I1 = ⊘, I2 = {1}, I3 = {2}
and the number of groups is K = 3. In this case, β = (β1, β2)

′ is
strongly identified, π1 is semi-strongly identified, and π2 is weakly
identified.

The asymptotic results apply to this example as follows. First,
Lemma 1 implies that β(π) is consistent uniformly over π =

(π1, π2)
′. Second, applying Lemma 2 with k = 2 and ψ2− =

(β, π1)
′ yields that β(π2) = β(π1(π2), π2) and π1(π2) are both
consistent uniformly over π2. Third, apply Theorem 1(a) with K =

3 and IK = {2}, we obtain n1/2 β − βn


n1/2β1n
π1 − π1,n


π2

 ⇒


τ(π∗

2 )− S2b2
π∗

2


, (3.22)

where S2b2 = (0, b2, 0)′,G(π2), τ (π2), and π∗

2 are as defined in
(3.18) and (3.19) with

HK (π2, π2,0) = Eγ0dψK ,t(π1,0, π2)dψK ,t(π1,0, π2,0)
′,

Ω(π2,π2) = Eγ0U
2
t dψK ,t(π1,0, π2)dψK ,t(π1,0,π2)

′, where

dψK ,t(π1,0, π2) =

g1(Xt , π1,0), g2(Xt , π2), gπ1(Xt , π1,0)

′
. (3.23)

Note that the angle parameter does not show up in (3.23)
because (i) β1 is a scalar and (ii) β1n instead of |β1n| is used for
renormalization on the left hand side of (3.22). �

4. Wald test and t test with mixed identification strength

Under drifting true parameters, we consider tests of the null
hypothesis H0 : Rθn = vn for some dr × dθ matrix R of rank dr .
We establish the asymptotic distributions of theWald statistic and
the t statistic, allowing Rθ to involve parameters with different
identification strength. Both θn and vn may change with n. This
is particularly useful for confidence set construction. For the test
H0 : βp = 0, vn = 0.

Under strong identification, Theorem 1(b) implies that B−1(β0)
Σ(π0, ω0)B−1(β0) is the asymptotic covariance matrix of the least
squares estimatorθ . Following the definition ofΣ(π, ω) in (3.20),
we estimateΣ(π, ω) byΣ = H−1Ωθ

H−1, where

H = n−1
n

t=1

dθ,t(π,ω)dθ,t(π,ω)′,
Ωθ = n−1

n
t=1

U2
t dθ,t(π,ω)dθ,t(π,ω)′, (4.1)

andUt is the regression residual. The covariance estimator Σ is not
always consistent because the estimators ofπ andω are not always
consistent. Its asymptotic distribution is given in (4.20) and (4.21).
The standard definition of theWald statistic for the null hypothesis
H0 : Rθn = vn is

Wn(R) = n

Rθ − vn

′ 
RB−1(β)ΣB−1(β)R′

−1 
Rθ − vn


. (4.2)

This is the standard Wald statistic typically used in empirical
work. Obviously a standard critical value from the chi-square
distribution is justified under strong identification. Belowwe show
that the Wald statistic has a different asymptotic distribution
under weak identification. Therefore, a different critical value
should be employed. We use the Wald statistic for presentation of
the main results. Analogous results hold for the t statistic.

Section 4.1 introduces an orthogonal rotation on the restriction
matrix R that separates restrictions on parameters of different
identification strength. Section 4.2 uses a rescaling matrix to deal
with the asymptotic singularity of the covariance matrix. This
section disassembles the Wald statistic into a sandwich form
where each part has a non-degenerate limit. The non-standard
asymptotic distribution of the test statistics are presented in
Section 4.3.
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4.1. Rotation

Under mixed identification strength, the estimatorθ involves
both inconsistent estimators and consistent estimators with
different rates of convergence. It is essential to separate the
restrictions on different groups. This is achieved by an orthogonal
rotation of the restriction matrix R.

We first introduce the rotation matrix for the general case.
Partition the restriction matrix R into

R = [R0 : R1 : · · · : RK ], (4.3)

where R0 is the submatrix of R associatedwith (β ′, ζ ′) and Rk is the
submatrix of R associated with πIk for k = 1, . . . , K . Thus, R0 is a
dr × (dβ +dζ )matrix and Rk is a dr ×dπIk

matrix for k = 1, . . . , K .
Let

A = [A0 : A1 : · · · : AK ] ∈ O(dr) (4.4)

be an orthogonal matrix that satisfies two conditions below:

(i) A′R =


A′

0R0 0 0 0 0
A′

1R0 A′

2R1 0 0 0
...

...
. . . 0 0

A′

K−1R0 A′

K−1R1 · · · A′

K−1RK−1 0
A′

KR0 A′

KR1 · · · A′

KRK−1 A′

KRK


is block lower triangular (4.5)

and

(ii) R∗
=


A′

0R0 0 0 0 0
A′

1R0 A′

1R1 0 0 0

0 0
. . . 0 0

0 0 0 A′

K−1RK−1 0
0 0 0 0 A′

KRK


has full rank. (4.6)

This rotation matrix A can be obtained as follows. For k = K , let
d∗

K = rank(RK ) and AK be the dr × d∗

K matrix whose columns span
the column space of RK . For k = K − 1, let d∗

K−1 = rank([RK−1 :

RK ])− rank(RK ) and AK−1 be a dr × d∗

K−1 matrix such that the rows
of [AK−1 : AK ] span the columns space of [RK−1 : RK ]. Continue this
step sequentially to k = K − 2, . . . , 1. In each step, let

d∗

k = rank[Rk : · · · : RK ] − rank[Rk+1 : · · · : RK ] (4.7)

and Ak be a dr × d∗

k matrix such that the columns of [Ak : · · · : AK ]

span the column space of [Rk : · · · : RK ]. Finally, the columns of
the dr ×d∗

0 matrix A0 ensures that A is an orthogonal matrix. When
dπIk

= 0, Ak disappears from the construction of A. The rotation is
similar to that used by Antoine and Renault (2012) for mixed-rate
distribution in different directions.

Following the rotation by A, the linear restrictions in R are
separated for parameters with different rates of convergence,
including possible inconsistent estimators in group K . In the
asymptotic distribution derived below, we show that the block
diagonal matrix R∗ appears in place of R asymptotically. Under the
null, the Wald statistic defined in (4.2) satisfies

Wn(R) = Wn(A′R) = Wn(R∗)+ εn, (4.8)

where εn is explicitly defined as the difference between Wn(A′R)
and Wn(R∗). In the proof of Theorem 2, we show that εn is
asymptotically negligible.6 Therefore, only the block-diagonal

6 The analysis roughly goes as follows. Under the null, consider A′R(θ − θn) in
Wn(A′R). For k = 2, . . . , K ,

A′

kR
θ − θn


=


ℓ<k

A′

kRℓ
ψk− − ψk−,n


+ A′

kRk
πIk − πIk,n


and
elements remain asymptotically and the asymptotic distribution
ofWn(R) is determined by that ofWn(R∗). Note that the term A′

1R0
does not disappear in R∗ as the other off diagonal terms because
πI1 is the strong identification group and πI1 and (β

′, ζ ′) have the
same rate of convergence.

Example (Cont.).Hereweuse examples to illustrate the restriction
matrix R∗ in the simplemodel yt = β1g(Xt , π1)+β2g(Xt , π2)+Ut .

(1) H0 : β2 = 0. In this case, R = (0, 1, 0, 0) and R∗
= R.

(2) H0 : π1 − π2 = 0. In this case, R = (0, 0, 1,−1). The real
restriction vector R∗ depends on the identification strength of π1
andπ2. (i) If bothπ1 andπ2 are strongly identified, R∗

= R. (ii) If the
identification strength of π1 is stronger such that π1 is estimated
with a faster rate, R∗

= (0, 0, 0,−1). (iii) If both π1 and π2 are
weakly identified, π1 and π2 again belong to the same group and
R∗

= R.
(3). H0 : β1 +π1 = 0 and π1 −π2 = 0. (i) If π1 is semi-strongly

identified (estimated at a rate slower than n−1/2) and π2 is weakly
identified,

R =


1 0 1 0
0 0 1 −1


and R∗

=


0 0 1 0
0 0 0 −1


. (4.10)

(ii) If π1 and π2 are both weakly identified,

R =


1 0 1 0
0 0 1 −1


and R∗

=


0 0 1 0
0 0 1 −1


. �

(4.11)

4.2. Rescaling matrix for asymptotic singularity of covariance matrix

Under the null,Wn(R∗) can be written as

Wn(R∗) = n
θ − θn

′
R∗′

×

R∗B−1(β)ΣB−1(β)R∗′

−1
R∗
θ − θn


. (4.12)

To deal with the asymptotic singularity of the covariance matrix,
we startwith thediagonalmatrixB(β)= diag{(1dβ+dζ , 1dπI1

∥βI1∥,

. . . , 1dπIK−1
∥βIK ∥)′}. To deal with the asymptotic singularity of

B(β), define a new diagonal matrix D∗(β) as
D∗(β) = diag{(1d∗

0
, ∥βI1∥1d∗

1
, ∥βI2∥1d∗

2
, . . . ,

∥βIK ∥1d∗
K
)′} ∈ Rdr×dr , (4.13)

where d∗

k is defined in (4.7). Note that

RĎ(β) = D∗(β)R∗B−1(β)

=


A′

0R0 0 0 0 0
A′

1R0∥βI1∥ A′

1R1 0 0 0

0 0
. . . 0 0

0 0 0 A′

K−1RK−1 0
0 0 0 0 A′

KRK

 , (4.14)

which is full rank for any β by construction. Therefore, with
probability approaching one,

Wn(R∗) = Wn(D∗(β)R∗) = ρ ′

nV
−1
n ρn, (4.15)

ψk− − ψk−,n = op(
πIk − πIk,n

) (4.9)

where the first equality holds because A′R is upper block-diagonal and the second
equality follows from Theorem 1. The remaining term A′

kRk
πIk − πIk,n


is the

counterpart in Wn(R∗).
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where

ρn = n1/2D∗(β)R∗(θ − θn)

=

D∗(β)R∗B−1(β) n1/2B(β)(θ − θn)


= RĎ(β)ξn with ξn = n1/2B(β)(θ − θn), (4.16)

and

Vn = D∗(β)R∗B−1(β)ΣB−1(β)R∗′D∗(β)
= RĎ(β)ΣRĎ(β)′. (4.17)

An important implication of the calculation in (4.17) is that Vn
is non-singular asymptotically and V−1

n appears as the rescaling
covariance matrix in (4.15). Below we derive the asymptotic
distribution of ξn and Σ under all identification scenarios, which
in turn yields the asymptotic distribution of the Wald statistic
following (4.15)–(4.17).

4.3. Non-standard distribution of the test statistic

First consider the re-centered and re-scaled parameter ξn
defined in (4.16). Following the asymptotic distribution in
Theorem 1(a), define a function of the Gaussian process τ(πK ):

ξ(πIK ) =


τ(πIK )− SIK bIKτβK (πIK )

 πIK − πIK ,0
 , (4.18)

where τβK (πIK ) = S ′
IK
τ(πK ) are the elements of τ(πIK ) associated

with βIK . Under weak identification, we show ξn ⇒ ξ(π∗
IK
) in the

proof of Theorem 2.
To handleω in the estimation ofΣ(π, ω), define

ω(πIK ) =


ω′

1,0, ω
′

2,0, . . . , ω
′

K−1,0,
τβK (πIK )

′τβK (πIK )

′

. (4.19)

For the strong and semi-strong identification groups, the angle
parameters are estimated consistently. This is the reason that
ωk,0 shows up in (4.19) for k = 1, . . . , K − 1. For group K ,
τβK (π

∗
IK
)/∥τβK (π

∗
IK
)∥ characterizes the limit of the angle param-

eter.
In the proof of Theorem 2, we show that

(a) under weak identification, i.e., n1/2βIK → bIK ∈ RdK ,

ξn ⇒ ξ(π∗

IK
), ω ⇒ ω(π∗

IK
),Σ ⇒ Σ(πK−,0, π

∗

IK
, ω(π∗

IK
)), RĎ(β)→p RĎ(β0);

(4.20)

(b) without weak identification, i.e., ∥n1/2βIK ∥ → ∞,

ξn →d ξ ∼ N(0,Σ(π0, ω0)), ω→p ω0,Σ →pΣ(π0, ω0), RĎ(β)→p RĎ(β0).
(4.21)

All convergence holds jointly. Put the distributions in (4.20)
and (4.21) together with the decomposition in (4.15)–(4.17), the
asymptotic distribution of the Wald statistic is given below.

