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1. Introduction

Economic theory and empirical studies often suggest nonlinear
relationships among economic variables. These relationships are
commonly specified in a parametric form involving nonlinear
component functions with unknown transformation parameters
and loading coefficients that measure the importance of each
nonlinear component. Generalizing the linear regression model,
these nonlinear regression models take the form

p
Y= gX.m) B +Z¢ + U, (1.1)
j=1

where 7; € R% is the unknown coefficient in the smooth nonlin-

ear function g;(-, 7;), and B; € RY and ¢ € R% are coefficients
of the nonlinear and linear regressors, respectively. In this model,
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| il determines the identification strength of ;. If dg, > 1, each
element of g;j(X;, 7r;) depends on the whole vector of 7rj such that
the identification of rjislostonly if ; = 0.Forj=1,...,p, 8 =0
yields p different sources of identification failures. In finite-sample
estimation, small || §;|| results in the weak identification of ;. In-
ference is non-standard because non/weak identification occurs in
multiple areas of the parameter space and the unknown parame-
ters may have mixed identification strength.

Several classes of nonlinear functions are popular in empirical
applications. One is the smooth transition autoregressive model
(STAR, see Granger and Terasvirta (1993) and Terasvirta (1994)),
where gj(x, ;) = ¢(x, mj)x and ¢(x, 7)) is the logistic function or
exponential function with unknown location parameter 7. Each
nonlinear function links two regimes. Multiple regime STAR model
and its applications to business cycles and real exchange rate
dynamics are studied by van Dijk and Franses (1999), McAleer
and Medeiros (2008), Bec et al. (2010) and Shintani et al. (2013),
among others. Another popular nonlinear function is the Box-Cox
transformation (Box and Cox (1964)), where gj(x, ;) = (X% —
1) /m;. Its application to the estimation of production function and
cost function are considered by Caves et al. (1980), Clark (1984),
and Giannakas et al. (2000), etc. In the neural network (see White
(1989)and Kuan and White (1994)), gj(x, ;) = ¢>(nj/x). where ¢ (-)
is the logistic function. Additional nonlinear transformations are
discussed in Hansen (1996).
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Mixed identification strength brings new challenges to hypoth-
esis testing and the construction of confidence sets. Take the test
Ho : B, = 0 for example. In addition to the non-identification of
7, under the null hypothesis, the nuisance parameters 7 for j =
1, ..., p— 1could be non-identified, weakly identified, or strongly
identified, depending on the unknown value of §;. In consequence,
this is a non-standard test that is different from the problem inves-
tigated in Davies (1977, 1987), Luukkonen et al. (1988), Andrews
and Ploberger (1994), and Hansen (1996), where some nuisance
parameters are not identified under the null. These classical results
apply to testing the null hypothesis Hy : 8 = (B},...,B,) =
0, where the nuisance parameter 7 = (m],.. .,yrl;)’ is non-
identified. When the interest is in a sub-vector of g8 rather than
the full vector, a uniformly valid test has not been studied in the
literature.

This paper studies uniform inference for sub-vectors or linear
functions of 6 = (B’, ¢’, ')’ that is robust to weak identification.
There is alarge literature on inference robust to weak identification
following Staiger and Stock (1997) and Stock and Wright (2000).
While many important results are developed for the full vector
of 6, sub-vector inference typically depends on projection or con-
centration out of strongly-identified nuisance parameters. In the
nonlinear regression model considered in this paper, the direction
of weak identification is known. Making use of this structure, we
propose robust and non-conservative tests and confidence sets for
sub-vectors of 6, allowing the nuisance parameters to be strongly
identified or weakly identified.

The paper derives a local limit theory for the least squares esti-
mator and the Wald statistic when g; forj = 1, ..., p converges to
0 at various rates or is bounded away from 0. Because the identifi-
cation strength is unknown, all convergence rates and all combina-
tions acrossj = 1, ..., p are considered for uniform inference. For
confidence set construction, Andrews and Cheng (2012) consider
a broad class of models where non-identification occurs at a sin-
gle point of the parameter space, including the model in (1.1) with
p = 1. The main challenge in this paper is the multiple sources
of non/weak identification when p > 1, as illustrated by the test
Hy : B, = 0. When the number of such crucial points increases
from one to multiple, this new asymptotic theory is required for
uniform inference with mixed identification strength.

The main technical innovation of the paper is the use of sequen-
tial arguments to develop the asymptotic theory for estimators and
test statistics in the presence of mixed identification strength. This
asymptotic theory allows for the coexistence of both inconsistent
estimators and consistent estimators with different rates of con-
vergence. To implement the sequential arguments, we first con-
centrate out the loading coefficients 8 and ¢, which are always
strongly identified, then group the nonlinear parameters r; based
on their identification strength. Starting from the most strongly
identified group to the most weakly identified group, the sequen-
tial procedure concentrates out one group at a time. The most
weakly identified group involves inconsistent estimators that are
functionals of chi-square processes. The rate of convergence of con-
sistent estimators are derived in a sequential manner. Finally, the
process is reversed by plugging the most weakly identified group to
other groups and the test statistics. Uniformly valid tests and confi-
dence sets are suggested based on these non-standard asymptotic
distributions.

The asymptotic theory in this paper complements the mixed-
rate results developed in Lee (2005, 2010), Radchenko (2008),
and Antoine and Renault (2012). In particular, a rotation akin
to that in Antoine and Renault (2012) is used to develop the
asymptotic distribution of the Wald statistic. The asymptotic
results also relate to those considered for near weak instruments
by Hahn and Kuersteiner (2002), Caner (2010), and Antoine and
Renault (2009). In addition, mixed-rate results have a long history

for non-stationary time series, such as Phillips and Park (1988),
Sims et al. (1990) and Kitamura and Phillips (1997), just to name
a few. Different from these papers, the present problem is tied to
loss of identification and it involves both inconsistent estimators
and consistent estimators with different rates of convergence. The
Wald statistic does not always have an asymptotic chi-square
distribution. Furthermore, a different proof strategy based on
sequential peeling is used for the identification problem at hand.

This paper contributes to the growing literature on robust in-
ference with weakly identified nuisance parameters. The projec-
tion method is studied in Dufour and Taamouti (2005, 2007).
Recent development with weakly identified nuisance parameters
include Chaudhuri and Zivot (2011), Andrews and Cheng (2012,
2013, 2014), Guggenberger et al. (2012), Andrews and Mikusheva
(2012, 2015) and Chen et al. (2014), among others. Kleibergen
(2014) considers efficient subset inference in linear instrumental
variable models. In a general nonlinear model, the geometric ap-
proach in Andrews and Mikusheva (2015) provides an informative
robust test.

Mixed identification strength also is considered by Andrews
and Guggenberger (2014a,b) in moment condition models. They
show that it is important to consider cases where the singular
values of the Jacobian drift to zero at different rates in order
to establish the uniform validity of an identification-robust
test. Andrews and Guggenberger (2014a,b) investigate the uniform
validity of some existing tests and proceed to propose three new
tests that are robust to both weak identification of a general
form and singular variance matrix of the moments. These papers
focus on full vector inference in a general moment condition
model, whereas the present paper studies sub-vector inference in
a nonlinear regression model. Thus, different types of robust tests
are used.

This paper also broadly relates to many other papers on non-
identification and weak identification. The weak instrument liter-
ature is related to the weak identification considered in the present
paper, e.g., see Nelson and Startz (1990), Dufour (1997), Staiger and
Stock (1997), Stock and Wright (2000), Kleibergen (2002, 2005),
Moreira (2003), Guggenberger and Smith (2005), Andrews et al.
(2006), Montiel Olea (2013) and Andrews (2013), and other pa-
pers referenced in Andrews and Stock (2007). Guerron-Quintana
et al. (2013), Andrews and Mikusheva (2012, 2015) and Qu (2014)
consider weak identification in DSGE models, an important is-
sue discussed in Schorfheide (2013) and Nelson and Startz (2007)
introduce the zero-information-limit condition, which applies to
the models considered in this paper. Ma and Nelson (2010) con-
sider tests based on linearization for nonlinear models under weak
identification. Sargan (1983), Phillips (1989), and Choi and Phillips
(1992) study simultaneous equations models where some param-
eters are unidentified. Shi and Phillips (2012) consider weak iden-
tification with integrated regressors.

The rest of the paper is organized as follows. Section 2
introduces the drifting sequences of true parameters used to
model mixed identification strength. Sections 3 and 4 develop the
asymptotic distributions of the least squares estimator and the
Wald and t statistic under mixed identification strength. Section 5
proposes a robust test based on this non-standard asymptotic
distribution. This robust test has correct asymptotic size and it is
as efficient as the standard test under strong identification. Proofs
are collected in the Appendix.

2. Uniformity and drifting sequences of distributions

We are interested in a sub-vector of 6, denoted by R, where
the matrix R has full rank d, < dy. The true value of 6 belongs to
a set ®*, which includes a neighborhood around g = 0. Thus, the
area where non/weak identification occurs is part of the parameter
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Fig. 1. Standard Two-Sided t Test: Finite-Sample Rejection Probability (x 100) for Hy : 81 = B1,0 (left) and Ho : B2 = Ba,0 (right).

space. For a fixed value of v, we test the null hypothesisHy : RO = v
using the test statistic T,,(R) and a critical value ¢, 1_ (v), where «
is the nominal size. For a robust test, the critical value ¢, 1_q (V)
may depend on both the sample size and the null value. A nominal
1 — o confidence set for R is CS;, = {v : T,(R) < cn1-—a(V)},
obtained by inverting tests.

Without knowing the true parameters, we aim to control
the maximum null rejection probability of a test over all true
parameters consistent with the null, called the finite-sample size
of a test. To this end, a reliable critical value should be based
on a uniform approximation of the distribution of T,,(R) over the
parameter space. However, standard asymptotic results developed
under strong identification fail to do so. To illustrate this uniformity
issue, Fig. 1 takes a simple model with p = 2 and plots the finite-
sample (n = 500) rejection probability of the standard two-sided
t test for different true values of 8; € R and 8, € R. The data
generating process (DGP) is specified below where the robust test
is introduced and more simulation results are reported. This figure
confirms that the standard approximation can be excellent for
some true parameters but poor for the rest. Furthermore, the area
where standard approximation fails does not disappear even for
large samples.

The lack of uniformity also applies to approximations by some
non-standard distributions. Use the simple model p = 2 for ex-
ample. To test the null hypothesis Hy : S, = 0, a non-standard
approximation is required due to the loss of identification of 7.
However, the finite-sample distribution also depends on the iden-
tification strength of 7, measured by || 81 ||. In consequence, a non-
standard distribution that works well when g is far from 0 may
work poorly when f; is close to 0. Fig. 1 demonstrates that, even
when the true value of B, is fixed at 0, the distribution of the t
statistics vary with the true value of 8. To obtain a valid test for
Hp : B, = 0,we should consider all possible identification strength
of 771 as well as the non-identification of ;.

To better approximate the finite-sample distribution of the test
statistic T, (R), we consider alternative asymptotic approximations
along drifting sequences of true parameters. Let §; , denote the
true value of g; for sample size n, forj = 1,...,p. Due to the
nonlinear structure of the model, n; is strongly identified only if
Bin — Bjo # 0. For the rest, the rate at which {|| 8 ,ll : n > 1}
converges to 0 models the identification strength of 77;. To achieve a
uniform approximation, we consider sequences of §; , that satisfy
one of the following conditions:

(i)Bin— 0.  n'2B, — bj € R,
(weak identification) or

(ii) Bin = 0, 02 Bjall > oo,

(semi-strong identification) or
(iii) Bj,n = PBjo # 0 (strong identification). (2.1)

Forj = 1,...,p, (i), (ii), or (iii) could be the case. In addition,
limy—oo 1Binll/IBynll € R U {£oo} for sequences in (ii) and
(iii).! Following the terminology in Andrews and Cheng (2012),
the sequences in (i), (ii), (iii) are associated with weak, semi-
strong, and strong identification of 7, respectively. The semi-
strong identification case provides an important link between the
two extreme cases and it is crucial for uniform results. In the rest of
the paper, we first develop asymptotic distributions of estimators
and test statistics along these drifting true parameters, under
which the p nonlinear regressors are categorized into different
identification groups. The grouping rule is specified in Section 3.1.
In particular, the semi-strong identification category is further
divided into different groups based on the rate at which ||8; .l
converges to 0. In practice, the group specification depends on
the true parameters and is unknown. We show that the class
of asymptotic approximations along all group specifications is
sufficiently large to yield a uniform approximation of the finite-
sample size of a test.

3. Asymptotic distributions of estimators

The observations {W; = (Y, X/, Z))" : t < n} are independent
and identically distributed (i.i.d.) or strictly stationary. We assume
U; has zero mean conditional on X; and Z;. The true value of 6
belongs to the set ®* = B] x --- x {8; x Z* x IT*, where

:B;‘ forj=1,...,pisaclosed setin R% that includes both zero
and non-zero values. Thus, the area where non/weak identification
occurs is part of the parameter space. The parameter space IT*
is compact. For any § € ©%*, the distribution of {W, : t < n}
is denoted by F, for the parameter y = (6,¢) € I, where
¢ € @* denotes an infinite-dimensional nuisance parameter that
characterizes the distribution. The space @* is a compact metric
space with a metric that induces weak convergence of bivariate
distribution (W;, Wi,.,,) foralli, m > 1.2 In parametric models, the
finite-dimensional parameter 6 fully specifies the distribution of
the data and ¢ does not exist. Let P, and [E,, denote the probability
and expectation under the distribution indexed by y.

1 without loss of generality, we assume f§; , # 0Vn for sequences in (ii) and (iii).

2 For example, the Prokhorov metric on probability measures induces weak
convergence. The compactness assumption is not restrictive following the
Prokhorov’s Theorem (Theorem 6.1 of Billingsley (1968)). If a set of probability
measures is tight, its closure is sequentially compact, which gives a convergent
subsequence and is equivalent to compact on a metric space.
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In addition to the drifting sequences {g;, : n > 1}, we allow
other parameters to change with the sample size, following the
approach in Andrews and Guggenberger (2009a, 2010). As such,
we not only obtain uniform results over 87 x --- X B, but also
over y € I'.Specifically, for sample size n, the true parameters are

Bo=(Bip - Byn) €RY,
7)) €R.and  y, = (64, dn)

6n = (B, ¢, ) € RY,
, (3.1)
Ty, = (711,”,
where 6, — 6y = (B, £5» ), ¥o — Yo € I', and the subscript
0 denotes the limit of true values.” We consider rescaling B; , as
in (2.1) rather than other parameters because the distributions are
non-standard only when some elements of 8 are close to 0.
The least squares sample criterion function is

2
1y ’ o
Qo) =5-> (Yt — D g ) B - ;c) : (32)

=1 j=1

The least squares estimator@n minimizes Q,(0) over 6 € ®, where
O =B1x---xByx2ZxII, Bjforj =1, ..., pareclosedintervals,
and Z and IT are compact sets. To focus on the identification issue
rather than the boundary effect, we assume all true values in ®*
are in the interior of ®. We derive asymptotic distributions along
sequences of true parameters {y, € I : n > 1}, assuming that the
following assumptions hold forany y € I'.

Let gj¢(x, ;) € R denote the £-th element of g;j(x, ;) € R,
Assumptions 1, 2, and 2* holds for all j and £.

Assumption 1. g, (x, ;) is twice continuously differentiable with
respect to (wrt) 7, Vr; € [II; and any x in its support. We
denote the first and second order derivatives of g (x, nj) Wrt 77
by gj?z (x, nj) and gj’;” (x, nj), respectively. For some non-stochastic
function Mj,(x) € R, lIgg" (x, 7)) — gi" X, Tl < Mje(®)|l7j —
ﬁJ”, V?Tj,fj S 17]

For time series data, the following assumption holds. Let dy
denote the dimensional of 8. Let C denote a generic finite constant.

Assumption 2. (i) {W, : t > 1} is a strictly stationary and strong
mixing sequence with mixing coefficients o, < Cm™" for some
r > dgq/(q — dy) and some q > dy > 2.

(ii) E, (Ut| F:—1) = 0 and IEy|U[|2q < C, where #;_; is the sigma
field to which X;, Z;, and U;_; are adapted.
2
(lll)Ey (SUPnjenj[gjé (X[a 7Tj) q+||gj7£ (Xt, 7Tj) ||2q+||gj77 (Xt’ 7Tj) ||2q]
+ Mje (X)*7) < C.

For i.i.d. data, the following assumption holds in place of

Assumption 2 for some § > 0. In the asymptotic results below,
we use Assumption 2 to represent both of them.

Assumption 2*. (i) {W; : t > 1} isi.i.d.

(i) E, (U¢lX, Z;) =0, ]]‘:;/|Ut|4+(S =<C.

(i) By (SUP ey, gje (Xe. T)* + 11gh (X, )14 + 1857 (Ko, )
48] + M (X)*%) < C.

Letg(xh 7T) - (g] (th n])/v e
tion of all nonlinear regressors.

, 8»(X¢, 7p)") denote the collec-

3 The metric dex on @* must satisfy: if y — yp, then (W, Wiy,,) under y
converges in distribution to (W;, Wj;n) under y,. Note that I” is a metric space with
metric dr (y1, y2) = (101 — 621 4 do= (¢4, ¢2), where y; = (6;, ¢)) € I" forj =1, 2.
The same metric is used in Andrews and Cheng (2012).

4 The constant 1/2 is added to simplify the asymptotic results presented below.

Assumption 3. YV, wy € IT and some ¢ > 0, P, ([g(X;, w)’, g(X;,
7o), Z{]Ja=0) <1—¢foranya # 0and 7 # my.

Assumptions 1 and 2 are standard regularity assumptions on
dependence, smoothness, and moment conditions. In subsequent
analysis, they are necessary to obtain the uniform law of large
numbers (ULLN) and the weak convergence of some empirical
processes. Assumption 3 is for the identification of  and ¢ and
the identification of w when g is different from 0. Assumption 3
requires no multi-collinearity between g(X;, ), g(X;, 7o), and Z;
for any # # mo, which rules out the case where g(X;, ) is a
linear in 7. These are standard assumptions in nonlinear regression
analysis.

3.1. Grouping rules and reparameterization

To derive asymptotic results with mixed identification strength,
we first group g1(X;, m1), ..., 8&(X;, mp) based on the order of
magnitude of ||Byall, ..., [|Bp.nll- The grouping rule is specified
based on || B; x|, but the grouping result applies to the jth regressor
and it categorizes the identification strength of 7r;. Without loss of
generality, we assume || By Il = O(l|BjnlDV) > j.

The grouping rule is as follows.

(i) All || B; n|l that have a non-zero limit are put in the first group. If
all || B n || have zero limits, the first group is empty.

(i) All || Bj.« || that are O(n~"/2) are put in the last group.

(iii) For those that converge to 0 but at a rate slower than n=1/?,

members in group k converge to 0 slower than members in group
k' for any k' > k and members in the same group converge to 0 at
the same rate.

Following this grouping rule, the first group is associated
with strong identification, the last group is associated with weak
identification, and the middle groups are associated with semi-
strong identification, ordered by the rate of convergence. Note
that the group index k is a property associated with the drifting
sequence {B;, : n > 1}. Therefore, the group index k does not
change with the sample size n.

A reparameterization follows the grouping rule. Suppose there
are K groups and By, .. ., ,kak are the elements in group k. Let

L=k, ... k) (3.3)

denote the indices for group k. For example, supposep = 7, 1., =
3, ,82,11 =1, /33,11 = n_l/4, ,84,71 = n—l/37 ,BS,n = 2n_1/37 ﬁG,n =
n~12 and B;, = n~'. The group indices are &4; = (1,2}, =
{3}, 43 = {4, 5}, 44 = {6, 7}, and the number of groups is K = 4.
In this simple example, By, . . ., ‘Bkl-"k are all scalars, but the general
results allow them to be vectors.

Following the group indices in (3.3), we use the subscript {j to
denote a sub-vector associated with group k, e.g.,

d
IBJlk = (ﬁlil, R 'Blzpk)/ e R%
and 7wy, = (n,il, el n,épk)’ e R, (3.4)

For notational simplicity, we use dj to denote the dimension of

B, For the drifting sequences, 8y, , denotes the true values of 8,

when the sample size is n and 8y, o denotes its limit. The grouping

rule implies that

between groups : [|By,, .l = o(ll By,.nll) fork' > k,

within group : I Bjnll =< 11 Banll
andk=1,...,K—1, (3.5)

forj € 4y
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where = represents convergence at the same rate.” In the presence
of weak identification, 8;, = 0(n~1/?) for k = K. If all regressors
are in the semi-strong or strong identification category, the second
line of (3.5) also applies to k = K.

Example. Consider a two-regressor model where Y, = B:g(X;,
1) + g (X;, m2) + Ur and By, B2 € R.

() If B1.n = Bro# 0and By — Bro # 0, 41 = {1, 2}.

(i) Ifn'/?By — by € R,n'?Byp — by €R, 11 =@, 4, = (1,2}
Here 41 = @ because both 8; , and 8, , have zero limits.

(iii) If B1n — 0,n"2B1al — 00, fon < Pin.d1 = @ and
I, =1{1,2}.

(iV)If B1.n — Bro #0and B — 0, 41 = {1}, £ = (2}.

(VI Bin = 0, fon — 0, [n"2B1y| — 00, fon/Bin — 0,41 =
@, 42 = {1}, 43 = {2}.

In cases (i)-(iii), 771 and 7, have the same identification strength.

In case (iv) and (v), the identification strength of 71 and m, is
mixed. O

3.2. Sequential peeling of the criterion function

The minimization of the sample criterion function Q, (¢) can
be viewed in a sequential way. With the grouping notations, the
model can be equivalently written as

K

Yo=Y &, 70) By, +Z¢ + Uy (36)
k=1

Define the first and second order derivatives as

dy xdx
gnk(xt, ﬂxk) = glk(Xt, 7T1k) eR kX gy and

a
oy,

Gy Ko, 3y)) = ———vec (g, (X;, 74,)") € Ry (37)

0]
a7y,

When analyzing m;,, we use m;- to denote elements of 7 in
previous groups and m,+ to denote elements of 77 in subsequent
groups, i.e.,
T = (., ,n;kq)/ and m+ = (nikﬂ,...,n}l()/. (3.8)
It follows that 7 = (n,;,, n}k, n,é+)’. The identification strength of
T, Ty, T+ 1S in a decreasing order by definition.

According to the grouping rule, 7y, is strongly identified. We
put all strongly identified elements of 7z in this group because they
can be analyzed together with 8 and ¢, which are also strongly
identified following Assumption 3. The semi-strongly identified
and weakly-identified elements of 7 are analyzed differently using
the sequential procedure proposed below. If no elements of 7 are
strongly identified, {1 = @ and m;, disappears.

We now describe the sequential procedure and introduce some
notations.