Theorem 2 (Wald Statistic with Mixed Identification Strength).
Suppose Assumptions 1–5 hold. Then, under γn → γ0,

(a) with weakly identified parameters: If n1/2βIK → bIK ∈ RdK ,

Wn(R) ⇒ W(π∗

IK
), where

W(πIK ) =

RĎ(β0)ξ(πIK )

′ RĎ(β0)Σ(πIK )R
Ď(β0)

′
−1

×

RĎ(β0)ξ(πIK )


,

whereΣ(πIK ) abbreviatesΣ(πK−,0, πIK , ω(πIK )).

(b) without weakly identified parameters: If ∥n1/2βIK ∥ → ∞,

Wn(R)→d χ
2
dr .
Comments: 1. The asymptotic distribution of theWald statistic not
only depends on the weak identification group through bIK , but
also depends on the rest of the group specification through RĎ(β0).
In RĎ(β0), the rotation matrices A0, . . . , AK are only specified up
to orthogonal rotation. The distribution W(πIK ) is invariant to
orthogonal rotations of each of these matrices.

2. Theorem 2 shows that the Wald statistic has a non-
standard asymptotic null distribution if some parameters are
weakly identified. Quantiles of this non-standard distribution can
be obtained by simulation. The Wald statistic has a chi-square
asymptotic null distribution as long as all parameters are at least
semi-strongly identified. Semi-strong identification affects the rate
of convergence of the estimators but not the asymptotic null
distribution of the Wald statistic. The Wald statistic for tests
with linear restrictions is self-corrected when all parameters are
consistently estimated. A similar self-correction result for theWald
statistic also is obtained by Antoine and Renault (2012) when
parameters have mixed rates of convergence.

For single hypothesis H0 : Rθn = vn where dr = 1, we can also
use the t statistic:

tn(R) =
n1/2


Rθ − νn


RB−1(β)ΣB−1(β)R′

. (4.22)

This is the standard definition of the t statistic.

Corollary 1 (t Statistic with Mixed Identification Strength).
Suppose Assumptions 1–5 hold and dr = 1. Then, under γn → γ0,

(a) with weakly identified parameters: If n1/2βIK → bIK ∈ RdK ,

tn(R) ⇒ T (π∗

IK
), where T (πIK ) =

RĎ(β0)ξ(πIK )
RĎ(β0)Σ(πIK )RĎ(β0)′

;

(b) without weakly identified parameters: If ∥n1/2βIK ∥ → ∞,
tn(R)→d N(0, 1).

Example (Cont.). Now we get back to the example yt =

β1g1(Xt , π1)+ β2g2(Xt , π2)+ Ut and consider the null hypothesis
H0 : β2 = 0. The restriction matrix is R = R∗

= (0, 0, 0, 1). Under
the null, n1/2β2,n = b2 = 0. The distribution of the Wald statistic
depends on the identification strength of π1.

(1) If |n1/2β1,n| → ∞, which includes both strong and semi-
strong identification of π1, IK = {2} and b2 = 0. In this case,
πIK = π2. The elements in T (π2) are specified as follows: ξ(π2)
is as specified in (4.18) with elements of τ(π2) given in (3.23),
S2 = (0, 1, 0)′, b2 = 0.

(2) If n1/2β1,n → b1 ∈ R, IK = {1, 2} and b = (b1, b2)′ =

(b1, 0)′. In this case, πIK = π . The elements in T (π) are specified
as follows: G(π), τ (π), and π∗ are as defined in (3.18) and (3.19)
with

HK (π, π0) = Eγ0dψK ,t(π)dψK ,t(π0)
′,

Ω(π,π) = Eγ0U
2
t dψK ,t(π)dψK ,t(π2)

′, where

dψK ,t(π) = (g1(Xt , π1), g2(Xt , π2))
′, (4.23)

the selector matrix is SIK = I2, and

SIK bIK = b = (b1, 0)′, τβK (πIK ) = τ(π). � (4.24)

4.4. Asymptotic distribution of thewald statistic under the alternative

Next, we consider the asymptotic distribution of the Wald test
under local and fixed alternatives. Consider the null hypothesis:
H0 : Rθn = vnulln , where Rθn ≠ vnulln . The null value vnulln is allowed
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to depend on n. Similar to (4.15)–(4.17), we can show that in this
case

Wn(R) =

RĎ(β)ξn +∆n

′ 
RĎ(β)ΣRĎ(β)′−1

×

RĎ(β)ξn +∆n


+ op(∥∆n∥

2)+ op(1), (4.25)

where

∆n = n1/2D∗(β)A′

Rθn − vnulln


(4.26)

is the additional term that appears under the alternative.7 The
asymptotic distribution of RĎ(β), ξn, and Σ are discussed in (4.20)
and (4.21). Local alternatives are defined by values of θn such that
∆n is stochastically bounded and non-degenerate. This depends on
the identification scenario and the restriction matrix R.

To be more specific on the appropriate local alternatives, we
discuss the following cases. First, consider Rθ = Rββ , i.e., the
test is on β . In this case, ∆n = n1/2(Rββn − vnulln ). Under the
local alternative ∆n → d ∈ Rdr , the asymptotically distribu-
tion of the Wald statistic is given by that in Theorem 2(a) with
RĎ(β0)ξ(πIK ) replaced by RĎ(β0)ξ(πIK ) + d under weak identifi-
cation and the asymptotic distribution becomes a non-central χ2

dr
distribution with noncentrality parameter d′

[RĎ(β0)ΣRĎ(β0)]
−1d

without weak identification. Under the fixed alternative Rββn −

vnulln → d0 ≠ 0, the Wald statistic diverges to ∞ in probability
with or without weak identification.

Next, consider Rθ = Rππ1, i.e., the test is on π1. In this case,
∆n = n1/2

∥β1∥(Rππ1 − vnulln ). The appropriate local alternative
varies with the identification strength of π1. (i) If n1/2

∥β1,n∥ →

b1 ∈ Rβ1 , we have n1/2
∥β1∥ = Op(1). Under any local alternative

Rππ1,n − vnulln → 0, the asymptotic distribution of theWald statis-
tic is the same as that under the null Rππ1 = vnulln . Under the fixed
alternative Rππ1 − vnulln → d0 ≠ 0, we have ∆n →p ∥τβ1(π

∗

K )∥d0,
where τβ1(πK ) is a subvector of τ(πIK ) associated with β1. In this
case, the Wald statistic has the same limit as in Theorem 2(a)
with RĎ(β0)ξ(πIK ) replaced by RĎ(β0)ξ(πIK ) + ∥τβ1(π

∗

K )∥d0. (ii)
If ∥n1/2β1,n∥ → ∞, the appropriate local alternative is defined
by n1/2

∥β1,n∥(Rππ1,n − vnulln ) → d ∈ Rdπ1 . In this case, ∆n →d d.
The asymptotic distribution of the Wald statistic is given by that
in Theorem 2(a) with RĎ(β0)ξ(πIK ) replaced by RĎ(β0)ξ(πIK ) +

d under weak identification and the asymptotic distribution be-
comes a non-central χ2

dr distribution with noncentrality parame-
ter d′

[RĎ(β0)ΣRĎ(β0)]
−1d without weak identification. Under the

fixed alternative Rππ1 − vnulln → d0 ≠ 0, the Wald statistic di-
verges to ∞ in probability with or without weak identification. To
sum up, the appropriate non-degenerate local alternative depend
on both the parameter of interest and the identification scenarios.

5. Robust inference

Next, we link the asymptotic distributions under all group
specifications to the asymptotic size of tests and confidence
sets, which approximates the finite-sample size of tests and
confidence sets, respectively. To this end, we first formally define
the asymptotic size. For fixed v, the asymptotic size of a test for the
null hypothesis: H0 : Rθn = v is

AsySz = lim sup
n→∞


sup

γ∈Γ :Rθ=v
Pγ

Tn(R) > cn,1−α(v)


, (5.1)

which is the limsup of the finite-sample size of the test. A nominal
1 − α confidence set for Rθ is obtained by inverting the tests for

7 Details of the arguments are provided in the Appendices.
H0 : Rθn = vn, i.e., CSn = {vn : Tn(R) ≤ cn,1−α(vn)}. The asymptotic
size of this confidence set is

AsySz = lim inf
n→∞

inf
γ∈Γ

Pγ

Tn(R) ≤ cn,1−α(vn)


, (5.2)

which is the lim inf of the finite-sample size of the confidence set.

5.1. Potential size distortion

Theorem 2 and Corollary 1 show that the asymptotic distribu-
tions of the Wald statistic and t statistic depend on

h = (I, bIK , ω0, γ0), (5.3)

where I is the group specification, n1/2βIK ,n → bIK measures
the identification strength of group K , ωk,n → ωk,0 is the angle
parameter in group k, γn → γ0 ∈ Γ . Let HI denote the collection
of all group specifications. Then the parameter space of h is

H = {h = (I, bIK , ω, γ ) : I ∈ HI , bIK ∈ (R ∪ {±∞})dK ,

∥ωIk∥ = 1, γ ∈ Γ }. (5.4)

When the null hypothesis is H0 : Rθ = v for fixed v, the value of
parameter h that is consistent with the null hypothesis is collected
in

H(v) = {h ∈ H : Rθ0 = v}. (5.5)

Along a sequence of true parameters {γn ∈ Γ : n ≥ 1}
associated with h, define

W(h) =


W(π∗

K ), if Theorem 2(a) holds,
χ2
dr , if Theorem 2(b) holds. (5.6)

For the t test, define T (h) similarly to W(h), with W(π∗

K ) and χ
2
dr

replaced by T (π∗

K ) and N(0, 1), respectively.
For a standard Wald test, the 1 − α quantile of χ2

dr , denoted by
χ2
dr ,1−α , is used as the critical value. For a standard symmetric two

sided t test, the 1 − α/2 quantile of N(0, 1), denoted by z1−α/2, is
used as the critical value.

Assumption CV1. (i) The distribution function (df) of W(h) is
continuous at χ2

dr ,1−α∀h ∈ H.
(ii) The df function of |T (h)| is continuous at z1−α/2∀h ∈ H.

Theorem 3 (SizeDistortion of Standard Test andConfidence Set). Sup-
pose Assumptions 1–5 and CV1 hold. Then,
(a) the asymptotic size of a standardWald test is suph∈H(v) Pr(W(h) >
χ2
dr ,1−α);

(b) the asymptotic size of a standard Wald confidence set is
infh∈H Pr(W(h) ≤ χ2

dr ,1−α);

(c) parts (a) and (b) apply to the symmetric two-sided t test and
confidence set by replacing W(h) with T (h) and replacing χ2

dr ,1−α
with z1−α/2.

Comments. 1. The degree of size distortion for a standard test and
confidence set can be simulated using the formula in Theorem 3
and the distributions derived in Theorem 2 and Corollary 1.

2. The results in Theorem 3 combine the pointwise results in
Theorem 2 to obtain the uniform results of asymptotic size in
(5.1) and (5.2). Roughly speaking, the supremum or infimum in
the definition of the asymptotic size of a test or confidence set
is achieved along certain convergent subsequences and we show
that these limits can be represented by those of the sequences
indexed by h ∈ H . The proof applies the generic results in Andrews
et al. (2011). If Assumption CV1 does not hold, the asymptotic size
can be replaced by bounds following the method in Andrews and
Guggenberger (2010) and Andrews et al. (2011).
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5.2. Data-dependent non-standard critical values

To avoid size distortion, the ideal critical value to use is the 1−α
quantile of W(h) or T (h) in the presence of weak identification.
However, these distributions depend on the unknown parameter
h specified in (5.3). When constructing a robust critical value, the
general strategy is to plug in elements of h that can be consistently
estimated and take a supreme of the quantiles over the elements
of h that cannot be consistently estimated.