(i) For k = 1, conditional on 7+, minimizing Q,(f) =

Qn(ﬂ’ é"
7y,, y+) over B, ¢, and y, yields B(11), ¢ (i), and ﬂj\(nH).
The concentrated criterion function Q,(B8(w14), £ (T14),
Ty, (T14) , y+) is written as QS (71+) = QF(mwy,, wy+) because
T+ = (njlz, 7).

(ii) Continue the procedure for k = 2,...,K — 1 sequentially.
For each k, conditional on 7+, minimize Qy (7ry, , 7+) over my,

5 For two sequences of non-zero constants {a, : n > 1}and {b, : n > 1},
we say a, and b, converge to 0 at the same rate and write a, =< b, if and only if
lim infy o0 §2 # 0 and lim inf, . o "— #£0.

A.,?Th = 7T11(7T12,..

to obtain 7’1]1,< (71+). Concentrating out 7y, the criterion function
Qs (7, (y) » T+ ) is written as Qp (My+) = Qp (g, 1> Tikg1y+)-
(iii) For k = K, the criterion function is Q; (;r;, ) and its minimizer
ismy,.

(iv) Reverse the order of the procedure. Sequentlally plug in the
estimators from 7, to 7,,, we obtain 7, , = Ty _, (niK)

nl]() ,3 - :3(7[125 . 7’7?11()1 and ; =
;(nlza cee T’:l[()‘

This is an equivalent representation of the standard least
squares estimator and

0= (ﬂ g“’ ﬂl, .. .,J?J’lk)/. (3.9)
This sequential representation is necessary for deriving the
asymptotic results with mixed identification strength.

The asymptotic analysis starts with the uniform consistency of
the strongly identified parameters. Roughly speaking, the sample
criterion function Q,(6) uniformly converges to its population
counterpart Q (6), which identifies the true values of 8, ¢, y, but
does not depend on 74+ because 8;, , — 0 for k > 1. By an
extension of standard arguments for the consistency of extremum
estimators, we obtain the uniform consistency for the strongly
identified parameters.

Lemma 1 (Consistency for Strong Identification Groups). Suppose As-
sumptions 1-3 hold. Then, under y, — Yo,

sup (IIEGre+) — Lall + 1BGTi+) — Bal

+_ 7+
7, €l

+ ”ﬁl] (m1+) — nl],n”) -, 0.

To obtain consistency for the semi-strong identification groups,
we analyze the concentrated criterion function Qf (my,, y+)
sequentially for k = 2,...,K — 1. We show that, after proper
recentering and rescaling, Q; (74, , 7+ ) has a non-degenerate limit
that identifies the true value of 7y, . This limit is non-degenerate
in 7, but is degenerate in ,+. In consequence, parameters with
different identification strength are analyzed sequentially.

Before presenting asymptotic results for the semi-strong
identification groups, we first define some notations. Analogous to
7- and 7+, define

B = (Bl By ) and B = (Bl e By

which are associated with the coefficients before and after g, .
When analyzing Qy (m;,, mi+), the parameters that have been
concentrated out are collected in

Vi = (B¢ ) € RE.

The true value of ¥~ is denoted by - ,. Let @k- (7T gy Tt
denote the estimator of yy_ conditional on (rr;,, 74+ ). Following
the description of the sequential procedure, Qf(my,, m+) =

Qn(ll/k* (nlk» 7Tk+), Ty 7Tk*)'
Define

Ve = Bie o B Bots & T )
with /81, =0and B}, = 0.

(3.10)

(3.11)

(3.12)

Note that the difference between wk, and V- , the true value
of Y-, liesin B;, and By+. To derive the asymptotlc distribution of
the concentrated criterion function, Q, (Wk* (7T, Tht), gy, Tt ) 1S
centered around Qu (- ., 7y, T+). We set f) = O and ), =
0 in W,?-ﬂ so that the centering term Qn(w,f_ "
not depehd on (my,, T+ ). To make it clear, Qn(ljlfl(()—_n
abbreviated to Qn(lﬁ,?_m).

, Ty, Tit) does
> Ty 7TI<+) is
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To study the local expansion of the sample criterion function
around w,?_ » define a vector associated with the first order

derivative with respect to V- :

d(ﬂk,t(ﬁ’ wk*)
= (g(xta 7'[)/, Zt/7 w/]gjn (Xh Trl])a e w;(—lg”k—l (Xtv n1k71))/7
(3.13)
where
e = By /Byl and o = (@}, ..., o) (3.14)

are the angle parameters for each group. The angle parameters
w1, ..., wk—1 show up in (3.13) because the norm |8y, |l, ...,
| B,_, Il are taken out for renormalization in the results developed
below.

For any ,,, 7y, € I1,,, define a covariance matrix

(3.15)

where dy, ((my,, m+) abbreviates dy, (7w, w,-) when m- =
-0 and wy- = wy- o take the limits of the true valuesasn — oo.
Assumption 4 is similar to Assumption C4 in Andrews and Cheng
(2012).

Hk(nlka j?lk |T[k+) = Eyodlllk,f(n.lk’ nl(+)d1//k,t(%ll(5 T[k+)/

Assumption 4. Ay, (H(7y,, 7y, |m+)) > € for some ¢ > 0 for
any my, € Iy, m+ € I+, yo € I'fork=1,... K.

The following Lemma establishes consistency for the semi-
strong identification groups using the limit of Q (ry,, 7y+). This
Lemma is proved by induction. In step k, part (a) of the Lemma
is used to show the consistency in part (b) and the rate of
convergence in part (c). The latter two in turn are used to obtain
part (a) for step k4 1. Let dg, d;, and d,- denote the dimensions of

B, ¢,and By-.

Lemma 2 (Consistency for Semi-Strong Identification Groups by
Induction). Suppose Assumptions 1-4 hold. Then, under y, — o,
fork=2,...,K—1,

(a) the concentrated sample criterion function satisfies
1Bl (@5 s ) = QoY)

1 -1
—p _EALHI((T[I;(’ ﬂlk,Olnk+)/ [Hk(ﬂlka Ty |7Tk+)]

X Hy(mty,,, g, 0|7+ ) A,

where Ay = (ledkfv w;(,()’ 01X(d{+dk*))/ and Wgo = lim;— 0
Bun/ | Bay,nll is the angle parameter;

(b) the estimator of m,, satisfies

sup || Ty () — || =5 0;

Tt €M+
(c) the estimator of V- = (B', ¢/, nil, e zrj{k_l)/ satisfies

Bi-(Te+) — Bi-n

By (Tie+) — Bugn
Bl ™ B+ (Ty+) -0,

; - {n
B* (IBk*,n) (ﬁk* (+) — nl(*,n)

where
B*(Bi-) = diag{(la,, I1Bs,ll,---, lar,, 1By 1D} (3.16)

Comments. 1. Part (a) is obtained by a quadratic expansion of
Qu (Y- (4, T4+ ), Ty, it ) around the centering term Qn(l/f,f’, 2

This expansion relies on the consistency of @k— (7, i+ ), Which
follows from Lemma 1 and part (b) up to step k — 1.

2. This quadratic expansion has some non-standard features.
First, the expansion is around W,?ﬁ,., instead of the true value of

Y. The choice of 1//,?,’“ ensures that the left hand side of part (a) is
minimized by ft]k (7i+). The right hand side of part (a) is uniquely
minimized at 7y, = 7y, o by a matrix Cauchy-Schwarz inequality.
Therefore, the argmax continuous mapping theorem (Theorem
3.2.2 in van der Vaart and Wellner (1996)) gives consistency in
part (b). For models with only one point of identification failure,
Assumption C1 of Andrews and Cheng (2012) suggest centering
the criterion function at 8 = 0. The specification of w,?_m
generalizes this one-group strategy to cases where we have to
consider Sy p, ﬂfk, /3,‘3+ for each k, with 8- at the true value and
By, and B+ both at 0. The rate of convergence for the criterion
function is based on the group specific identification strength. A
similar rate is derived in Lemma 3.2 of Andrews and Cheng (2012)
when there is only one group. Second, in this quadratic expansion,
both the first and second order derivatives have mixed rate of
convergence. This is different from the one-group case in Andrews
and Cheng (2012). R

3. Part (c) provides the rate of convergence of - (7, (7+),
m+), which is crucial for deriving the asymptotic distribution in
part (a) for step k + 1. As k gets larger, the rate of convergence
| Bag.n || =1 also gets faster and this rate is improved in a sequential
manner.

To sum up, Lemma 2 shows that all parameters in the semi-
strong identification groups can be consistently estimated, uni-
formly over i € I, i.e.,

sup ”;T\K’ (7K) — 7TK*,n” —50. (3.17)

ni €l

3.3. Asymptotic distribution in the reparameterized model

Next we show the asymptotic distribution of the least squares
estimator under mixed identification strength. There are two
cases: (a) The last group involves weak identification, i.e.,
n'/2B,, — by, € Ri.(b) There are no weakly-identified parame-
ters and the last group only involves strong or semi-strong identifi-
cation. In case (a), Ty, cannot be consistently estimated because its
signal does not dominate the noise from the error. In case (b), we
apply the arguments in Lemma 2 to k = K and obtain consistency
of ﬁlK .

To characterize the non-standard distribution under weak
identification, let G(rr,, ) be a mean-zero Gaussian process with
covariance kernel

Ry, Tay) = By Uldy, o (T3 ) dyy o (Fr) (3.18)

where dy, (7, ) abbreviates dl/,K,[(mK_ 05 gy, Wg— o) defined in
(3.13) for k = K. Building on this Gaussian process, define

-1

T(y) = [HeGrag, ma )| [Hi (oo Ta.0)Suihay + Glrg )],
1

X () = —5r(m,{)/H:< (o, )T (),

my, = argmin x (), (3.19)

g ellg
where Sy = [Ogy xa, - lay > Oy x(d, +d ]’ selects B, out of .
We assume that each sample path of the non-central chi-square
process x (i, ) has a unique minimizer with probability one and
call this minimizer 7} . In the presence of weak identification,
Theorem 1 shows that x(m,,) appears in the limit of the
concentrated criterion function Q (7, ). In contrast to the right
hand of part (a) in Lemma 2, x (7, ) cannot identify the true value
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of my,. The localization parameter b;, represents the signal to
noise ratio. R

To define the joint distribution of 8 in case (b), define covariance
matrices

Y, w) =H Y(r, 0)2(r, ) H (7, 0), (3.20)

where

H(, w) = Eyydo, (1, 0)dg ¢ (77, @),

Q4(m, ) = E, Uldg (7, w)dg (7, ) with
do ¢ (7, @)

= (g(xts 7'[)/, Z[/» w;gﬂl (Xtv 7[11)5 LX) wl/(gﬂk_l (X[s nl,())/~ (321)

Assumption 5. (i) Anin(H(w, w)) > €, Anin(§29 (7, w)) > ¢, for
somee > 0Vm €I, |kl = l,and yp € I" fork =1, ..., K.

(ii) Each sample path of the stochastic process {x (g, ) :
T, } is minimized at a unique point with probability one.

Ty €

A similar condition is used in Assumption C6 of Andrews and
Cheng (2012) and some sufficient conditions are discussed.

Theorem 1 (Asymptotic Distribution of Estimators). Suppose As-
sumptions 1-5 hold. Then, under y, — yo,

(a) with weakly identified parameters: If n'/?g,, — b,, € R,

n (Qs (Ta) — QWi ) = X (Ta),

and
(n1/2B(,3K—,n)/£1ﬂ1<f - wl<’.n)> = (r(n;‘K) N SlelK) ,
Ty Ik
where wK’ = (ﬁ/v gl? ﬂj/ll’ AR T[J,lK_l),’
Sy = [Odkxd,(— g odkx(d{+dk_)]/, and B(Bx-) = diag{(]dﬂ+d[,
Tag, 1Bs 1l Tar, 1B '}

(b) without weakly identified parameters: If |n'/?B,, | — oo,
Lemma 2 applies to k = K and

n"2B(B,) (6 — 6,) —a N (0, £ (70, @),
where B(B) = diag{(1a,+4; » Tag, 181, s - Yoz, I1Bu ).

-~
[

Comments. 1. In case (a), @,f = (’,3/,; ,nll,...,ﬂIH)’ is
consistent but it has a non-standard asymptotic distribution. The
distribution involves the Gaussian process 7 (7rx ) and the inconsis-
tent estimator n;‘K, which minimizes the sample paths of the non-
central chi-squared process x (7, ) defined in (3.19). In addition,
the rate of convergence of 7y, . .., 7,_, are all slower thann="/2.

2. Without weakly identified parameters, the distribution
in part (b) is analogous to standard results except for the
rescaling matrix B(8,). Asymptotic distributions with mixed rate
of convergence also appear in Antoine and Renault (2012).

Example (Cont.).Intheexampley, = B1g1(X¢, m1)+ 8282 (X, m2)+
U;, consider the distribution of the least squares estimator when
Bin — 0, |n"2B1,| — oo, and n'/2B, , — b, € R. Following the
grouping rule, the group indices are 41 = @, I, = {1}, 435 = {2}
and the number of groups is K = 3. In this case, 8 = (81, B2)’ is
strongly identified, 74 is semi-strongly identified, and m; is weakly
identified.

The asymptotic results apply to this example as follows. First,
Lemma 1 implies that () is consistent uniformly over &7 =
(71, m2)'. Second, applying Lemma 2 with k = 2 and y¥,- =

(B, 1)’ yields that B(7r2) = B(71(2), m2) and 7 () are both

consistent uniformly over 7,. Third, apply Theorem 1(a) with K =
3and Jx = {2}, we obtain

nl/2 Cg _ ,Bn)

n1/2f31n (7T1 - 7T1,n) = (‘[(77,’2 3_[2* 2 2> s (3.22)

p2}
where S;b; = (0, by, 0)’, G(;r2), T(7r3), and &) are as defined in
(3.18) and (3.19) with

Hy (72, 2,0) = By dyy.c (71,0, 72)dyy ¢ (71,0, T2,0)

Q(my, 7)) = By Uldy, ¢ (1.0, T2)dy, (1.0, T2)',  where

Ayt (1,0, T2) = (81(Xe, 1,0), &2(Xe, 72), &y (X 771,0))/~ (3.23)

Note that the angle parameter does not show up in (3.23)
because (i) 81 is a scalar and (ii) By, instead of |B1,| is used for
renormalization on the left hand side of (3.22). O

4. Wald test and t test with mixed identification strength

Under drifting true parameters, we consider tests of the null
hypothesis Hy : R, = v, for some d, x dy matrix R of rank d,.
We establish the asymptotic distributions of the Wald statistic and
the t statistic, allowing Rf to involve parameters with different
identification strength. Both 6, and v, may change with n. This
is particularly useful for confidence set construction. For the test
Ho: By =0,v, =0.

Under strong identification, Theorem 1(b) implies that B~ ()
X (o, wo)B™1(Bo)  is the asymptotic covariance matrix of the least
squares estimator 6. Following the definition of X' (7, w) in (3.20),
we estimate X (77, w) by

-~

S =H'QyH", where
n
H=n"") dy (@ ®)dy( (7, @),
= (4.1)

n
Qo =n"") Uldy (7, D)y (7, D)

t=1

and ﬁ[ is the regression residual. The covariance estimator ¥ isnot
always consistent because the estimators of 7 and w are not always
consistent. Its asymptotic distribution is given in (4.20) and (4.21).
The standard definition of the Wald statistic for the null hypothesis
Hy : RO, = v, is

W,(R) = n (RO — v,) (RB'(BYZB'(B)R) ' (RO — v,). (42)
This is the standard Wald statistic typically used in empirical
work. Obviously a standard critical value from the chi-square
distribution is justified under strong identification. Below we show
that the Wald statistic has a different asymptotic distribution
under weak identification. Therefore, a different critical value
should be employed. We use the Wald statistic for presentation of
the main results. Analogous results hold for the t statistic.

Section 4.1 introduces an orthogonal rotation on the restriction
matrix R that separates restrictions on parameters of different
identification strength. Section 4.2 uses a rescaling matrix to deal
with the asymptotic singularity of the covariance matrix. This
section disassembles the Wald statistic into a sandwich form
where each part has a non-degenerate limit. The non-standard
asymptotic distribution of the test statistics are presented in
Section 4.3.
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4.1. Rotation

Under mixed identification strength, the estimator @ involves
both inconsistent estimators and consistent estimators with
different rates of convergence. It is essential to separate the
restrictions on different groups. This is achieved by an orthogonal
rotation of the restriction matrix R.

We first introduce the rotation matrix for the general case.
Partition the restriction matrix R into

R = [R() . R] D RK], (43)
where Ry is the submatrix of R associated with (8’, ¢’) and Ry is the
submatrix of R associated with 7y, fork = 1, ..., K. Thus, Ry is a
dr x (dg +d;) matrix and Ry isa d, x dmk matrix fork =1, ..., K.
Let
A=T[Ag: Ay :---: Al € 9(d,) (4.4)
be an orthogonal matrix that satisfies two conditions below:
AyRo 0 0 0 0
AlRo ALRy 0 0 0
AR=| © o g
A;(71R0 A;<71R1 A;<71RK—1 /0
A[(RO AKR] A](RKfl AKRK
is block lower triangular (4.5)
and
AyRo 0 0 0 0
ARy ARy O 0 0
MR=\ 9 o "~ o 0
0 0 0 Ay_{Rk-1 0
0 0 0 0 ARy
has full rank. (4.6)

This rotation matrix A can be obtained as follows. For k = K, let
dy = rank(Rx) and Ak be the d; x di matrix whose columns span
the column space of Rg. For k = K — 1, let dg_; = rank([Rx_1 :
Rk1) — rank(Rk) and Ax_; be a d, x di_, matrix such that the rows
of [Ax_1 : Ax] span the columns space of [Rx_1 : R¢]. Continue this

step sequentially tok = K — 2, ..., 1. In each step, let
di = rank[Ry : --- : R¢] — rank[Rgyq @ -+ -t Rg] (4.7)
and Ay be a d; x di matrix such that the columns of [Ay : - - - : Ag]

span the column space of [R, : --- : Rg]. Finally, the columns of
the d, x dj matrix Aq ensures that A is an orthogonal matrix. When
dmk = 0, A, disappears from the construction of A. The rotation is
similar to that used by Antoine and Renault (2012) for mixed-rate
distribution in different directions.

Following the rotation by A, the linear restrictions in R are
separated for parameters with different rates of convergence,
including possible inconsistent estimators in group K. In the
asymptotic distribution derived below, we show that the block
diagonal matrix R* appears in place of R asymptotically. Under the
null, the Wald statistic defined in (4.2) satisfies

Wy(R) = Wy (AR) = Wy (R") + &, (4.8)

where g, is explicitly defined as the difference between W, (A'R)
and W;(R*). In the proof of Theorem 2, we show that &, is
asymptotically negligible.® Therefore, only the block-diagonal

6 The analysis roughly goes as follows. Under the null, consider A’R(@ — 6,) in
W,(A'R).Fork=2,...,K,

ALR (9\_ 911) = ZA;<R(/ (ak* - Wk*,n) +Al/<RI< (ﬁlk - 7'[.lk.n) and

<k

elements remain asymptotically and the asymptotic distribution
of W, (R) is determined by that of W, (R*). Note that the term A]R,
does not disappear in R* as the other off diagonal terms because
7y, is the strong identification group and 7,, and (8’, ¢’) have the
same rate of convergence.

Example (Cont.). Here we use examples to illustrate the restriction
matrix R* in the simple modely; = B1g2(X;, 1) + B8 (Xe, w2) + U;.

(1)Hp : B, = 0.1In this case,R = (0, 1,0, 0) and R* = R.

(2)Hp : m; — mp, = 0. In this case, R = (0, 0, 1, —1). The real
restriction vector R* depends on the identification strength of ¢
and ;. (i) If both 771 and 7, are strongly identified, R* = R. (ii) If the
identification strength of ¢ is stronger such that ¢ is estimated
with a faster rate, R* = (0, 0, 0, —1). (iii) If both 71 and =, are
weakly identified, 71 and 7, again belong to the same group and
R* =R.

(3).Hp : B1+m = 0and 7y — 7, = 0.(i) If 71 is semi-strongly
identified (estimated at a rate slower than n='/2) and mr, is weakly

identified,
1 01 O «_ (0 0 1 0
R = (0 0 1 _1> and R* = (O 0 0 _1). (4.10)

(ii) If r1 and m, are both weakly identified,
(1.0 1 O «_ (0 0 1 O
R‘(o 0 1 —1) and R—(o 0 1 —1)' .

(4.11)

4.2. Rescaling matrix for asymptotic singularity of covariance matrix

Under the null, W,,(R*) can be written as
Wa(R") = n (6 — 6,) R”
x (RB'B)ZB'(BR) R (6 —6,) .

To deal with the asymptotic singularity of the covariance matrix,
we start with the diagonal matrix B(8) = diag{(ldﬂerZ , 1%1 184, 1,

(4.12)

e, ldﬂx,( : I8, 1)'}. To deal with the asymptotic singularity of

B(E), define a new diagonal matrix D*(B) as

D*(B) = diag{(14;. l|Bs, I1ar, 1B, 1 s - - -

B )"} € RA=4r, (4.13)
where dj, is defined in (4.7). Note that
R'(B) = D*(B)R'B~'(B)
AsRo 0 0 0 0
AlRoll Byl ARy 0 0 0
= 0 0 0 0 , (4.14)
0 0 0 A _ Ry O
0 0 o0 0 Al Ry

which is full rank for any B by construction. Therefore, with
probability approaching one,

Wi (R¥) = Wo(D*(B)RY) = pLVi ' ons (4.15)
Ve = Ve = 05 ([T — 7gn ) (49)

where the first equality holds because A'R is upper block-diagonal and the second
equality follows from Theorem 1. The remaining term A;(Rk (ﬁlk — ﬂ.zk.n) is the
counterpart in W, (R*).
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where
pn = n'2D*(B)R*(0 — 6)
= [D*(BRB™'(B)] [n'*B(B)(@ — 6,)]

= RI(B)&, with&, = n">B(B)(@ — 6,), (4.16)
and
Va = D*(B)R'B™'(B) B~ (B)RD*(B)

= RI(B)ZR'(B). (4.17)

An important implication of the calculation in (4.17) is that V,
is non-singular asymptotically and V- 1 appears as the rescaling
covariance matrix in (4.15). Below we derive the asymptotic

distribution of &, and ¥ under all identification scenarios, which
in turn yields the asymptotic distribution of the Wald statistic
following (4.15)-(4.17).

4.3. Non-standard distribution of the test statistic

First consider the re-centered and re-scaled parameter &,
defined in (4.16). Following the asymptotic distribution in
Theorem 1(a), define a function of the Gaussian process 7 (7x):

T(T’:l’() - SlelK
§(my) = ( ;
‘ H Th (”lk)H (”lk - 7711«0)
where g, () = ) 7 (7r) are the elements of 7 (7, ) associated
with By, . Under weak identification, we show &, = E(nj{K) in the

proof of Theorem 2.
To handle @ in the estimation of X (77, w), define

/
T (m Ik ) )

T (nlx ) ”

(4.18)

() = (a)/w, W) g e e e s Wg_100 (4.19)

For the strong and semi-strong identification groups, the angle
parameters are estimated consistently. This is the reason that
w0 shows up in (4.19) for k = 1,...,K — 1. For group K,
8 (5, )/ lTp (73 ) || characterizes the limit of the angle param-
eter.