A special element of h is the group specification I. The group
specification I cannot be consistently estimated, however, an
identification-category-selection (ICS) method can significantly
reduce the number of group specifications relevant for robust
inference. This ICS procedure uses data to determine the weak
identification group IK , leaving the semi-strong identification
groups I2, . . . , IK−1 and the strong identification group I1
unspecified. This method is closely related to the generalized
moment selection method in Andrews and Soares (2010) and
the type 1 robust critical value in Andrews and Cheng (2012).
Different from these papers, the group specification I cannot be
fully determined by the ICS procedure. Nevertheless, this selection
yields a less conservative choice of the critical value than one
obtained by all possible group specifications without selection.

For j = 1, . . . , p, let

ICSj,n =

nβ ′

j (
Σj)

−1βj/dβj
1/2

, (5.7)

where Σj is a submatrix of Σ corresponding to βj. Roughly
speaking, ICSj,n = Op(1) only if βj,n = O(n−1/2). We select the
weak identification group byIW = {j : ICSj,n ≤ κj,n}, (5.8)

where {κj,n : n ≥ 1} is a sequence of constants such that κj,n → ∞

and κj,n/n1/2
→ 0 for j = 1, . . . , p.8 For the null hypothesis

H0 : βk = 0, we put k in IW without selection. The regressors
are selected one by one in IW . If prior information is available for
a group structure, the selection statistic ICSj,n can be modified to
take the form of a Wald statistic. DefineH = {h ∈ H : IK = IW , ωIk = βIk/∥

βIk∥

and πIk = πk for k < K}.9 (5.9)

Let W1−α(h) denote the 1−α quantile of W(h) defined in (5.6). To
obtain a confidence set by inverting tests for H0 : Rθn = vn with
the Wald statistic, we suggest the plug-in critical valuecn,1−α = sup

h∈H W1−α(h). (5.10)

BecauseH is a subset of H,cn,1−α is smaller than suph∈H W1−α(h),
which is the least favorable critical value. To test the null
hypothesis H0 : Rθn = v for fixed v, the plug-in critical valuecn,1−α(v) is obtained by replacingH withH(v) = H ∩H(v). When
the t statistic is used for a symmetric two-sided test, the plug-in
critical values is constructed with W1−α(h) replaced by the 1 − α

8 To see the requirement κj,n/n1/2
→ 0, consider a strong identification case

where βj,n is bounded away from 0, say βj,n = 1. In this case, βj converges to
1 in probability so that ICSj,n diverges to infinity at rate n1/2 . To ensure ICSj,n is
larger than κj,n with probability approaching 1, we need κj,n diverge at a rate slower
than n1/2 , which leads to κj,n/n1/2

→ 0. This upper bound for κj,n is given by the
strong identification case, whereas the lower bound κj,n → ∞ is given by the weak
identification case.
9 The asymptotic distributionW(π∗

K ) does not depend on the true values ofβ and
ζ although both of them can be consistently estimated. Hence, we do not plug in the
estimators of β and ζ .
quantile of |T (h)|. We call the test and confidence set based on this
plug-in critical value the robust test and robust confidence set.

In empirical implementation, the first step is to specify H
by the ICS method. Second, simulate W1−α(h) for each h using
the asymptotic distribution in Theorem 4. Simulation methods
for a Gaussian processes are given in Hansen (1996). Finally,
obtain the plug-in critical value following (5.10). The difficulty
in computation depends on the number of nonlinear regressors
in the model as well the parameter of interest. In many cases,
W1−α(h) does not depend on I except for the weak identification
group IK . The procedure becomes computation intensive as the
number of weakly-identified nonlinear regressors in group IK
increases. For this reason, the current paper suggests a simple data-
dependent rule in (5.8). The smooth-transitionmethod considered
by Andrews and Barwick (2012) and the type 2 robust critical
value of Andrews and Cheng (2012) can be applied as well but the
computation is more intensive.

The critical value in (5.10) treats the unknown parameter h by
reducing its parameter space from H toH and take the supremum
over H . Alternatively, one can consider the Bonferroni method,
which constructs a confidence set for h and takes the supremum
over this confidence set. McCloskey (2012) studies the Bonferroni
method in non-standard problems and its various refinements.

Assumption CV2. (i) W1−α(h) is uniformly continuous in ωIk and
πIk for k = 1, . . . , K − 1 on h ∈ H.
(ii) The df function of W(h) is continuous at W1−α(h) for all h ∈ H
and α ∈ (0, 1/2).
(iii) Parts (a) and (b) hold with W(h) replaced by |T (h)|.

The following result holds for the robust test and confidence set
based on the Wald statistic and the t statistic.

Theorem 4 (Robust Test and Confidence Set). Suppose Assump-
tions 1–5 and Assumption CV2 hold. Then,
(a) the asymptotic size of the robust test of H0 : Rθ = v is α;

(b) the asymptotic size of the robust confidence set of Rθ is 1 − α.

Example (Cont.). Fig. 2 presents numerical results for robust tests
in yt = β1g1(Xt , π1) + β2g2(Xt , π2) + Ut . The DGP is the same
as that for Fig. 1 so that the performance of the standard test and
the robust test can be compared. The test statistic is the symmetric
two-sided t statistic, coupled with the standard critical value in
Fig. 1 and the robust critical value in Fig. 2. The left panel of Fig. 2 is
obtained by drawing the t statistic and the ICS statistic from their
asymptotic distributions.10 Both figures demonstrate how the null
rejection probability of the test changes with the true values of β1
and β2.

Table 1 focuses on the test H0 : β2 = 0 and shows the null
rejection probability as a function of b1 and the true value of π1,
denoted by π1,0. Under the null, the true value of π2 is irrelevant.

In this example, the nonlinear functions are the exponential
smooth transition function. Specifically, x = (x1, x2, x3)′, g1(x, π1)
= x1(1 − exp(−c(x3 − π1)

2)), g2(x, π2) = x2(1 − exp(−c(x3 −

π2)
2)). The marginal effect of x1 and x2 are both nonlinear,

depending on the transition variable x3. The marginal distribution
of X1t , X2t , X3t ,Ut are all standard normal and independent across
observations. The correlation coefficient between X1t and X2t is
0.5, both are uncorrelated with X3t . The error Ut is independent
of all other variables. The true values of β1 and β2 are b1/

√
n

10 The asymptotic distribution of the t statistic and the ICS statistic are given
in Corollary 1 and (C.12) in the Appendix B. The ICS statistics are non-centered t
statistics. Thus, their asymptotic distributions follow the same arguments for the t
statistic.
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Fig. 2. Robust Test: Asymptotic (left) and Finite-Sample (right, n = 500) Rejection Probability (×100) for H0 : β2 = β2,0. Notes: DGP is the same as that for Fig. 1, nominal
size α = 5%; the true values of β1 and β2 are β1,0 = b1/

√
500 and β2,0 = b2/

√
500 in the right panel.
Table 1
Rejection Probability (x100) of Tests for H0 : β2 = 0 versus H0 : β2 ≠ 0.

π1,0 b1 Robust Standard
n = 200 n = 500 n = 1000 n = 200 n = 500 n = 1000

0 0 6.2 5.4 5.3 21.0 19.9 19.7
1 6.1 5.2 5.0 20.0 19.1 18.8
2 5.7 4.8 4.5 18.0 16.9 16.7
3 5.4 4.5 4.1 16.5 15.4 15.2
4 5.5 4.6 4.2 15.9 14.8 14.6
6 6.0 5.0 4.6 15.8 14.8 14.5
8 6.3 5.4 5.2 15.8 14.7 14.5

10 6.3 5.5 5.3 15.8 14.7 14.4

0.3 0 6.4 5.5 5.4 21.3 19.9 19.4
1 6.1 5.3 5.1 20.3 19.1 18.5
2 5.8 4.8 4.5 18.1 16.9 16.4
3 5.5 4.5 4.2 16.8 15.3 15.1
4 5.6 4.6 4.3 16.3 14.8 14.5
6 6.3 5.1 4.9 16.2 14.8 14.4
8 6.5 5.5 5.3 16.2 14.8 14.5

10 6.4 5.5 5.4 16.2 14.7 14.4

0.5 0 6.2 5.6 5.2 20.9 20.4 19.5
1 6.0 5.3 4.9 19.8 19.3 18.6
2 5.6 4.8 4.4 17.9 17.2 16.5
3 5.4 4.6 4.1 16.5 15.7 14.9
4 5.5 4.7 4.3 16.0 15.1 14.4
6 6.0 5.2 4.9 16.0 15.0 14.3
8 6.3 5.6 5.3 16.0 15.1 14.4

10 6.2 5.6 5.4 15.9 15.0 14.3

0.8 0 6.1 5.5 5.1 21.1 20.0 19.5
1 5.8 5.2 4.9 20.0 18.9 18.5
2 5.5 4.8 4.3 17.9 16.8 16.4
3 5.3 4.6 4.1 16.5 15.4 14.9
4 5.4 4.7 4.3 16.0 14.9 14.5
6 5.9 5.3 5.0 16.0 15.0 14.4
8 6.2 5.7 5.4 16.1 15.0 14.4

10 6.1 5.7 5.5 16.1 14.9 14.3

max 6.5 5.7 5.5 21.3 20.4 19.7
and b2/
√
n, respectively, for finite-sample results with sample size

n.11 The true values of π1 and π2 are both 0 for Figs. 1 and 2.
The optimization parameter space for π1 and π2 are both [−1, 1].
The constant c is 10. In all cases, 50,000 simulation repetitions are
conducted.

The right panel of Fig. 2 is comparable to the right panel of Fig. 1
with the standard test replaced by the robust test. The left panel

11 In simulations, the grids for b1 and b2 are {1, 2, 3, 4, 5, 6, 8, 10, 20, 30}. Only
results for b1 and b2 up to 10 are reported because they are stable for larger values
of b1 and b2 .
of Fig. 2 is an asymptotic version of the right panel obtained by
drawing the t statistic and the ICS statistic from their asymptotic
distributions. To demonstrate the effect of the ICS procedure for
different values of b1 and b2, we consider π1,0 = 0 and π2,0 = 0
when constructing the robust critical value in Fig. 2.

In Fig. 2, the ICS procedure is based on a data-dependent choice
of the tuning parameter. First, the ICS statistic ICS1,n and ICS2,n
are constructed following (5.7). They are compared with tuning
parameters κ1,n = c1 log(log(n)) and κ2,n = c2 log(log(n)) to
determine the weak identification set IW . The constants c1 and c2
are tuned by the asymptotic null rejection probabilities through
simulation. Replacing the t statistic and the ICS statistic by draws
from their asymptotic distributions, we simulate the null rejection
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probability of the robust test for any values of c1 and c2. For large
values of c1 and c2, the ICS procedure favors the least favorable
critical value, which controls the maximum rejection probability
but tends to under reject for some values of b1 and b2. In the
simulation for Fig. 2, we choose c1 and c2 that minimize the
average probability of under rejection, provided that themaximum
rejection probability is no larger than α+ ε, where ε is a tolerance
level close to 0. We set α = 5% and ε = 0.1% in the simulation.
The same constants c1 and c2 are used in the two panels of Fig. 2.
These choices minimize the non-similarity of the test over b1 and
b2 while controlling the maximum rejection probability.

Table 1 focuses on the test H0 : β2 = 0 under different values
of b1 and π1,0. Under the null, the data does not depend on π2.
Because b2 = 0, the ICS procedure only compares ICS1,n with
κ1,n = c1 log(log(n)). Similar to Fig. 2, we choose c1 to minimize
the average rate of under rejection over b1 and π1,0, provided that
the maximum null rejection probability is controlled. When the
sample size is 500, the maximum rejection probability of robust
test is 5.7% and the minimum rejection probability of the robust
test is 4.5%.