In the proof of Theorem 2, we show that

(a) under weak identification, i.e., n'/28,, — by, € R,

&= E(m]), @ = o)),

o . (4.20)
Y= Z(ag-o 75 0;),  RY(B) = RT(Bo);

(b) without weak identification, i.e., [|[n/2g,, || — oo,

&n—>a& ~ N(0, X (7o, wo)), @ —p wo,

T, E(mo, @), R(B) =R (Bo). @20

All convergence holds jointly. Put the distributions in (4.20)
and (4.21) together with the decomposition in (4.15)-(4.17), the
asymptotic distribution of the Wald statistic is given below.

Theorem 2 (Wald Statistic with Mixed Identification Strength).
Suppose Assumptions 1-5 hold. Then, under y, — Yo,

(a) with weakly identified parameters: If n'/28,, — b,, € R,

Wa(R) = W(my, ),

W(my) = [RT(ﬁo)S(mK)]/ [RT(,BO)E(T[IK)RT(ﬂO),]_]
x [R'(Bo)E (my)] .

where X (ry, ) abbreviates X (- o, 7qy, (7T, ).

where

(b) without weakly identified parameters: If ||n'/?B,, | — oo,
Wi(R) =4 Xi .

Comments: 1. The asymptotic distribution of the Wald statistic not
only depends on the weak identification group through b,,, but

also depends on the rest of the group specification through R ().
In Rf(By), the rotation matrices Ay, . .., Ak are only specified up
to orthogonal rotation. The distribution ‘W(sm;, ) is invariant to
orthogonal rotations of each of these matrices.

2. Theorem 2 shows that the Wald statistic has a non-
standard asymptotic null distribution if some parameters are
weakly identified. Quantiles of this non-standard distribution can
be obtained by simulation. The Wald statistic has a chi-square
asymptotic null distribution as long as all parameters are at least
semi-strongly identified. Semi-strong identification affects the rate
of convergence of the estimators but not the asymptotic null
distribution of the Wald statistic. The Wald statistic for tests
with linear restrictions is self-corrected when all parameters are
consistently estimated. A similar self-correction result for the Wald
statistic also is obtained by Antoine and Renault (2012) when
parameters have mixed rates of convergence.

For single hypothesis Hy : R6,, = v, where d, = 1, we can also
use the ¢ statistic:

n'/? (R§ — Vn)
VRBI(B)ZB(B)R

This is the standard definition of the t statistic.

ta(R) = (4.22)

Corollary 1 (t Statistic with Mixed Identification Strength).
Suppose Assumptions 1-5 hold and d, = 1. Then, under y,, — o,

(a) with weakly identified parameters: If n'/2B,, — by, € R%,
RY(Bo)& (74, ) )
VR (Bo) £ (3, )RT (Bo)'”

(b) without weakly identified parameters: If |n'?B, | — oo,
ta(R) =>4 N(O, 1).

t(R) = T(n;"(), where 7 () =

Example (Cont.). Now we get back to the example y, =
B1&1 (X, m1) + Bag2(X¢, m2) 4+ U and consider the null hypothesis
Hp : B> = 0. The restriction matrix is R = R* = (0, 0, 0, 1). Under
the null, n'/ 2,32,n = b, = 0. The distribution of the Wald statistic
depends on the identification strength of ;.

(1) If [n'/2B, ,] — oo, which includes both strong and semi-
strong identification of 71, {x = {2} and b, = 0. In this case,
7y, = 7. The elements in 7 (77;) are specified as follows: & (773)
is as specified in (4.18) with elements of t(;;) given in (3.23),
S, =(0,1,0),b, =0.

(2) If nl/zﬂm — b] € R Ix = {1,2} and b = (b],bz)/ =
(by, 0)'. In this case, 7y, = 7. The elements in 7 (7) are specified
as follows: G(;r), t(;r), and 7* are as defined in (3.18) and (3.19)
with

Hy (r, 710) = Eyydyy ¢ (77)dy ¢ (00)',
Q(, 7) = E,yUldy, «(m)dy, «(7F2)',  where

dyy.e (1) = (@1(Xe, 71), ©2(Xe, 7)), (4.23)
the selector matrix is Sy, = I, and
Sy by, =b = (by,0), T () = T(w). O (4.24)

4.4. Asymptotic distribution of the wald statistic under the alternative

Next, we consider the asymptotic distribution of the Wald test
under local and fixed alternatives. Consider the null hypothesis:
Ho : RO, = v™!, where R9, # v™!. The null value v is allowed
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to depend on n. Similar to (4.15)-(4.17), we can show that in this
case

WaR) = (RT(B)& + 4,) [RIBYZRI(BY ]

x (RI(B)&n + An) + 0p(14411%) + 0p(1), (4.25)

where

An = 02D (B)A’ (RE, — o™ (4.26)

is the additional term that appears under the alternative.” The

asymptotic distribution of Rt (:3), &y, and ¥ are discussed in (4.20)
and (4.21). Local alternatives are defined by values of 8, such that
A, is stochastically bounded and non-degenerate. This depends on
the identification scenario and the restriction matrix R.

To be more specific on the appropriate local alternatives, we
discuss the following cases. First, consider R = Rgp, i.e, the
test is on B. In this case, A, = n'?(RgB, — v™"). Under the
local alternative A, — d € R%, the asymptotically distribu-
tion of the Wald statistic is given by that in Theorem 2(a) with
RY(Bo)& (74, ) replaced by RY(Bo)& () + d under weak identifi-
cation and the asymptotic distribution becomes a non-central Xjr

distribution with noncentrality parameter d'[R(8o) R (Bo)]~'d
without weak identification. Under the fixed alternative Rg B8, —
vl — dy # 0, the Wald statistic diverges to oo in probability
with or without weak identification.

Next, consider R = R, m;, i.e., the test is on ;. In this case,
An = nV2|B1||(Ryr; — v™"). The appropriate local alternative
varies with the identification strength of ;. (i) If n'2|Biall —
by € R#1, we have n'/2||8;|| = 0,(1). Under any local alternative
Ry71, — ™! — 0, the asymptotic distribution of the Wald statis-
tic is the same as that under the null R, 7r; = v™". Under the fixed
alternative R, 7wy — v™! — dy # 0, we have A, —, ||, () || do,
where 15, () is a subvector of 7 (7, ) associated with B;. In this
case, the Wald statistic has the same limit as in Theorem 2(a)
with RY(B0)& (1, ) replaced by RY(Bo)& (s,) + Il 75, () 1 do. (i)
If ||n]/2,61,,1|| — 00, the appropriate local alternative is defined
by n'/2||B1.al|(Remt1.n — V™) — d € R%1. In this case, A, —qd.
The asymptotic distribution of the Wald statistic is given by that
in Theorem 2(a) with RY(Bo)& (7ry, ) replaced by RT(Bo)& (y,) +
d under weak identification and the asymptotic distribution be-
comes a non-central Xj,. distribution with noncentrality parame-

ter d'[R"(Bo) ZR' (Bo)]~'d without weak identification. Under the
fixed alternative R, m; — v;’”” — dp # 0, the Wald statistic di-
verges to oo in probability with or without weak identification. To
sum up, the appropriate non-degenerate local alternative depend
on both the parameter of interest and the identification scenarios.

5. Robust inference

Next, we link the asymptotic distributions under all group
specifications to the asymptotic size of tests and confidence
sets, which approximates the finite-sample size of tests and
confidence sets, respectively. To this end, we first formally define
the asymptotic size. For fixed v, the asymptotic size of a test for the
null hypothesis: Hy : R, = v is

AsySz = lim sup |:

n—oo

sup P, (To(R) > cm_a(v))] , (5.1)
yel:Ro=v

which is the limsup of the finite-sample size of the test. A nominal
1 — « confidence set for RA is obtained by inverting the tests for

7 Details of the arguments are provided in the Appendices.

Hp : R6, = vy, i.e.,CSp = {vy : T(R) < ¢p.1—«(vn)}. The asymptotic
size of this confidence set is

AsySz = liminf in; Py (Ta(R) < Cn1—a(vn)), (5.2)

n—o00 ye

which is the lim inf of the finite-sample size of the confidence set.

5.1. Potential size distortion

Theorem 2 and Corollary 1 show that the asymptotic distribu-
tions of the Wald statistic and t statistic depend on

h= (4, by, wo, Y0), (5.3)

where { is the group specification, n'/?g,;, , — by, measures
the identification strength of group K, wyn — wy is the angle
parameter in group k, y, — o € I'. Let #, denote the collection
of all group specifications. Then the parameter space of h is

H={h= by, o) :deH,b, € RU{Eoo})™,
lwyll =1,y € T} (5.4)

When the null hypothesis is Hy : RO = v for fixed v, the value of
parameter h that is consistent with the null hypothesis is collected
in

H(v) = {h € H : Ry = v}. (5.5)
Along a sequence of true parameters {y, € I' n > 1}
associated with h, define
| W), if Theorem 2(a) holds,
Wwih) = {xﬁr, if Theorem 2(b) holds. (5.6)

For the ¢ test, define 7 (h) similarly to ‘W(h), with W () and Xjr
replaced by 7 () and N (0, 1), respectively.

For a standard Wald test, the 1 — o quantile of Xjr, denoted by
Xer_a, is used as the critical value. For a standard symmetric two

sided t test, the 1 — /2 quantile of N(0, 1), denoted by z;_,2, is
used as the critical value.

Assumption CV1. (i) The distribution function (df) of W(h) is
continuous at Xi,Fth € H.

(ii) The df function of |7 (h)| is continuous at z;_,,Vh € H.

Theorem 3 (Size Distortion of Standard Test and Confidence Set). Sup-
pose Assumptions 1-5 and CV1 hold. Then,

(a) the asymptotic size of a standard Wald test is supyp ) Pr(W(h) >

Xt?r,lfa);

(b) the asymptotic size of a standard Wald confidence set is
infpey Pr(w(h) < Xij_a);

(c) parts (a) and (b) apply to the symmetric two-sided t test and
confidence set by replacing ‘W(h) with 7 (h) and replacing xjmfa
with z, —a/2-

Comments. 1. The degree of size distortion for a standard test and
confidence set can be simulated using the formula in Theorem 3
and the distributions derived in Theorem 2 and Corollary 1.

2. The results in Theorem 3 combine the pointwise results in
Theorem 2 to obtain the uniform results of asymptotic size in
(5.1) and (5.2). Roughly speaking, the supremum or infimum in
the definition of the asymptotic size of a test or confidence set
is achieved along certain convergent subsequences and we show
that these limits can be represented by those of the sequences
indexed by h € H. The proof applies the generic results in Andrews
etal. (2011). If Assumption CV1 does not hold, the asymptotic size
can be replaced by bounds following the method in Andrews and
Guggenberger (2010) and Andrews et al. (2011).



X. Cheng / Journal of Econometrics 189 (2015) 207-228 217

5.2. Data-dependent non-standard critical values

To avoid size distortion, the ideal critical value to use is the 1—o«
quantile of ‘W(h) or 7 (h) in the presence of weak identification.
However, these distributions depend on the unknown parameter
h specified in (5.3). When constructing a robust critical value, the
general strategy is to plug in elements of h that can be consistently
estimated and take a supreme of the quantiles over the elements
of h that cannot be consistently estimated.

A special element of h is the group specification {. The group
specification { cannot be consistently estimated, however, an
identification-category-selection (ICS) method can significantly
reduce the number of group specifications relevant for robust
inference. This ICS procedure uses data to determine the weak
identification group J{g, leaving the semi-strong identification
groups J,,...,Jx—1 and the strong identification group J;
unspecified. This method is closely related to the generalized
moment selection method in Andrews and Soares (2010) and
the type 1 robust critical value in Andrews and Cheng (2012).
Different from these papers, the group specification 4 cannot be
fully determined by the ICS procedure. Nevertheless, this selection
yields a less conservative choice of the critical value than one
obtained by all possible group specifications without selection.

Forj=1,...,p,let

)2, (5.7)

1CSj.n = (nB(Z) "B/ dy,
where ij is a submatrix of ¥ corresponding to B;. Roughly
speaking, ICS;, = 0,(1) only if B, = O(n~'/?). We select the
weak identification group by

Iw =1 ICS; < kjn), (5.8)

where {«;, : n > 1} is a sequence of constants such that«; , — oo
and «j,/n'? — 0forj = 1,...,p.® For the null hypothesis
Hy : Br = 0, we putk inAfW without selection. The regressors
are selected one by one in J{y. If prior information is available for
a group structure, the selection statistic ICS; , can be modified to
take the form of a Wald statistic. Define

H={heH: ik =1Tw, oy =B /IIByl
and ,, = 7y for k < K}.° (5.9)

Let 'W;_,(h) denote the 1 — « quantile of ‘W (h) defined in (5.6). To
obtain a confidence set by inverting tests for Hy : R6,, = v, with
the Wald statistic, we suggest the plug-in critical value

Cn1-a = SUPp Wi—q(h).
heH

(5.10)

Because H is a subset ofH,'c\n,]_a is smaller than sup,cy Wi—q(h),
which is the least favorable critical value. To test the null
hypothesis Hy : Rf, = v for fixed v, the plug-in critical value
Cn.1— (v) is obtained by replacing H with H(v) = H N H(v). When
the t statistic is used for a symmetric two-sided test, the plug-in
critical values is constructed with ‘W;_, (h) replaced by the 1 — «

8 To see the requirement Kj,n/nV2 — 0, consider a strong identification case

where g, is bounded away from 0, say gj, = 1. In this case, 73\1 converges to
1 in probability so that ICS;, diverges to infinity at rate n'/2, To ensure ICSj  is
larger than «; , with probability approaching 1, we need «; , diverge at a rate slower
than n'/2, which leads to «;j,,/n'/? — 0. This upper bound for «; , is given by the
strong identification case, whereas the lower bound «; , — oo is given by the weak
identification case.

9 The asymptotic distribution ‘W (¢ ) does not depend on the true values of 8 and
¢ although both of them can be consistently estimated. Hence, we do not plug in the
estimators of 8 and ¢.

quantile of |7 (h)|. We call the test and confidence set based on this
plug-in critical value the robust test and robust confidence set.

In empirical implementation, the first step is to specify H
by the ICS method. Second, simulate ‘W;_,(h) for each h using
the asymptotic distribution in Theorem 4. Simulation methods
for a Gaussian processes are given in Hansen (1996). Finally,
obtain the plug-in critical value following (5.10). The difficulty
in computation depends on the number of nonlinear regressors
in the model as well the parameter of interest. In many cases,
‘W1_q(h) does not depend on 4 except for the weak identification
group Jg. The procedure becomes computation intensive as the
number of weakly-identified nonlinear regressors in group Jy
increases. For this reason, the current paper suggests a simple data-
dependent rule in (5.8). The smooth-transition method considered
by Andrews and Barwick (2012) and the type 2 robust critical
value of Andrews and Cheng (2012) can be applied as well but the
computation is more intensive.

The critical value in (5.10) treats the unknown parameter h by
reducing its parameter space from H to H and take the supremum
over H. Alternatively, one can consider the Bonferroni method,
which constructs a confidence set for h and takes the supremum
over this confidence set. McCloskey (2012) studies the Bonferroni
method in non-standard problems and its various refinements.

Assumption CV2. (i) W;_, (h) is uniformly continuous in wy, and
my fork=1,...,K—1onhe€H.

(ii) The df function of ‘W(h) is continuous at W;_,(h) forallh € H
and o € (0, 1/2).

(iii) Parts (a) and (b) hold with ‘W(h) replaced by |7 (h)|.
The following result holds for the robust test and confidence set
based on the Wald statistic and the t statistic.

Theorem 4 (Robust Test and Confidence Set). Suppose Assump-
tions 1-5 and Assumption CV2 hold. Then,

(a) the asymptotic size of the robust test of Hy : RO = v is «;
(b) the asymptotic size of the robust confidence set of RO is 1 — «.

Example (Cont.). Fig. 2 presents numerical results for robust tests
iny, = B1g21(X¢, m1) + B2g2(X¢, m3) + U;. The DGP is the same
as that for Fig. 1 so that the performance of the standard test and
the robust test can be compared. The test statistic is the symmetric
two-sided t statistic, coupled with the standard critical value in
Fig. 1 and the robust critical value in Fig. 2. The left panel of Fig. 2 is
obtained by drawing the t statistic and the ICS statistic from their
asymptotic distributions.'® Both figures demonstrate how the null
rejection probability of the test changes with the true values of 8;
and ;.

Table 1 focuses on the test Hy : 8, = 0 and shows the null
rejection probability as a function of by and the true value of 74,
denoted by 1 o. Under the null, the true value of 7, is irrelevant.

In this example, the nonlinear functions are the exponential
smooth transition function. Specifically, x = (x1, X2, X3)’, g1(x, 71)
= x1(1 — exp(—c(x3 — 11)?)), g2(x, 13) = x2(1 — exp(—c(x3 —
7,)%)). The marginal effect of x; and x, are both nonlinear,
depending on the transition variable x;. The marginal distribution
of X1¢, Xa¢, X3¢, Uy are all standard normal and independent across
observations. The correlation coefficient between X;; and Xy, is
0.5, both are uncorrelated with X3;. The error U; is independent
of all other variables. The true values of 8, and B, are b;/\/n

10 The asymptotic distribution of the t statistic and the ICS statistic are given
in Corollary 1 and (C.12) in the Appendix B. The ICS statistics are non-centered t
statistics. Thus, their asymptotic distributions follow the same arguments for the t
statistic.
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Fig. 2. Robust Test: Asymptotic (left) and Finite-Sample (right, n = 500) Rejection Probability (x 100) for Hy : B2 = f2.0. Notes: DGP is the same as that for Fig. 1, nominal
size o = 5%; the true values of 8; and B, are B9 = b1/+/500 and B, = b2/+/500 in the right panel.

Table 1
Rejection Probability (x100) of Tests for Hy : B = 0 versus Hp : B2 # 0.
10 by Robust Standard
n =200 n = 500 n = 1000 n =200 n =500 n = 1000
0 0 62 5.4 53 21.0 19.9 19.7
1 6.1 5.2 5.0 20.0 19.1 18.8
2 57 4.8 45 18.0 16.9 16.7
3 54 4.5 4.1 16.5 154 15.2
4 55 4.6 4.2 15.9 14.8 14.6
6 6.0 5.0 4.6 15.8 14.8 14.5
8 6.3 5.4 5.2 15.8 14.7 145
10 6.3 5.5 5.3 15.8 14.7 144
0.3 0 6.4 5.5 5.4 213 199 19.4
1 6.1 5.3 5.1 20.3 19.1 18.5
2 58 4.8 45 18.1 16.9 16.4
3 5.5 4.5 4.2 16.8 153 15.1
4 56 4.6 4.3 16.3 14.8 14.5
6 63 5.1 49 16.2 14.8 144
8 65 5.5 5.3 16.2 14.8 145
10 64 55 5.4 16.2 14.7 144
0.5 0 6.2 5.6 5.2 20.9 204 19.5
1 6.0 5.3 49 19.8 19.3 18.6
2 56 4.8 44 17.9 17.2 16.5
3 5.4 4.6 4.1 16.5 15.7 149
4 55 4.7 43 16.0 15.1 144
6 6.0 5.2 4.9 16.0 15.0 14.3
8 63 5.6 5.3 16.0 15.1 144
10 6.2 5.6 5.4 15.9 15.0 143
0.8 0 6.1 5.5 5.1 211 20.0 19.5
1 538 5.2 49 20.0 18.9 18.5
2 55 4.8 43 17.9 16.8 16.4
3 53 46 4.1 16.5 15.4 14.9
4 54 4.7 43 16.0 149 145
6 59 5.3 5.0 16.0 15.0 144
8 6.2 5.7 5.4 16.1 15.0 144
10 6.1 5.7 5.5 16.1 14.9 14.3
max 6.5 5.7 55 21.3 204 19.7

and b, /+/n, respectively, for finite-sample results with sample size
n.'" The true values of m; and m, are both O for Figs. 1 and 2.
The optimization parameter space for 7r; and 7, are both [—1, 1].
The constant c is 10. In all cases, 50,000 simulation repetitions are
conducted.

The right panel of Fig. 2 is comparable to the right panel of Fig. 1
with the standard test replaced by the robust test. The left panel

L™ simulations, the grids for by and b, are {1, 2, 3, 4, 5, 6, 8, 10, 20, 30}. Only
results for by and b, up to 10 are reported because they are stable for larger values
of by and b.

of Fig. 2 is an asymptotic version of the right panel obtained by
drawing the t statistic and the ICS statistic from their asymptotic
distributions. To demonstrate the effect of the ICS procedure for
different values of b; and b, we consider 719 = O and 39 = 0
when constructing the robust critical value in Fig. 2.

In Fig. 2, the ICS procedure is based on a data-dependent choice
of the tuning parameter. First, the ICS statistic ICS; , and ICS; ,
are constructed following (5.7). They are compared with tuning
parameters 1, = cqlog(log(n)) and k,, = c;log(log(n)) to
determine the weak identification set {y . The constants c; and ¢,
are tuned by the asymptotic null rejection probabilities through
simulation. Replacing the ¢ statistic and the ICS statistic by draws
from their asymptotic distributions, we simulate the null rejection



X. Cheng / Journal of Econometrics 189 (2015) 207-228 219

probability of the robust test for any values of ¢; and c,. For large
values of ¢; and c,, the ICS procedure favors the least favorable
critical value, which controls the maximum rejection probability
but tends to under reject for some values of b; and b,. In the
simulation for Fig. 2, we choose c¢; and ¢, that minimize the
average probability of under rejection, provided that the maximum
rejection probability is no larger than « + &, where ¢ is a tolerance
level close to 0. We set « = 5% and ¢ = 0.1% in the simulation.
The same constants ¢; and ¢, are used in the two panels of Fig. 2.
These choices minimize the non-similarity of the test over b; and
b, while controlling the maximum rejection probability.

Table 1 focuses on the test Hy : 8, = 0 under different values
of by and mq 0. Under the null, the data does not depend on ;.
Because b, = 0, the ICS procedure only compares ICS; , with
k1n = c1log(log(n)). Similar to Fig. 2, we choose ¢; to minimize
the average rate of under rejection over by and 71 o, provided that
the maximum null rejection probability is controlled. When the
sample size is 500, the maximum rejection probability of robust
test is 5.7% and the minimum rejection probability of the robust
test is 4.5%.