Table C.1 in the Appendix C reports the power of the robust and
standard tests under the local alternativeβ2n = n−1/2b2 for b2 from
1 to 10. As in Table 1, we also consider b1 from 1 to 10. Because
the robust test and the standard test have different projection
probability under the null, we adjust the rejection probability
of the standard test by a constant such that the null rejection
probability of the robust test and the standard test are the same for
any (b1, b2). Table C.1 shows that the robust test is less powerful
than the standard test but the power loss is mild and it mainly
occurs for small values of b2. �

Tests proposed in this paper are robust to identification loss in
multiple areas of the parameters space. It is particularly useful for
sub-vector inference when the nuisance parameters have mixed
identification strength. The ICS procedure and the plug-in method
improve the efficiency of the robust test, however, the test does not
have optimality properties, such as those discussed in Elliott et al.
(2012). Besides theWald statistic and the t statistic, one can derive
the asymptotic distributions of the QLR and LM statistics along
drifting parameters and simulate their robust critical values in a
similar fashion. Andrews and Cheng (2012) study the QLR statistic
when identification loss occurs at one point. With multiple points
of non-identification in this paper, the sequential peeling method
developed in Section 3.2 is useful to analyze the constrained
sample criterion function. We leave these alternative robust tests
and their comparison for future work.

Appendix

The continuous mapping theorem is abbreviated to CMT. Left
hand side and right hand are abbreviated to lhs and rhs. With
probability approaching one is written as w.p.a.1.

Appendix A. Auxiliary lemmas

Let s(W , θ) denote a function of θ that is differentiable on the
support of W . Its derivative is denoted by sθ (W , θ). The following
lemmas apply to strictly stationary strongmixing time series under
Assumption 2 or i.i.d. data under Assumption 2 ∗.

Lemma A.1 (Uniform Law of Large Numbers). Suppose (i)
Assumptions 2(i) or Assumption 2∗ (i) holds, (ii) Eγ (supθ∈Θ ∥s(Wt ,

θ)∥1+δ
+supθ∈Θ ∥sθ (Wt , θ)∥

1+δ) ≤ C∀γ ∈ Γ for some C < ∞ and
δ > 0, and (iii)Θ is compact. Then, (i) supθ∈Θ ∥n−1n

t=1 s(Wt , θ)−
Eγ0s(Wt , θ)∥ →p 0 under any sequence of true parameters {γn ∈ Γ :

n ≥ 1} and γn → γ0 ∈ Γ . (ii) Eγ0s(Wt , θ) is uniformly continuous
onΘ∀γ0 ∈ Γ .
Lemma A.2 (Stochastic Equicontinuity). (a) Suppose
(i) Assumption 2(i) holds, (ii) Eγ (supθ∈Θ ∥s(Wt , θ)∥

q
+ supθ∈Θ ∥sθ

(Wt , θ)∥
q) ≤ C∀γ ∈ Γ for some C < ∞ and q as in Assump-

tion 2(i). Then, νns(θ) = n−1/2n
t=1(s(Wt , θ) − Eγns(Wt , θ)) is

stochastically equicontinuous over θ ∈ Θ under {γn} ∈ Γ (γ0),
i.e., ∀ε > 0 and η > 0, ∃δ > 0 such that lim supn→∞ P
[supθ1,θ2∈Θ:∥θ1−θ2∥<δ

∥νns(θ1)− νns(θ2)∥ > η] < ε∀γ0 ∈ Γ .

(b) Part (a) holds if Assumption 2(i) is replaced by Assump-
tion 2∗ (i) and q is replaced by 2 + δ for some δ > 0.

Lemma A.3 (Central Limit Theorem). (a) Suppose (i)Assumption2(i)
holds, (ii) Eγ |s(Wt)|

q
≤ C∀γ ∈ Γ for some C < ∞ and q

as in Assumption 2(i). Then, n−1/2n
t=1(s(Wt) − Eγns(Wt))→d

N(0, Vs(γ0)) under {γn} ∈ Γ (γ0)∀γ0 ∈ Γ , where Vs(γ0) =
∞

m=−∞
Covγ0(s(Wt), s(Wt+m)).

(b) Part (a) holds if Assumption 2(i) is replaced by Assump-
tion 2∗ (i) and q is replaced by 2 + δ for some δ > 0.

Lemmas A.1–A.3 are proved in Lemmas 11.3–11.5 in the
supplemental appendix of Andrews and Cheng (2013) for the
strongmixing arrays. Lemma A.1 automatically extends to the i.i.d.
data. Lemma A.2 holds for the i.i.d. data with q replaced by 2 + δ
by applying stochastic equicontinuity results for the type II class
(Lipschitz functions) inAndrews (1994). LemmaA.3 extends to i.i.d.
data with q replaced by 2+ δ following the Lyapunov central limit
theorem for row-wise i.i.d. triangular arrays.

Appendix B. Proofs for asymptotic distributions of estimators
and test statistics

Proof of Lemma 1. The sample least squares criterion function is

Qn(θ) = n−1
n

t=1

U2
t (θ)/2, where

Ut(θ) = Yt − g(Xt , π)
′β − Z ′

tζ

= Ut + g(Xt , πn)
′βn + Z ′

tζn − g(Xt , π)
′β − Z ′

tζ . (B.1)

Applying Lemma A.1, Qn(θ) converges to a non-random function
Q (θ) uniformly over θ ∈ Θ . The population criterion function is

Q (θ) = Eγ0U
2
t /2

+ Eγ0

g(Xt , π0)

′β0 + Z ′

tζ0 − g(Xt , π)
′β − Z ′

tζ
2
/2 (B.2)

andQ (θ) is continuous in θ onΘ . Note thatβI1,0 ≠ 0 andβIk,0 = 0
for k > 1 by the group specification.

Define

ψ = (β ′, ζ ′)′. (B.3)

Let ψn denote the true value of ψ for sample size n and ψn → ψ0.
Wewrite the criterion functionQ (θ) asQ (ψ, πI1 |π1+) and analyze
Q (ψ, πI1 |π1+) as a function of (ψ, πI1) for a fixed value of π1+ .

Now we show that for any π1+ ,Q (ψ, πI1 |π1+) is uniquely
minimized by (ψ0, πI1,0). Note that βIk,0 = 0 for k > 1 by the
grouping rule. Therefore, Q (ψ0, πI1,0|π1+) = Eγ0U

2
t /2. For fixed

π1+ ,

Q (ψ, πI1 |π1+)− Q (ψ0, πI1,0|π1+)

= Eγ0


gI1(Xt , πI1,0)

′βI1,0 − gI1(Xt , πI1)
′βI1

−

K
k>1

gIk(Xt , πIk)
′βIk + Z ′

t (ζ0 − ζ )

2

/2. (B.4)
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By Assumption 3,

Pγ0

g(Xt , π)

′, g(Xt , π0)
′, Z ′

t


a = 0


< 1 (B.5)

for any a ≠ 0 and π ≠ π0. Because βI1,0 ≠ 0, the rhs of (B.4) is
greater than 0 for anyπI1 ≠ πI1,0.WhenπI1 = πI1,0, (B.5) implies
that the rhs of (B.4) is greater than 0 unless β = β0 and ζ = ζ0.

Given that (i) the population criterion function Q (ψ, πI1 |π1+)
is uniquelyminimizedby (ψ0, πI1,0) for anyπ1+ , (ii)Q (ψ, πI1 |π1+)
is continuous, and (iii) the parameter spaces are all compact, we
have the identification uniqueness condition

inf
π1+∈Π1+

inf
ψ∈Ψ ,πI1∈Π1


Q (ψ, πI1 |π1+)− Q (ψ0, πI1,0|π1+)


> 0

(B.6)

uniformly over Π1+ , following Lemma 8.1 in the supplemental
appendix of Andrews and Cheng (2012). Finally, (B.6) implies the
uniform consistency of ψ(π1+) and π1(π1+) by Lemma 3.1 of
Andrews and Cheng (2012). This Lemma extends the consistency
proof for extremum estimators to uniform consistency. �

Proof of Lemma 2. The proof is by induction. Step 1 shows that
Lemma 2(b) and (c) hold for k = 1. Step 2 shows that, if
Lemma 2(b) and (c) hold for k − 1, Lemma 2(a)–(c) hold for k.

Step 1. For k = 1, Lemma 2(b) is

sup
π1+∈Π1+

πI1(π1+)− πI1,n
→p 0, (B.7)

which follows from Lemma 1. For k = 1, Lemma 2(c) becomes

∥βI1,n∥
−1

βI1(π1+)− βI1,nβ1+(π1+)ζ − ζn

→p 0 (B.8)

uniformly overπ1+ , which follows fromLemma1,βI1,n → βI1,0 ≠

0, and βIk,n → βIk,0 = 0 for k > 1.
Step 2. Suppose Lemma 2 holds for k − 1. For ψk− =

(β ′, ζ ′, π ′
I1
, . . . , π ′

Ik−1
)′, the result for k − 1 yields uniform

consistency of ψk−(πIk , πk+) over (πIk , πk+). Now we show
Lemma 2 holds for k.

For k = 1, . . . , K , gIk(Xt , πIk) is the collection of regressors in
group k. The model can be equivalently written as

Yt =

K
k=1

gIk(Xt , πIk)
′βIk + Z ′

tζ + Ut . (B.9)

Define the first and second order derivatives as

gπk(Xt , πIk) =
∂

∂π ′
Ik

gIk(Xt , πIk) ∈ Rdk×dπIk and

gππk(Xt , πIk) =
∂

∂π ′
Ik

vec(gπk(Xt , πIk)
′) ∈ R(dkdπIk

)×dπIk , (B.10)

where dk is the dimension of gIk(Xt , πIk) and βIk . The angle
parameters are

ωk = βIk/∥βIk∥ and ωk− = (ω′

1, . . . , ω
′

k−1)
′. (B.11)

Let D1
ψk
(θ) and D2

ψk
(θ) denote the first and second order partial

derivatives of Qn(θ)wrtψk− , where θ = (ψ ′

k− , π
′
Ik
, π ′

k+)
′. The first

order derivative wrt ψk = (β ′, ζ ′, π ′
I1
, . . . , π ′

Ik−1
) is

D1
ψk
(θ)

= −n−1
n

t=1


g(Xt , π)

Zt
gπ1(Xt , πI1)

′βI1
...

gπk−1(Xt , πIk−1)
′βIk−1

Ut(θ)
= −n−1
n

t=1


g(Xt , π)

Zt
gπ1(Xt , πI1)

′ω1∥βI1∥

...
gπk−1(Xt , πIk−1)

′ωk−1∥βIk−1∥

Ut(θ)

= −n−1
n

t=1

B(βk−)dψk,t(θ)Ut(θ), (B.12)

where by definition

dψk,t(π, ωk−)

= (g(Xt , π)
′, Z ′

t , ω
′

1gπ1(Xt , πI1), . . . , ω
′

k−1gπk−1(Xt , πIk−1))
′,

and

B(βk−) = diag{(1dβ+dζ , 1dπI1
∥βI1∥, . . . , 1dπIk−1

∥βIk−1∥)
′
}. (B.13)

The second order derivative wrt ψk = (β ′, ζ ′, π ′
I1
, . . . , π ′

Ik−1
)′

is

D2
ψk
(θ) = B(βk−)


n−1

n
t=1

dψk,t(π, ωk−)dψk,t(π, ωk−)
′

− n−1
n

t=1

d∗

ψk,t(θ)Ut(θ)


B(βk−), where

d∗

ψk,t(θ) =

 0dβ×dβ 0dβ×dζ δπk−1(Xt , θ)

0dζ×dβ 0dζ×dζ 0dζ×dπ
δπk−1(Xt , θ)

′ 0dπ×dζ δππk−1(Xt , θ)

 (B.14)

and by definition

δπk−1(Xt , θ)

=


∥βI1∥

−1gπ1 (Xt , πI1 ) 0 0

0
. . . 0

0 0 ∥βIk−1∥
−1gπk−1 (Xt , πIk−1 )

 ∈ Rdβ×dπ

(B.15)

and

δππk−1(Xt , θ)

=

h1(Xt , θ) 0 0

0
. . . 0

0 0 hk−1(Xt , θ),

 ∈ Rdπ×dπ , where

hℓ(Xt , θ) = ∥βIℓ∥
−1

ω′

ℓ ⊗ Idπℓ

 ∂

∂π ′
Iℓ

vec(gπℓ(Xt , πIℓ)
′)

= ∥βIℓ∥
−1

ω′

ℓ ⊗ Idπℓ


gππℓ(Xt , πIℓ). (B.16)

Recall that

ψ0
k−,n = (βk−,n, β

0
Ik
, β0

k+ , ζn, πk−,n),

where β0
Ik

= 0 and β0
k+ = 0. (B.17)

We set β0
Ik

= 0 and β0
k+ = 0 inψ0

k−,n so that the criterion function
Qn(θ) does not depend on (πIk , πk+) when evaluated at ψ0

k−,n.
Hence, we write Qn(ψ

0
k−,n) = Qn(ψ

0
k−,n, πIk , πk+).