Table C.1in the Appendix C reports the power of the robust and
standard tests under the local alternative 8., = n~'/?b, for b, from
1 to 10. As in Table 1, we also consider b; from 1 to 10. Because
the robust test and the standard test have different projection
probability under the null, we adjust the rejection probability
of the standard test by a constant such that the null rejection
probability of the robust test and the standard test are the same for
any (bq, by). Table C.1 shows that the robust test is less powerful
than the standard test but the power loss is mild and it mainly
occurs for small values of b,. O

Tests proposed in this paper are robust to identification loss in
multiple areas of the parameters space. It is particularly useful for
sub-vector inference when the nuisance parameters have mixed
identification strength. The ICS procedure and the plug-in method
improve the efficiency of the robust test, however, the test does not
have optimality properties, such as those discussed in Elliott et al.
(2012). Besides the Wald statistic and the ¢ statistic, one can derive
the asymptotic distributions of the QLR and LM statistics along
drifting parameters and simulate their robust critical values in a
similar fashion. Andrews and Cheng (2012) study the QLR statistic
when identification loss occurs at one point. With multiple points
of non-identification in this paper, the sequential peeling method
developed in Section 3.2 is useful to analyze the constrained
sample criterion function. We leave these alternative robust tests
and their comparison for future work.

Appendix

The continuous mapping theorem is abbreviated to CMT. Left
hand side and right hand are abbreviated to lhs and rhs. With
probability approaching one is written as w.p.a.1.

Appendix A. Auxiliary lemmas

Let s(W, 0) denote a function of 6 that is differentiable on the
support of W. Its derivative is denoted by sq (W, 6). The following
lemmas apply to strictly stationary strong mixing time series under
Assumption 2 or i.i.d. data under Assumption 2 *.

Lemma A.1 (Uniform Law of Large Numbers). Suppose (i)
Assumptions 2(i) or Assumption 2* (i) holds, (i) E, (Supgeg lIS(W¢,
)" +supgep l1se (We, 8)||'T%) < CVy e I' forsome C < oo and
8 > 0, and (iii) © is compact. Then, (i) supgee In7" Y 1, S(W¢, 6)—
E,,s(W;, 0)|| —p 0 under any sequence of true parameters {y, € I" :
n> 1yand y, — yo € I'. (ii) E,;s(W,, 0) is uniformly continuous
on®OVyyerI.

Lemma A.2 (Stochastic Equicontinuity). (a) Suppose

(i) Assumption 2(i) holds, (ii) Ey, (supycg lIS(W¢, )17 + supyce lISo
W, 0|9 < CVy € T for some C < oo and q as in Assump-
tion 2(i). Then, vys(8) = n~V23"7_ (s(W¢, 0) — E,, s(W¢, 0)) is
stochastically equicontinuous over 6 € © under {y,} € I (yo),
ie, V¢ > Oandn > 0,35 > O such that limsup,_ P
[Sups, g,co:10,-8,11<s [1VaS(B1) — vs(@2) || > n] < eVyp € I

(b) Part (a) holds if Assumption 2(i) is replaced by Assump-
tion 2* (i) and q is replaced by 2 + § for some 6 > 0.

Lemma A.3 (Central Limit Theorem). (a) Suppose (i) Assumption 2(i)
holds, (ii) E,[s(Wp)|? < CVy e I forsome C < oo and q
as in Assumption 2(i). Then, n=Y2 31 (s(W;) — E,,s(W;)) =4
N(O, Vs(yo)) under {yn} € I'(W)¥yo € I', where Vi(yy) =
Y o0 COUY (S(W), sS(We ).

(b) Part (a) holds if Assumption 2(i) is replaced by Assump-
tion 2* (i) and q is replaced by 2 + § for some § > 0.

Lemmas A.1-A.3 are proved in Lemmas 11.3-11.5 in the
supplemental appendix of Andrews and Cheng (2013) for the
strong mixing arrays. Lemma A.1 automatically extends to the i.i.d.
data. Lemma A.2 holds for the i.i.d. data with q replaced by 2 + §
by applying stochastic equicontinuity results for the type II class
(Lipschitz functions) in Andrews (1994). Lemma A.3 extends to i.i.d.
data with g replaced by 2 + § following the Lyapunov central limit
theorem for row-wise i.i.d. triangular arrays.

Appendix B. Proofs for asymptotic distributions of estimators
and test statistics

Proof of Lemma 1. The sample least squares criterion function is
n
Qu(0) =n""'Y UX(6)/2, where
t=1

U;0) = Y, —gXe, m)'B _Zt/f
= U + g, nn)/,Bn +Z[/Cn —g(Xe, 77)/,3 - Z[/C

Applying Lemma A.1, Q,(#) converges to a non-random function
Q(0) uniformly over 6 € ©. The population criterion function is

Q) = E,U?/2
+Ey, [gXe, 70) Bo + 20 — X, 1) B — Z¢ P /2 (B.2)

and Q (9) is continuousin® on @. Note that 8;, o # 0and By, 0 =0
for k > 1 by the group specification.
Define

v =)
Let ¥, denote the true value of i for sample size n and {,, — V.
We write the criterion function Q (9) as Q (¥, 7y, |71+ ) and analyze
Q(Y, my, |m+) as a function of (, 7,,) for a fixed value of 74+
Now we show that for any mq+, Q(¥, 7y, |my+) is uniquely
minimized by (v, 7y, 0). Note that By, ¢ = 0 for k > 1 by the

grouping rule. Therefore, Q (Yo, 74, 0l71+) = Ey Uf/z. For fixed
TT1+,

Q(W! nl] |7T1+) - Q(w()v nl1,0|ﬂ]+)

(B.1)

(B.3)

=Ey, |:g11 Xe, 03,.0) Bayo — &1y K, 7a,) Bay

K 2
- Zglk(x[,mkmk+z;<;o—¢)} /2. (B4)

k>1
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By Assumption 3,

Py ([8Xe, ), g(Xe, m0)', Z{]a = 0) < 1 (B.5)

forany a # 0 and w # mg. Because By, o # 0, the rhs of (B.4) is
greater than O for any ry, # 7y, 0. Whenmy, = my, o,(B.5)implies
that the rhs of (B.4) is greater than 0 unless 8 = g and { = &.

Given that (i) the population criterion function Q (Y, 7y, |my+)
is uniquely minimized by (Yo, 7y, o) forany my+, (i) Q (¥, 7y, |7r1+)
is continuous, and (iii) the parameter spaces are all compact, we
have the identification uniqueness condition

{Q(W7 .7T11|7T1+) - Q(WOs 7.[11,0|7T1+)} >0
(B.6)

uniformly over 7+, following Lemma 8.1 in the supplemental
appendix of Andrews and Cheng (2012). Finally, (B.6) implies the
uniform consistency of ¥ (7y+) and 7;(7r4+) by Lemma 3.1 of
Andrews and Cheng (2012). This Lemma extends the consistency
proof for extremum estimators to uniform consistency. O

inf inf
T+ €M+ g//ElI/,nll el

Proof of Lemma 2. The proof is by induction. Step 1 shows that

Lemma 2(b) and (c) hold for k = 1. Step 2 shows that, if

Lemma 2(b) and (c) hold for k — 1, Lemma 2(a)-(c) hold for k.
Step 1. For k = 1, Lemma 2(b) is

sup |71, Gri+) — 74y0]| =5 0, (B.7)

T+ €+

which follows from Lemma 1. For k = 1, Lemma 2(c) becomes

By, (T14) = Buyn

1Bl ™| By | =50 (B38)
¢ —&n

uniformly over 7;+, which follows from Lemma 1, 8y, n» — By;,0 #
0,and By, n — By,0=0fork > 1.

Step 2. Suppose Lemma 2 holds for k — 1. For ¢- =
(ﬁ’,g/,njw...,n;kq)’, the result for k — 1 yields uniform

consistency of - (my,, me+) over (my,, m+). Now we show
Lemma 2 holds for k.

Fork=1,...,K, g, (X;, my,) is the collection of regressors in
group k. The model can be equivalently written as

K
Yt = glk (Xt’ nlk)/ﬂlk + Zt/é‘ + U[' (Bg)
k=1
Define the first and second order derivatives as
) dixdz,
& Xe, myy) = — 84, (X;, mg,) €R k and
Bnlk
bl didr, )xdy
gﬂ?‘[k(xtv nlk) = 7vec(g7rk(xtv nlk)/) € R( ! lk)x i ) (B10)

oy,
where dy is the dimension of gy, (X;,m,,) and B;,. The angle

parameters are

ok = By /1By )l and - = (@), ..., @) (B.11)
Let D}/,k (0) and bek (0) denote the first and second order partial

derivatives of Qu(6) wrt -, where & = (y_, 7; , 7,,)". The first

order derivative wrt ¥, = (8', ¢/, ”J,h’ el ﬂikil) is
Dy, (6)
gX;, )
Zt

n
— _n*‘1 Z gﬂ] (Xt7 nl])/ﬂll U[(@)
t=1 .

Tk—1 (Xta n1k71)/ﬁ1k71

g(va ﬂ)
Z

8y Xe, 7w4) @111 By, | U, ()

n
= —n71 E
t=1

Tk—1 (Xtv nlk_1)/a)k7‘1 ”ﬂlk_] ”
n

= —Tl_1 Z B(,Bk_)dllfk,[(e)ut (9)9

t=1

(B.12)

where by definition

dwk,t(nv wk’)
= (g(Xh 77)/, Z;; w/lgm (Xh n11)5 s wl/(—‘]gﬂk_l (Xtv nlk_1))/5
and
B(Ai-) = diagl(layra, Ty, 18,1 Tany 1Bs 1)) (B13)
The second order derivative wrt ¥, = (8', ¢/, njﬁ, R ”fzk,l),
is
n
D}, (6) = B(Bi-) (n—1 Y dyy (T, o )y, o (T, o)
t=1
n
— n! Zd*w,t(@)ut(@)> B(B.-), where
=1
Od,gxdﬁ Od,gxd{ 8]?_](Xta 9)
dy, (0) = nod(xdﬁ / 0d, xd; ﬂ?[d{xdﬂ (B.14)
81 Xe, 0) Oapxd, 874 (Xe, 0)
and by definition
81 (X, 0)
181,117 8y Ko, 700,) O 0
— 0 0 e RdﬁXd"
0 0 1Bu i I8y Koy )
(B.15)
and
8 (X, 0)
h](Xtv 0) 0 0
= 0 0 € R >4 where
0 0 hm1(X,0),
_ a ,
he(Xe €) = 181,17 (), ® I, ) 5 vec(gn, (X, 71,))
¢/ omy,
= 181" (@} @ lay, ) &on, (X 71,). (8.16)
Recall that
WI?—’H = (IBk’,na ,nga :B]?-H {ﬂ’ ”k*,n)a
where ﬂfk = 0and /3,?+ =0. (B.17)

Weset 87 = 0and B, = 0in ;) so that the criterion function
Qn(6) does not depend on (7, , m+) when evaluated at 1//,?_411.
Hence, we write Qu (¥ ) = Qu(¥- ., Tay,, Tt

Part (a). Because fb\kf (g, m+) minimizes Q, (Y-, my,, Tit)
for any (m,,, m+), a mean-value expansion of the first order
condition (FOC) around v, = wf_.n implies that

0 = D}, (Vi (Tyy. Tt T et
1 0
= D}//k(‘(//kfyna TCyps nl{+)

+ D3, (U o T ) (D G ) =), (BA8)
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for some Iﬁlj,yn between .Wk— (g, , nk+-) ar.ld 1//,?,_’n (w,:‘,,n may
depend on 7, and .+ ). This expansion implies that

- 0
Wk— (ﬂlka nk+) - 1ﬁk—,n

-1
=~ [P, Wy e )| DLW ). (B9)