Part (a). Because ψk−(πIk , πk+) minimizes Qn(ψk− , πIk , πk+)
for any (πIk , πk+), a mean-value expansion of the first order
condition (FOC) around ψk− = ψ0

k−,n implies that

0 = D1
ψk
(ψk−(πIk , πk+), πIk , πk+)

= D1
ψk
(ψ0

k−,n, πIk , πk+)

+D2
ψk
(ψ∗

k−,n, πIk , πk+)
ψk−(πIk , πk+)− ψ0

k−,n


, (B.18)
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for some ψ∗

k−,n between ψk−(πIk , πk+) and ψ0
k−,n (ψ∗

k−,n may
depend on πk and πk+ ). This expansion implies thatψk−(πIk , πk+)− ψ0

k−,n

= −


D2
ψk
(ψ∗

k−,n, πIk , πk+)
−1

D1
ψk
(ψ0

k−,n, πIk , πk+). (B.19)

We first study the first-order partial derivative in (B.19).
Normalize it by


B(βk−,n)

−1
,

B(βk−,n)
−1 D1

ψk
(ψ0

k−,n, πIk , πk+)

= −n−1
n

t=1

dψk,t(πk−,n, πIk , πk+ , ωk−,n)

×

gk(Xt , πIk,n)

′βIk,n + gk+(Xt , πk+,n)
′βk+,n + Ut


. (B.20)

We normalize both sides of (B.20) by ∥βIk,n∥
−1 and obtain

∥βIk,n∥
−1


B(βk−,n)
−1 D1

ψk
(ψ0

k−,n, πIk , πk+)


→p − Φk(πIk , πIk,0|πk+)ωk,0, where
Φk(πIk , πIk,0|πk+)

= Eγ0dψk,t(πk−,0, πIk , πk+ , ωk−,0)gk(Xt , πIk,0)
′. (B.21)

The convergence follows from (i) applying Lemma A.1 to n−1n
t=1

dψk,t(πk−,n, πIk , πk+ , ωk−,n) gk(Xt , πIk,n)
′ and n−1n

t=1 dψk,t
(πk−,n, πIk , πk+ , ωk−,n)gk+(Xt , πk+,n)

′, (ii) applying Lemmas A.2
and A.3 to the empirical process n−1/2n

t=1 dψk,t(πk−,n, πIk , πk+ ,

ωk−,n)Ut , (iii) βk+,n = o(∥βIk,n∥), and (iv) ∥n1/2βIk,n∥ →

∞. Note that Φk(πIk , πIk,0|πk+) = Hk(πIk , πIk,0|πk+)Sk, where
Hk(πIk , πIk,0|πk+) is defined in (3.15) and Sk is a selector matrix
such that gk(Xt , πIk,0) = S ′

kdψk,t(πk−,0, πIk , πk+ , ωk−,0).
Nextwe study the second-order partial derivative in (B.19). Pre-

and post-multiply D2
ψk
(θ) by [B(βk−)]

−1,

[B(βk−)]
−1D2

ψk
(θ)[B(βk−)]

−1

= n−1
n

t=1

dψk,t(π)dψk,t(π)
′
− n−1

n
t=1

d∗

ψk,t(θ)Ut(θ). (B.22)

Lemma A.1 implies uniform convergence of the first term on the
rhs. Now we show the second term on the rhs is negligible, i.e.,

n−1
n

t=1

d∗

ψk,t(θ)Ut(θ) = op(1) at θ = (ψ∗′

k−,n, π
′

Ik
, π ′

k+)
′, (B.23)

uniformly over (πIk , πk+), where ψ∗

k−,n is between ψk−(πIk , πk+)

and ψ0
k−,n. Given the definition of d∗

ψk,t
(θ), it is sufficient to show

that for j = 1, . . . , k − 1,

n−1
n

t=1

[gπj(Xt , πIj)+ gππj(Xt , πIj)]Ut(θ)/∥βIj∥ = op(1) (B.24)

uniformly over (πIk , πk+) when evaluated at θ = (ψ∗′

k−,n,

π ′
Ik
, π ′

k+)
′.

Next we show (B.24) holds for j = 1, . . . , k − 1. For j ≤ k − 1
and ℓ = k − 1, we have the following results:

∥βIℓ,n∥

∥βIj,n∥
= O(1) and

∥βIℓ,n∥βIj,n(πIk , πk+)
=

βIj,n(πIk , πk+)− βIj,n

∥βIℓ,n∥
+

βIj,n

∥βIℓ,n∥

−1

= Op(1), (B.25)
because (i) the coefficients in β are grouped in a decreasing order
and (ii) Lemma 2(c) applies to ℓ = k − 1. Given (B.25), we have

∥βIℓ,n∥

βIj

= Op(1) (B.26)

for any βIj between βIj,n andβIj,n(πIk , πk+). For ℓ = k − 1, the
error Ut(θ) can be written as

Ut(θ) =

Ut + gℓ−(Xt , πℓ−,n)

′βℓ−,n + gℓ(Xt , πIℓ,n)
′βIℓ,n

+ gℓ+(Xt , πℓ+,n)βℓ+,n


−

gℓ−(Xt , πℓ−)

′βℓ− + gℓ(Xt , πIℓ)
′βIℓ

+ gℓ+(Xt , πℓ+)βℓ+

, (B.27)

where the subscript ℓ− and ℓ+ represent the groups before and
after group ℓ. Using this expansion, write

n−1
n

t=1

gπj(Xt , πIj)Ut(θ)/
βIj

 =

Aj + Bj + Cj

 ∥βIℓ,n∥βIj

 , (B.28)

where ∥βIℓ,n∥/
βIj

 = Op(1) following (B.26) and Aj, Bj, Cj are
specified as follows. The first term is

Aj =

n−1/2
n

t=1
gπj(Xt , πIj)Ut

n1/2∥βIℓ,n∥
. (B.29)

The second term is

Bj = n−1
n

t=1

gπj(Xt , πIj)gℓ−(Xt , πℓ−,n)
′
βℓ−,n

∥βIℓ,n∥

− n−1
n

t=1

gπj(Xt , πIj)gℓ−(Xt , πℓ−)
′
βℓ−

∥βIℓ,n∥

= n−1
n

t=1

gπj(Xt , πIj)

gℓ−(Xt , πℓ−,n)

− gℓ−(Xt , πℓ−)
′ βℓ−,n

∥βIℓ,n∥

− n−1
n

t=1

gπj(Xt , πIj)gℓ−(Xt , πℓ−)
′
βℓ− − βℓ−,n

∥βIℓ,n∥
. (B.30)

The third term is

Cj = n−1
n

t=1

gπj(Xt , πIj)gℓ(Xt , πIℓ,n)
′
βIℓ,n

∥βIℓ,n∥

− n−1
n

t=1

gπj(Xt , πIj)gℓ(Xt , πIℓ)
′
βIℓ

∥βIℓ,n∥

+ n−1
n

t=1

gπj(Xt , πIj)gℓ+(Xt , πℓ+,n)
′
βℓ+,n

∥βIℓ,n∥

− n−1
n

t=1

gπj(Xt , πIj)gℓ+(Xt , πℓ+)
′
βℓ+

∥βIℓ,n∥
. (B.31)

Now we show Aj, Bj, Cj = op(1). Note that the rate of
convergence in Lemma 2(c) holds when ψk−(πIk , πk+) is replaced
byψn.Hence, it also holds for anyψk− betweenψk−(πIk , πk+) and
ψn. First, Aj = op(1) because (i) n−1/2n

t=1 gπj(Xt , πIj)Ut = Op(1)
uniformly over πIj by Lemmas A.2 and A.3 and (ii) n1/2

∥βIℓ,n∥ →

∞. Second, Bj = op(1) because ∥βIj,n∥(πIj(πIk , πk+) − πIj,n) andβIj(πIk , πk+)−βIj,n both converge to 0 faster than ∥βIℓ,n∥ for j < ℓ
by Lemma2(c). Third, Cj = op(1) holds because (i) forψk− between
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ψk−(πIk , πk+) and ψn, βIℓ,n/∥βIℓ,n∥ → ωℓ,0, βIℓ/∥βIℓ,n∥ →

ωℓ,0, βℓ+,n/∥βIℓ,n∥ → 0, βℓ+/∥βIℓ,n∥ → 0 and (ii) the sample
means are Op(1) by the ULLN in Lemma A.1. Similarly, (B.28) holds
when gπj(Xt , πIj) is replaced by gππ,j(Xt , πIj). This proves (B.24),
which in turn implies (B.23).

It follows from (B.22) and (B.23) that, for θ = (ψ ′

k− , π
′
Ik
, π ′

k+)
′,

where ψk− is between ψk−(πIk , πk+) and ψ0
k−,n, the normalized

second order partial derivative satisfies

[B(βk−)]
−1D2

ψk
(θ)[B(βk−)]

−1
→p Hk(πIk , πIk |πk+), where (B.32)

Hk(πIk , πk|πk+) = Eγ0dψk,t(πk−,0, πIk , πk+ , ωk−,0)

× dψk,t(πk−,0, πIk , πk+ , ωk−,0)
′.

Next we show

[B(βk−,n)]
−1

[B(βk−)] →p Idβ+dζ+dk− , (B.33)

where dk− is the number of elements in βk− , so that rescaling
by B(βk−) and by B(βk−,n) is asymptotically equivalent. For j =

1, . . . , k − 1,
βIj(πIk , πk+)

βIj,n
 − 1


≤

βIj(πIk , πk+)− βIj,n


∥βIk−1,n∥

∥βIk−1,n∥βIj,n
 → 0 (B.34)

by applying Lemma2(c) to k−1. This implies that for j = 1, . . . , k−
1, ∥βIj∥/∥βIj,n∥ → 1 for any βIj betweenβIj(πIk , πk+) and βIj,n,
which further implies the desired result in (B.33).

Normalizing the equality in (B.19), we obtain

B(βk−,n)
ψk−(πIk , πk+)− ψ0

k−,n


= −


[B(βk−,n)]

−1D2
ψk
(ψ∗

k−,n, πIk , πk+)[B(βk−,n)]
−1
−1

×


B(βk−,n)

−1 D1
ψk
(ψ0

k−,n, πIk , πk+)

. (B.35)

Applying (B.21), (B.32), and (B.33) to (B.35) yields

∥βk,n∥
−1

B(βk−,n)

ψk−(πIk , πk+)− ψ0
k−,n


→p


Hk(πIk , πIk |πk+)

−1
Φk(πIk , πIk,0|πk+)ωk,0

=

Hk(πIk , πIk |πk+)

−1 Hk(πIk , πIk,0|πk+)∆k (B.36)

uniformly over (πIk , πk+), where∆k = Skωk,0 by definition.
We expand the criterion function Q c

n (πIk , πk+) = Qn(ψk−

(πIk , πk+), πk, πk+) around (ψ0
k−,n, πk, πk+) for fixed (πIk , πk+).

Note that Qn(ψ
0
k−,n) = Qn(ψ

0
k−,n, πk, πk+) does not depend on

(πIk , πk+) and we have shown the consistency of ψk−(πIk , πk+).
By a second order Taylor expansion,

Q c
n (πIk , πk+)− Qn(ψ

0
k−1,n)

= D1
ψk−
(ψ0

k−,n, πk, πk+)
′

ψk−(πIk , πk+)− ψ0
k−,n


+

1
2

ψk−(πIk , πk+)− ψ0
k−,n

′

D2
ψk−
(ψ∗∗

k−,n, πk, πk+)

×

ψk−(πIk , πk+)− ψ0
k−,n


=


D1
ψk−
(ψ0

k−,n, πk, πk+)
′

B(βk−,n)

−1


×


B(βk−,n)

ψk−(πIk , πk+)− ψ0
k−,n


+

1
2


B(βk−,n)

ψk−(πIk , πk+)− ψ0
k−,n

′
×


[B(βk−,n)]

−1D2
ψk−
(ψ∗∗

k−,n, π2)[B(βk−,n)]
−1


×


B(βk−,n)

ψk−(πIk , πk+)− ψ0
k−,n


(B.37)

for some ψ∗∗

k−,n between ψk−(πIk , πk+) and ψ0
k−,n. Applying the

results for the first and secondorder derivatives in (B.21) and (B.32)
and the results for B(βk−,n)(ψk−(πIk , πk+) − ψ0

k−,n) in (B.35) and
(B.36), we obtain the desired result in part (a).

Part (b). Following thedefinitions ofHk(πIk , πIk |πk+) and∆k =

[01×dk− , ω
′

k,0, 01×(dζ+dk− )]
′, thematrix Cauchy–Schwarz inequality

(see Tripathi, 1999) implies that ∆′

kHk(πIk , πIk,0|πk+)
′
[Hk(πIk ,

πIk |πk+)]
−1Hk(πIk , πIk,0|πk+)∆k is uniquely maximized at πIk =

πIk,0 provided that for a ≠ 0 and some ε > 0,

Pγ
 

gk(Xt , πIk,0)
′ωk,0


a

+


gk−(Xt , πk−,0)

′, gk(Xt , πIk)
′, gk+(Xt , πk+)

′,

Z ′

t , gπk− (Xt , πk−,0)
′


b = 0


≤ 1 − ε (B.38)

for πIk ≠ πIk,0. The desired result in (B.38) is implied by
Assumption 3 and the grouping rule. Thus, part (b) follows from
part(a), the argmax CMT (Theorem 3.2.2 in van der Vaart and
Wellner (1996)), and πIk,n → πIk,0 as n → ∞.

Part (c). Part (c) follows from (B.36), the consistency in part (b),
and replacing β0

Ik,n, which is a vector of zeros, with βIk,n in the
centering term.

Proof of Theorem 1. Part (a). For k = K , normalizing (B.20) by
n1/2 yields

n1/2 B(βK−,n)
−1 D1

ψK
(ψ0

K−,n, πK )

= −n−1
n

t=1

dψK ,t(πK−,n, πK ,ωK−,n)gK (Xt , πK ,n)
′

n1/2βK ,n


− n−1/2

n
t=1

UtdψK ,t(πK−,n, πK , ωK−,n)

⇒ −

HK (πK , πK ,0)SKbK + G(πK )


(B.39)

following Lemmas A.1–A.3 and n1/2βK ,n → bK . For k = K , (B.32)
yields

[B(βK−)]−1D2
ψK
(θ)[B(βK−)]−1

→p HK (πK , πK ) (B.40)

for any θ = (ψ ′

K− , π
′

K )
′ where ψK− is between ψK−(πK ) and ψ0

K ,n.
In addition, (B.33) gives

[B(βK−,n)]
−1

[B(βK−)] →p Idβ+dζ+dK−
. (B.41)

For k = K , normalizing (B.35) by n1/2, we obtain

n1/2B(βK−,n)
ψK−(πK )− ψ0

K−,n


= −


[B(βK−,n)]

−1D2
ψK
(ψ∗

K−,n, πK )[B(βK−,n)]
−1
−1

× n1/2 B(βK−,n)
−1 D1

ψK
(ψ0

K−,n, πK ) (B.42)

for ψ∗

K−,n between ψK−(πK ) and ψ0
K ,n. Combining (B.39)–(B.42)

yields

n1/2B(βK−,n)
ψK−(πK )− ψ0

K−,n


⇒ τ(πK ), where

τ(πK ) = [HK (πK , πK )]
−1 HK (πK , πK ,0)SKbK + G(πK )


. (B.43)
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Applying (B.37) to k = K and normalizing the criterion function
by n,we obtain

n

Q c
n (πK )− Qn(ψ

0
K−,n)


=


n1/2D1

ψK
(ψ0

K−,n, πK )
′

B(βK−,n)

−1


×


n1/2B(βK−,n)

ψK−(πK )− ψ0
K−,n


+

1
2


n1/2B(βK−,n)

ψK−(πK )− ψ0
K−,n

′

×


[B(βK−,n)]

−1D2
ψK
(ψ∗∗

K−,n, πK )[B(βK−,n)]
−1


×


n1/2B(βK−,n)

ψK−(πK )− ψ0
K−,n


(B.44)

⇒ −
1
2


HK (πK , πK ,0)SKbK + GK (πK )

′
[HK (πK , πK )]

−1

×

HK (πK , πK ,0)SKbK + GK (πK )


following (B.39), (B.40), and (B.43). BecauseπK minimizes Q c

n (πK ),
applying the argmax CMT, we obtain

πK ⇒ π∗

K . (B.45)

Because ψK−(πK ) = ψK− , the CMT and (B.43) yield

n1/2B(βK−,n)
ψK− − ψK−,n


= n1/2B(βK−,n)

ψK−(πK )− ψ0
K−,n


− n1/2B(βK−,n)


ψK−,n − ψ0

K−,n


⇒ τK (π

∗

K )− SKbK , (B.46)

where SKbK is a vector of the same size as ψK− but with the sub-
vector of βK replaced by bK and the rest replaced by zeros. The
convergence in (B.45) and (B.46) hold jointly because there are
both functionals of the same underlying stochastic processes. This
completes the proof. �

Part (b). When ∥n1/2βK ,n∥ → ∞, Lemma 2 applies to k = K
with πk+ omitted in the expression. This provides (i) consistency
ofθ and (ii) the rate of convergence in Lemma 2(c) with k = K .

Define the first and second order derivatives of Qn(θ)wrt θ by

D1
θ (θ) = −n−1

n
t=1

B(β)dθ,t(π, ω)Ut(θ), with

B(β) = diag{(1dβ+dζ , 1dπI1
∥βI1∥, . . . , 1dπIK

∥βIK ∥)′},

dθ,t(π, ω)

= (g(Xt , π)
′, Z ′

t , ω
′

1gπ1(Xt , πI1), . . . , ω
′

KgπK (Xt , πIK ))
′ (B.47)

and

D2
θ (θ) = B(β)


n−1

n
t=1

dθ,t(π, ω)dθ,t(π, ω)′

− n−1
n

t=1

Ut(θ)d∗

θ,t(θ)


B(β), where (B.48)

d∗

θ,t(θ) =

 0dβ×dβ 0dβ×dζ δπK (Xt , θ)

0dζ×dβ 0dζ×dζ 0dζ×dπ
δπK (Xt , θ)

′ 0dπ×dζ δππK (Xt , θ)


and δπK (Xt , θ) and δππK (Xt , θ) follow the definitions in (B.15) and
(B.16).
Becauseθ minimizes Qn(θ), a mean-value expansion of the FOC
around θn implies thatθ − θn = −


D2
θ (θ

∗)
−1

D1
θ (θn) (B.49)

for some θ∗ betweenθ and θn.
Evaluate D1

θ (θ) at θn and normalize it by n1/2 [B(βn)]−1 ,

n1/2 [B(βn)]−1 D1
θ (θn)→d N(0,Ωθ (π0, ω0)). (B.50)

Pre- and post-multiply D2
θ (θ) by [B(β)]−1,

[B(β)]−1D2
θ (θ)[B(β)]

−1
= n−1

n
t=1

dθ,t(π, ω)dθ,t(π, ω)′

− n−1
n

t=1

Ut(θ)d∗

θ,t(θ), (B.51)

where we have

n−1
n

t=1

Ut(θ)d∗

θ,t(θ) = op(1) at θ = θ∗, (B.52)

for any θ∗ betweenθ and θn following the arguments used to show
(B.23). It follows that

[B(β)]−1D2
θ (θ)[B(β)]

−1
→p H(π0, ω0) (B.53)

for any θ betweenθ and θn. In addition, Lemma 2(c) for k = K
implies that [B(βn)]

−1B(β∗)→p I for β∗ betweenβ and βn.
Putting together results for the first and second order deriva-

tives, we obtain

n1/2B(βn)
θ − θn


= −


[B(βn)]

−1D2
θ (θ

∗)[B(βn)]
−1−1

n1/2 [B(βn)]−1 D1
θ (θn)

→d N(0,H(π0, ω0)
−1Ωθ (π0, ω0)H(π0, ω0)

−1). (B.54)

Proof of Theorem 2. Under the null hypothesisH0 : Rθn = vn, the
Wald statisticWn(R) is

Wn(R) = n

R
θ − θn

′ 
RB−1(β)ΣnB−1(β)R′

−1

×

R
θ − θn


. (B.55)

We first show

εn = Wn(R)− Wn(R∗) = op(1). (B.56)

Because D∗(β) is non-singular with w.p.a.1, Wn(R) = Wn(D∗(β)
A′R)w.p.a.1. Decompose the rotated matrix A′R as

A′R = R∗
+ ε∗

R, (B.57)

where ε∗

R = A′R − R∗ is defined implicitly. Using this decomposi-
tion, we have

Wn(D∗(β)A′R) = ϱ′


RΣnR

′
−1

ϱ, where

ρ = n1/2D∗(β) R∗
+ ε∗

R


(θn − θn)

R = D∗(β) R∗
+ ε∗

R


B−1(β). (B.58)

Following the definition of RĎ(β) in (4.14),

R = RĎ(β)+ D∗(β)ε∗

RB
−1(β), (B.59)

where D∗(β)ε∗

RD
−1(β) = op(1) because (i) the matrix A′

kRj in ε∗

R is
multiplied by ∥βk∥ · ∥βj∥

−1, which is op(1) for j < k and (ii) A′R is
upper block diagonal by construction. To study ρ, write it as

ρ = ρn + n1/2D∗(β)ε∗

R(
θn − θn), where

ρn = n1/2D∗(β)R∗(θn − θn). (B.60)
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The second term n1/2D∗(β)ε∗

R(
θn−θn) = op(1) because its compo-

nents are n1/2
∥βk∥


A′

kRj

(πIj −πIj,n) for j < k. By Theorem 1, the

convergence rate ofπIj is n
1/2

∥βIj,n∥,which is an order of magni-
tude larger than n1/2

∥βIk∥ for j < k. Putting together (B.58)–(B.60),
we have

Wn(R) = Wn(D∗(β)A′R)

=

ρn + op(1)

′ RĎ(β)+ op(1)
 Σn


RĎ(β)+ op(1)

′−1

×

ρn + op(1)


.

= ρ ′

nV
−1
n ρn + εn (B.61)

= Wn(R∗)+ εn,

where εn is implicitly defined by the third equality. Comparing the
second and the third lines of (B.61), εn = op(1) provided that (i)
ρn = Op(1), (ii) Σn = Op(1), and (iii) λmin(Σ−1

n ) > 0 w.p.a.1.,
given that RĎ(β)has full rank by construction.We investigate these
terms below.

We first consider weak identification in part (a). Following
(4.16), ρn = RĎ(β)ξn, where ξn = n1/2B(β)(θ − θn). To derive the
asymptotic distribution of ξn, define a stochastic process indexed
by πIK :

ξn(πIK ) =


n1/2B(βK−,n(πIK ))

ψK−(πIK )− ψK−,n


n1/2
βIK (πIK )

 πIK − πIK ,n
 

. (B.62)

Applying (B.33)with k = K , wehaveB(βK−,n(πIK ))[B(βK−,n)]
−1

=

IdK−
+ op(1). Applying it together with Theorem 1(a) and the CMT

yields

ξn = ξn(πIK ) ⇒ ξ(π∗

IK
), (B.63)

where

ξ(πIK ) =


τK (πIK )− SKbKτβK (πIK )

 πIK − πIK ,0
 . (B.64)

To study ω = (ω′

1, . . . ,ω′

K )
′, note that for k = 1, . . . , K −

1, ∥βIk,n∥
−1(βIk − βIk,n) = op(1) following Lemma 2(c). This im-

pliesβIk = βIk,n + ∥βIk,n∥op(1) and ∥βIk∥/∥βIk,n∥ = 1 + op(1).
Hence,

ωk =

βIk

∥βIk∥

=

βIk − βIk,n

∥βIk,n∥

∥βIk,n∥

∥βIk∥
+

βIk,n

∥βIk,n∥

∥βIk,n∥

∥βIk∥
→p ωk,0. (B.65)

For the last group,

ωK = n1/2βIK /∥n
1/2βIk∥ ⇒

τβK (π
∗
IK
)

∥τβK (π
∗
IK
)∥

(B.66)

by Theorem 1(a) and the CMT. Thus,

ω ⇒ ω(π∗

IK
) =


ω1,0, . . . , ωK−1,0,

τβK (π
∗
IK
)

∥τβK (π
∗
IK
)∥


. (B.67)

The covariance matrix is Σ = [H(π,ω)]−1Ωθ (θ)[H(π,ω)]−1.
Define

H(π, ω) = n−1
n

t=1

dθ,t(π, ω)dθ,t(π, ω)′. (B.68)

Lemma A.1 implies thatH(π, ω)→p H(π, ω) (B.69)
uniformly over (π, ω), which implies that

H ⇒ H(πK−,0, π
∗

IK
, ω(π∗

IK
)). (B.70)

For the other term, we have

Ωθ = n−1
n

t=1

U2
t dθ,t(π,ω)dθ,t(π,ω)′

= n−1
n

t=1

U2
t dθ,t(π,ω)dθ,t(π,ω)′

+ 2n−1
n

t=1

Ut


K

k=1


gIk(Xt , πIk,n)

′βIk,n

− gIk(Xt ,πIk)
′βIk

 
dθ,t(π,ω)dθ,t(π,ω)′

+ n−1
n

t=1


K

k=1


gIk(Xt , πIk,n)

′βIk,n

− gIk(Xt ,πIk)
′βIk

 2

dθ,t(π,ω)dθ,t(π,ω)′
⇒ Ωθ (πK−,0, π

∗

IK
, ω(π∗

IK
)), whereΩθ (π, ω)

= Eγ0

U2
t dθ,t(π, ω)dθ,t(π, ω)

′

. (B.71)

Thus,

Σ ⇒ Σ(πK−,0, π
∗

IK
, ω(π∗

IK
)) = Σ


π∗

IK


. (B.72)

Putting together (B.63) and (B.72), we obtain εR = op(1) by
(B.61). Furthermore, these results hold jointly. Therefore,

Wn(R) = ρ ′

nV
−1
n ρn + op(1)

=

RĎ(β)ξn′ RĎ(β)ΣRĎ(β)′−1 

RĎ(β)ξn+ op(1)

⇒

RĎ(β0)ξ(π

∗

IK
)
′ RĎ(β0)Σ(π

∗

IK
)RĎ(β0)

′
−1

×

RĎ(β0)ξ(π

∗

IK
)

, (B.73)

where the first equality follows from (B.61) and εn = op(1), the
second equality follows from the definition of ρn and Vn, and the
convergence follows from the joint convergence of those in (B.63)
and (B.72).

Next, we prove part (b). Theorem 1(b) implies that

ξn(πK )→d ξ ∼ N(0,Σ(π0, ω0)) (B.74)

because B−1(βK (πIK ))B(βIK ,n) = 1dK + op(1) when group K in-
volves semi-strong or strong identification. In addition, the angle
parameters and the covariance matrix satisfy

ω→p ω0 = (ω′

1,0, . . . , ω
′

K ,0)
′ and Σ →pΣ(π0, ω0) (B.75)

following the arguments in (B.65) for k = K and the consistency ofπIK in this case. Therefore, εn = op(1) following the calculation in
(B.61). Furthermore, the Wald statistic satisfies

Wn(R) →d

RĎ(β0)ξ

′ RĎ(β0)Σ0RĎ(β0)
′
−1 RĎ(β0)ξ


∼ χ2

dr (B.76)

because RĎ(β0) and Σ0 both have full rank. This completes the
proof. �

Corollary 1. follows directly from Theorem 2.
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Proof to show (4.25). When testing the null hypothesis H0 :

Rθn = vnulln , the Wald statisticWn(R) can be written as

Wn(R) = n

R
θ − θn


+

Rθn − vnulln

′
×

RB−1(β)ΣnB−1(β)R′

−1

×

R
θ − θn


+

Rθn − vnulln


. (B.77)

Because D∗(β)A′ is a full rank matrix w.p.a.1, we have

Wn(R) = n

D∗(β)A′R

θ − θn

+ D∗(β)A′


Rθn − vnulln

′
×

D∗(β)A′RB−1(β)ΣnB−1(β)R′AD∗(β)′−1

×

D∗(β)A′R

θ − θn

+ D∗(β)A′


Rθn − vnulln


= (ρ +∆n)

′

RΣnR

′−1
(ρ +∆n) , (B.78)

where

∆n = n1/2D∗(β)A′

Rθn − vnulln


(B.79)

and ρ and R are defined in (B.58). In the proof of Theorem 2, we
have shown

ρ = ρn + op(1) = RĎ(β)ξn + op(1),

where ξn = n1/2B(β)(θ − θn) (B.80)

and

R = RĎ(β)+ op(1) (B.81)

in all identification scenarios. In addition, ρn = Op(1) and R =

Op(1) in all cases. This shows the results in (4.25). �

Appendix C. Proofs for the asymptotic size

Proof of Theorem 3. In the original model in (1.1), the DGP is
determined by β = (β ′

1, . . . , β
′
p)

′, ζ , π = (π ′

1, . . . , π
′
p)

′, and φ.
Because the identification strength of πj is determined by ∥βj∥, we
parameterize βj as (∥βj∥, σj), where

σj = βj/∥βj∥. (C.1)

Without loss of generality, define σj = 1dβj
if βj = 0. Note that this

angle parameter σj is different from ωj defined above. The former
is based on the original parameterization βj whereas the latter is
based on the grouping result βIj .

The DGP is determined by

λ = (∥β1∥, . . . , ∥βp∥, σ
′

1, . . . , σ
′

p, ζ
′, π ′, φ) ∈ Λ. (C.2)

Define a function

hn(λn)

=

n1/2

∥β1,n∥, . . . , n1/2
∥βp,n∥, g(∥β1,n∥, . . . , ∥βp,n∥), λn


,(C.3)

where

g(∥β1∥, . . . , ∥βp∥) =


∥βj∥

∥βℓ∥


j≠ℓ

=


∥β1∥

∥β2∥
, . . . ,

∥β1∥

∥βp∥
, . . . ,

∥βp∥

∥β1∥
, . . . ,

∥βp∥

∥βp−1∥


(C.4)

where ∥βj∥/∥βℓ∥ ∈ R+ ∪ {∞} and, by definition, ∥βj∥/∥βℓ∥ = ∞

if βℓ = 0. In (C.3), g(∥β1,n∥, . . . , ∥βp,n∥) determines the relative
convergence rate, which is needed to specify the grouping result I.

Recall that in (5.3), we define

h = (I, bIK , ω0, γ0) = (I, bIK , ω0, β0, ζ0, π0, φ0). (C.5)
It is a one-to-one transformation between h and the limit of hn(λn)
because (I, bIK , ω0) determines the limit of n1/2

∥β1,n∥, . . . , n1/2

∥βp,n∥ and g(∥β1,n∥, . . . , ∥βp,n∥), and vice versa.
For any sequences of true parameters {λn : n ≥ 1} forwhich the

limit of hn(λn) can be parameterized as h ∈ H , Theorem 2 shows
thatWn(R)→d W(h). In otherwords, the limit distribution is index
by h. (For convenience, if hn(λn) converges to a limit that can be
reparameterized as h ∈ H , below we also say hn(λn) → h.) Under
Assumption CV1, W(h) is continuous at χ2

dr ,1−α∀h ∈ H . Therefore,
the coverage probability satisfies

CPn(λn) = Pr(Wn(R) ≤ χ2
dr ,1−α) → Pr(W(h) ≤ χ2

dr ,1−α)

= CP(h). (C.6)

The generic results in ACG provide a link between the
pointwise results in (C.6) along {λn : n ≥ 1} and the uniform
results for the asymptotic size in (5.1) and (5.2). Take the asymp-
totic size for a confidence set for an example. The arguments in
ACG roughly go as follows. By the definition of inf and liminf,
lim infn→∞ infλ∈Λ CPn(λ) = limn→∞ CPpn(λpn) for some subse-
quence {pn} of {n}. Theorems 2.1 and 2.2 of ACG prove that, for a
confidence set, AsySz = infh∈H CP(h) if ‘‘For any subsequence {pn}
of {n} and any sequence {λpn ∈ Λ : n ≥ 1} for which hpn(λpn) →

h ∈ H, CPpn(λpn) → CP(h) for some CP(h) ∈ [0, 1].’’ (This is As-
sumption B of ACG with CP(h) = CP−(h) = CP+(h).) This state-
ment is analogous to (C.6), except that (C.6) is established for the
full sequences {λn : n ≥ 1}, rather than for the subsequences {λpn}.
The full sequence result in (C.6) verifies Assumptions B1 and C1
in ACG. Lemma 2.1 of ACG shows that a missing link between the
subsequence result and the full sequence result is Assumption B2
of ACG, which states ‘‘For any subsequence {pn} of {n} and any se-
quence {λpn : n ≥ 1} for which hpn(λpn) → h ∈ H , there exists
a sequence {λ∗

n ∈ Λ : n ≥ 1} such that hn(λ
∗
n} → h ∈ H and

λ∗
pn = λpn ,∀n ≥ 1.’’ In other words, Assumption B2 of ACG en-

sures that the set of subsequence limits along hpn(λpn) is the same
as the set of full sequence limits along hn(λn), the latter of which
is given in (C.6). Therefore, it remains to verify Assumption B2 of
ACG to complete the proof.

Now we verify Assumption B2 of ACG, ‘‘For any subsequence
{pn} of {n} and any sequence {λpn : n ≥ 1} for which hpn(λpn) →

h ∈ H , there exists a sequence {λ∗
n ∈ Λ : n ≥ 1} such that

hn(λ
∗
n} → h ∈ H and λ∗

pn = λpn ,∀n ≥ 1.’’ To be clear with
the notation, let us call this new full sequence {λ∗

k : k ≥ 1}. We
aim to construct a full sequence {λ∗

k} which is the same as λpn
for k = pn and hk(λ

∗

k) → h as k → ∞. The question is how
to fill in the sequence for k ≠ pn for any n. This new sequence
{λ∗

k = (∥β∗

1,k∥, . . . , ∥β
∗

p,k∥, σ
∗′

1,k, . . . , σ
∗′

p,k, ζ
∗′

k , π
∗′

k , φ
∗

k ) : k ≥ 1}
is defined as follows: (i) ∀k = pn define λ∗

k = λpn ∈ Λ, and (ii)
∀k ∈ (pn, pn+1), define

∥β∗

j,k∥ =


√
pn∥βj,pn∥

√
k

if (a)
√
pn∥βj,pn∥ → h1,j ∈ R

∥βj,pn∥ if (b)
√
pn∥βj,pn∥ → ∞.

for j = 1, . . . , p,
σ ∗

j,k = σj,pn

for j = 1, . . . , p, ζ ∗

k = ζpn , π
∗

k = πpn , φ
∗

k = φpn . (C.7)

For k between pn and pn+1, ∥βj,k∥ for theweak identification group
is constructed in a way such that the limit of

√
k∥βj,k∥ is the same

as
√
pn∥βj,pn∥. (Note that p denotes the number of nonlinear re-

gressors in the originalmodel,whereas pn indexes the subsequence
to be consistent with the notation in ACG.) For k large enough, we
can always construct λ∗

k as proposed because the parameter space
is a product space that contains a neighborhood of β arbitrarily
close to 0.
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It remains to show that hk(λ
∗

k) → h if hpn(λpn) → h. (i)
It is clear that

√
k∥β∗

j,k∥ and
√
pn∥βj,pn∥ have the same limit by

construction in (C.7). (ii) λ∗

k and λpn also have the same limit
by construction in (C.7) because ∥β∗

j,k∥ converges to 0 if and
only if ∥βj,pn∥ converges to 0. (iii) We now show the limits of
g(∥β∗

1,k∥, . . . , ∥β
∗

p,k∥) and g(∥β1,pn∥, . . . , ∥βp,pn∥) are the same by
showing ∥β∗

j,k∥/∥β
∗

ℓ,k∥ and ∥βj,pn∥/∥βℓ,pn∥ have the same limits
for all ℓ ≠ j. In (C.7), we have cases (a) and (b) for ∥βj,pn∥ de-
pending on its rate of convergence. Now we discuss three cases.
(1) If ∥βj,pn∥ and ∥βℓ,pn∥ are both in case (a) or both in case
(b), ∥β∗

j,k∥/∥β
∗

ℓ,k∥ = ∥βj,pn∥/∥βℓ,pn∥. (2) If ∥βj,pn∥ is in case (a)

and ∥βℓ,pn∥ is in case (b), we have ∥βj,pn∥/∥βℓ,pn∥ → 0. Then,
∥β∗

j,k∥/∥β
∗

ℓ,k∥ = (
√
pn/

√
k)∥βj,pn∥/∥βℓ,pn∥ → 0. (3) If ∥βj,pn∥ is in

case (b) and ∥βℓ,pn∥ is in case (a), we have ∥βj,pn∥/∥βℓ,pn∥ → ∞.
Then, ∥β∗

j,k∥/∥β
∗

ℓ,k∥ = (
√
k/

√
pn)∥βj,pn∥/∥βℓ,pn∥ → ∞. This

shows that hk(λ
∗

k) and hpn(λpn) have the same limit as desired,
which in turn verifies Assumption B2 in ACG. As explained above,
the results in (C.6) verifies Assumptions B1 and C1 in ACG. The
desired result follows directly from Lemma 2.1, Theorem 2.2, and
Theorem 2.1(c) of ACG. �

Proof of Theorem 4. We first introduce some notations. For a
sequence of constants {cn : n ≥ 1}, let cn → [c1, c2] denote
c1 ≤ lim infn→∞ cn ≤ lim supn→∞ cn ≤ c2.

Below we show (i) the pointwise convergence result in
Assumption B1 of ACG hold for the robust test ‘‘For any sequence
{hn(λn) → h ∈ H, CP(λn) → [CP−(h), CP+(h)] ∈ [0, 1]}’’ and
(ii) the lower bound is achieved as in Assumption C1 of ACG
‘‘CP−(hL) = CP+(hL) for some hL ∈ H such that CP−(hL) =

infh∈H CP−(h).’’ As in the proof of Theorem 3, we invoke Theorem
2.1(c) of ACG for this proof. The same reparameterization for λ
and hn(λn) is necessary. Assumption B2 of ACG is the same for
the standard test and the robust test, thus it remains to verify
Assumptions B1 and C1 of ACG for the robust test and confidence
interval based on the plug-in critical value.

To verify Assumption B1 of ACG, we first show that for any se-
quence of true parameters {λn : n ≥ 1} forwhich hn(λn) converges
to a limit that can be reparameterized as h0 ∈ H , the coverage
probability satisfies

Pr(Wn(R) ≤cn,1−α) → [CP−(h0), CP+(h0)] (C.8)

for some CP−(h0), CP+(h0) ∈ [0, 1]. Here we use h0 ∈ H rather
than h ∈ H to denote the sequence under consideration, whereas
h is a generic notation in the definition of the plug-in critical value.
To verify Assumption C1 of ACG, we show CP−(hL) = CP+(hL) for
some hL ∈ H such that CP−(hL) = infh∈H CP−(h) = 1 − α. Then,
Theorem 2.1(c) of ACG implies that the asymptotic size is 1 − α.

For a given h0 ∈ H , its corresponding elements are IK ,0,
ωIk,0, πIk,0, and γ0.We define an infeasible critical value under h0
as

c1−α(h0) = sup
h∈H0

W1−α(h), where

H0 = {h ∈ H : IK = IK ,0, ωIk = ωIk,0,
πIk = πIk,0 for k < K}. (C.9)

This infeasible critical value c1−α(h0) does not depend on the data.
Because h0 ∈ H0,

c1−α(h0) ≥ W1−α(h0). (C.10)

Recall the plug-in critical value defined ascn,1−α = sup
h∈H W1−α(h), where

H = {h ∈ H : IK = IW , ωIk = βIk/∥
βIk∥

and πIk = πIk for k < K}. (C.11)
In the definition of H , IK , ωIk , πIk for k < K are estimated. The
grouping rule I is not specified except for the last group IK .

Along a sequence of true parameters {λn : n ≥ 1} for
which hn(λn) converges to a limit that can be reparameterized as
h0 ∈ H , we first show that the estimated weak identified set IW
is no smaller than the true weak identification set IK ,0 w.p.a.1,
i.e., Pr(IK ,0 ⊆ IW ) → 1. Therefore, imposing IK to be IW inH is
less restrictive than imposing IK to be IK ,0 in H0. Here we assume
there exist weakly identified regressors and they are collected in
IK ,0 following the grouping rule. When no regressors are weakly
identified, the Wald statistic has a chi-square distribution and the
limit of the coverage probability is greater than or equal to 1 − α
becausecn,1−α ≥ χ2

dr ,1−α by construction.
Consider j ∈ IK ,0, Theorem 1 and (B.72) imply

ICSj,n =

nβ ′

j (
Σj)

−1βj/dβj
1/2

→d

τβj(π

∗

K )
′(Σj(π

∗

K ))
−1τβj(π

∗

K )/dβj
1/2

, (C.12)

where τβj(πK ) is the subvector of τ(π) associated with βj and
Σj(πK ) is a submatrix ofΣ(π) associatedwithβj, for both ofwhich
π1, . . . , πK−1 are evaluated at the limit of the true values. By As-
sumption 5, infπK∈ΠK Σj(πK ) > 0. Hence, ICSj,n = Op(1) and
ICSj,n < κn w.p.a.1. because κn → ∞. This proves

Pr(IK ,0 ⊆ IW ) → 1. (C.13)

It follows that any element that does not belong to IW must
be in the semi-strong or strong identification group. Therefore,βIk/∥

βIk∥ →p ωIk,0 andπk →p πIk,0 for k < K for any group spec-
ification I where IK = IW .

For a given group specification I, the quantile W1−α(h) with
ωIk = βIk/∥

βIk∥ and πIk = πIk converge in probability to the
quantile ofW1−α(h)withωIk = ωIk,0, πIk = πIk,0 under Assump-
tion CV2. This follows the same line of arguments for Theorem 3 of
Andrews andGuggenberger (2009b). Because Pr(IK ,0 ⊆ IW ) → 1,
w.p.a.1,

c1−α(h0) ≤cn,1−α + op(1). (C.14)

Combining it with (C.10), w.p.a.1, we have

W1−α(h0) ≤cn,1−α + op(1). (C.15)

Under the sequence of true parameters associated with h0 ∈ H ,
Theorem 2 shows thatWn(R)→d W(h0). Therefore,

Pr

Wn(R) ≤cn,1−α

≥ Pr(Wn(R)+ op(1) ≤ W1−α(h0) &
W1−α(h0) ≤cn,1−α + op(1))
= Pr(Wn(R)+ op(1) ≤ W1−α(h0))

− Pr(Wn(R)+ op(1) ≤ W1−α(h0) &
W1−α(h0) >cn,1−α + op(1))
≥ Pr(Wn(R)+ op(1) ≤ W1−α(h0))− Pr(W1−α(h0)

>cn,1−α + op(1))

→ 1 − α, (C.16)

where the convergence follows from Wn(R)→d W(h0), the Slut-
sky’s theorem, and (C.15). Therefore, for any h0 ∈ H , (C.8) holds
with CP−(h0) = 1 − α. The value of CP+(h) does not matter for
asymptotic size. We simply take CP+(h0) = 1.

To show infh∈H CP−(h) = 1 − α, we consider the case where
all parameters are strongly identified, e.g., βj,n → βj,0 ≠ 0 for all
j = 1, . . . , p. In this case,

κ−1
n ICSj,n =


κ−1
n n1/2 β ′

j (
Σj)

−1βj/dβ
1/2

→ ∞ (C.17)
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Table C.1
Size-adjusted power (×100) for H0 : β2 = 0 when β2n = n−1/2b2 , β1n = n−1/2b1 .

b2 = 0 b2 = 1 b2 = 2 b2 = 3 b2 = 4 b2 = 6 b2 = 8 b2 = 10

b1 Robust
0 5.4 10.7 26.3 50.1 73.3 97.2 99.9 100.0
1 5.2 9.5 23.7 46.2 70.9 97.2 100.0 100.0
2 4.8 7.9 21.0 44.3 70.4 97.3 100.0 100.0
3 4.5 7.1 20.3 44.6 71.6 97.6 100.0 100.0
4 4.6 7.2 21.4 46.5 73.7 97.9 100.0 100.0
6 5.0 9.1 25.4 51.5 77.1 98.3 100.0 100.0
8 5.4 10.2 27.1 53.0 77.7 98.3 100.0 100.0

10 5.5 10.4 27.2 53.0 77.8 98.3 100.0 100.0

b1 Standard
0 5.4 13.8 35.0 57.8 74.3 84.9 85.5 85.5
1 5.2 11.8 31.8 55.9 74.3 85.7 86.2 86.2
2 4.8 10.5 31.1 56.8 76.0 87.4 87.9 87.9
3 4.5 10.5 32.0 58.4 77.6 88.7 89.2 89.2
4 4.6 11.2 33.1 59.8 78.6 89.4 89.8 89.8
6 5.0 12.5 34.7 61.0 79.3 89.9 90.4 90.4
8 5.4 13.3 35.5 61.6 79.8 90.3 90.8 90.8

10 5.5 13.5 35.8 61.7 80.0 90.4 90.9 90.9

Note: For each (b1, b2), the rejection probabilities for the standard test are adjusted such that the robust test and
the standard test have the same rejection probabilities under the null. n = 500, π1,0 = 0.
because κn diverges to∞ slower than n1/2. Therefore, when all pa-
rameters are strongly identified, IW = ⊘ w.p.a.1, which implies
thatcn,1−α = χ2

dr ,1−α w.p.a.1 in this case. In addition, Theorem 2
shows that W(h0) ∼ χ2

dr in this case. Therefore, when all parame-
ters are strongly identified,

Pr

Wn(R) ≤cn,1−α → Pr(W(h0) ≤ χ2

dr ,1−α) = 1 − α. (C.18)

Let hL denote the limit of hn(λn) when all parameters are strongly
identified, i.e., β0,j ≠ 0 for all j in hL. (C.18) shows CP−(hL) =

CP+(hL) = 1−α. This completes the verification of Assumption C1
of ACG and concludes that the asymptotic size of the robust con-
fidence set is 1 − α. The proof for the test is the same except that
H,H(v),cn,1−α are replaced byH(v),H(v),cn,1−α(v), respectively,
and the coverage probability is replaced by the rejection probabil-
ity. The same arguments apply to robust tests and confidence sets
based on the t statistic. �
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