We first study the first-order partial derivative in (B.19).
Normalize it by [B(ﬂkin)]_1 ,

[B(Be-)] ™' DY, (W2 . sy i)

n
—1
= —n E dv,k’t(ﬂ'k—,n, Ty Tkt wk‘,n)
t=1

X [8eXe, o) Ban + Gt Koo Tt ) Bt n + U] -
We normalize both sides of (B.20) by || 84,,n || ~! and obtain
_ -1
1Bsal™ ([BBe ] DY W o 0 7))

where

(B.20)

—p — P(y,, 7y 07T+ )0k 0,
Dy (14, gy 0l7T0+)

= Eyodllfk,t(nk’,o’ nlw T+, wkf,())gk (X[a nlk,o)/' (B21)

The convergence follows from (i) applying LemmaA.1ton™! Y7 _,
dl[/k,t(nkf,m nlkv T+, wk*,n) gk(Xh 7le,n)/ and n71 Z?:l dlﬂk,[
(k= s Tayes Tt s = )i+ Xe, T+ ), (1) applying Lemmas A2
and A.3 to the empirical process n="/2 Y"1, dy, (T, Ty Tt
o U, (i) Bt = o(Byeal), and (iv) [n'2By 0l —
0o. Note that &y (my,, g, 0lmi+) = Hy(my,, 74, 0l7k+)Sk, Where
Hy (g, , 74, 0|74+ is defined in (3.15) and Sy is a selector matrix
such that gx(X;, 7y, 0) = Sidy,.t (T~ 0, gy, Wik, Ok 0)-

Next we study the second-order partial derivative in (B.19). Pre-
and post-multiply D3, (6) by [B(Bi-)1~",

[B(Bi-)1~' D3, (O)[B(B-)] ™"
=n"" Y dy(Wdy (1) =0t Yy (0)U6).  (B22)
t=1 t=1

Lemma A.1 implies uniform convergence of the first term on the
rhs. Now we show the second term on the rhs is negligible, i.e.,

n
'y (O)U0) = 0p(1) atd = (Y .7y ) (B23)
t=1

uniformly over (7, , 7+), where 1//,’(*, , is between {}k, (7T g, Tt
and 1//,?_ .+ Given the definition of d;;k,[(e), it is sufficient to show
thatforj=1,...,k—1,

n
N g (X, ) + & (X ) 1UO) /11 Byl = 0p(1)  (B.24)

t=1
uniformly over (my,,m+) when evaluated at 6§ = (1//;‘i 0

!/ ! / ’
Ty nk+) :
Next we show (B.24) holds forj = 1,...,k— 1.Forj < k — 1

and £ = k — 1, we have the following results:

Brcall _ o1 ana
syl
~ -1
”ﬂlg,ﬂ” _ ﬂlj,n(nlk’ nkJr) - ﬂlj,n + ﬂlj,n
Bijn (g, Tet) I1Bag.nll 1Bag.nll

= 0,(1), (B.25)

because (i) the coefficients in 8 are grouped in a decreasing order
and (ii) Lemma 2(c) applies to £ = k — 1. Given (B.25), we have

1 Bagnll
IBJlj

for any By between Bijn and Exj,n(ﬂlk, m+). For £ = k — 1, the
error U, (6) can be written as

u:(0) = [Ut + 8- X, 7o ) Be-n + 8e KXo Tgy.0) Bagon
+ 8o+ X, ot ) Bet
— [8e- KXo, 71-) Be- + 8e(Xe, 71,) B,
+ g+ (Xe, 7T£+)ﬂe+] ;

where the subscript £~ and £ represent the groups before and
after group £. Using this expansion, write

=0,(1) (B.26)

(B.27)

Y g (X U0/ | By | = (A + B + G) ”fé“i”
t=1 1

where |85,/ || By|| = 0,(1) following (B.26) and A;, B;, G; are
specified as follows. The first term is

, (B.28)

n
n71/2 Z g?Tj (Xt7 nlj)ut
t=1

A= (B.29)
’ /2| By, nll
The second term is
. Be-
- n
Bi=n"Y gn(Xe. w58 Xe, o )
t=1 ”ﬂlz,n”
. Be-
—n Y g (X )8 (K )
L 1Byl
n
=1 g (X 1) (8- KXo e )
t=1
!/ IBZ_ n
— & X, mp-) :
7)) 1Bl
n
- , Be— — Be-,
=Y g (X )8 (K ) (B.30)
t=1 ”ﬂlg,n”
The third term is
. B
— Wn
Cj =n ! Zgﬂj(xtv nlj)gl(xtv 7715,11)/ £
t=1 ”,Blg,n”
. B
_n71 Zgnj(xtanlj)gl(xt» nlg)/ -
po | By nll
1 i / ﬂli*,n
A0 g (X, 7480 Ko et )
=1 1 Big.nll
-1 . ’ ﬂ@*
—n Zgnj (Xt, ﬂxj)gﬁ X, mwet) . (B.31)
t=1 “ﬂlz,n”
Now we show Aj,B;, G = o0p,(1). Note that the rate of

convergence in Lemma 2(c) holds when - (7, , 7,+) is replaced
by 1,. Hence, it also holds for any - between @kf (g, m+) and
n. First, Aj = 0,(1) because (i) n™="2 Y"1, g, (Xe, 714)Ur = 0,(1)
uniformly over 7, by Lemmas A.2 and A.3 and (ii) n'21 By, nll —
o0o. Second, Bj = 0,,(1) because ||ﬂ1j,n||(7f1j(mk, Te+) — 705;,0) and

Elj (g 7Tkt ) =By n both converge to O faster than || 8, || forj < £
by Lemma 2(c). Third, G; = 0,(1) holds because (i) for ¥~ between
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Vi Ty ) and Y, Boon/ 1Bunll = @00, B, /IBsonll —
@¢,0, Be+ ./ I1Baynll = 0, Be+/11By,nll — 0 and (ii) the sample
means are O, (1) by the ULLN in Lemma A.1. Similarly, (B.28) holds
when &xj X, ﬂxj) is replaced by gy j(X¢, Ty;)- This proves (B.24),
which in turn implies (B.23).

It follows from (B.22) and (B.23) that, for 0 = (¢, 7y, 7,.)',
where - is between V- (7y» me+) and ¥, the normalized
second order partial derivative satisfies

[B(Bi-)1~' D3, (O)[B(Bi-)]~" —p Hi(tyy, 7y Imi+),  where (B.32)

Hy(my,, milmr) = Eyydy, (T 0, a5 Tiet, Ok 0)
X dy, ¢ (T 0, Ty s Wi, W0’

Next we show
[B(Bi-.)] ™" [B(B)] = p gy -+, -

where d,- is the number of elements in -, so that rescaling
by B(B-) and by B(B- ,) is asymptotically equivalent. For j =
1,...,k—1,

(B.33)

Byt ] 1’
|1y
By Graeme) = Bual Wsrall (534)
”ﬂlk_],n” ”ﬁlj,n“

by applying Lemma 2(c) to k— 1. This implies thatforj = 1, ..., k—
1, ||ﬁlj ||/||ﬁlj.n|| — 1for any ﬁlj between ﬂxj (g, T+ ) and ﬁxj,n.
which further implies the desired result in (B.33).

Normalizing the equality in (B.19), we obtain

BB ) (Vi (o mie) — 02 ,)

-1
= —{ (BB 17D}, W o 7 i) [B B )]

x {[BBe ] DY W 7 ) | (B.35)
Applying (B.21), (B.32), and (B.33) to (B.35) yields
1Beall " (BB ) (i Gra 7e) = v ,))
—>p [I‘Ik(TCJzk,7T41k|7'5k+)]71 D (T gy, Ty 0|70t ) 0k0
= [HeGry, )] HiGray, 7y ol et ) A (B.36)

uniformly over (7, , 7+ ), where Ay = Sywy o by definition.

We expand the criterion function Qg (my,, m+) = Qn(fﬁ\kf
(g, Tet), 7, Te+) around (1#,?,.”, g, met+) for fixed (g, , mpe+).
Note that Q"(WI?*,n) = Q”(wl?*,n’ 7k, T+ ) does not depend on

(g, m+) and we have shown the consistency of {}k, (7T gy, Tt )-
By a second order Taylor expansion,

Qs (3, M) — Qu(W )
= Dl‘/,r (w]?—’nv Tk, nl(*)/ (@k* (nlks 7'[,(+) - ‘//llc)_,n)
1 /~ /
+ ) (1//k* (g, Tet) — wl?‘,n) Dlz//;r (W’Tj,"’ e, et )
X (@k— (7T gy, Tpet) — Iﬂz?an)
= (D‘]//k* (1//13_’“, Tk, 7Tk+)/ [B(lgk*,n)]_])
% (B(en) (D G ) = v ,))
-l —~ 7
+ 5 <B(,Bk*,n) (wIF (n1k7 Tt) — Ii[/I?*n>)

x (BB 171D, (W o ) (BB )] )
X (B(ﬂk—,n) (@k— (7T ) — lﬁ,?—,n))

for some 1//,’:5’“ between %r (g, me+) and 1//,?,’11. Applying the
results for the first and second order derivatives in (B.21) and (B.32)
and the results for B(B8y- ) (Yy- (g, i+ ) — 1//1?,"1) in (B.35) and
(B.36), we obtain the desired result in part (a).

Part (b). Following the definitions of Hy(ry, , 7, |74+ ) and A, =
[O1xd,- » a),/w, le(dﬁdk—)]/' the matrix Cauchy-Schwarz inequality
(see Tripathi, 1999) implies that A Hy(my,, 7y, olme+) [H(Ty,,
Ty, |nk+)]‘1Hk(n1k, 7g,.,0l7k+ ) Ak is uniquely maximized at y, =
74,,0 Provided that for a # 0 and some ¢ > 0,

(B.37)

P, ( [8e(Xe, 71.0) wro0] @
+ I:gk7 (va 7Tk*!0)/, gk(X[a ﬂlk)/s 8kt (Xtv 7Tk+)/,

74,8, (e i o) | b =0)

<1-¢ (B.38)

for my, # my,0. The desired result in (B.38) is implied by
Assumption 3 and the grouping rule. Thus, part (b) follows from
part(a), the argmax CMT (Theorem 3.2.2 in van der Vaart and
Wellner (1996)), and 7y, — 7y, 0 a5 — 00.

Part (c). Part (c) follows from (B.36), the consistency in part (b),
and replacing ﬂfk’n, which is a vector of zeros, with 8, , in the
centering term.

Proof of Theorem 1. Part (a). For k = K, normalizing (B.20) by
n'/? yields

-1
n'? [B(Bx-n)] Dy, (Wg- e )

n
=-—n"! Z dyye.t (Tx— ns 7Tk, O~ 1) &k Ke» 7 .n) (nl/zﬂk,n)

t=1

n
12
—nY g Uedyy t (Tx— ny Tk, @Ok 1)
=1

= — [Hk (k. 7x.0)Sk bk + G(rrk) | (B.39)

following Lemmas A.1-A.3 and n'/2 8¢, — by. For k = K, (B.32)
yields

[B(B)]~"'D, (O)[B(Bx-)]~" = Hg (., )

forany 0 = (., )’ where v is between \ZK— (k) and 1//,?’”.
In addition, (B.33) gives

(B.40)

[B(Bi—m)] ™ [B(Bk—)1—>p lisd -+, — - (B41)
For k = K, normalizing (B.35) by n'/2, we obtain
n2B(Be ) (Ve () = v2- )
= — (BB )1 7'D} i o BB 1)
x 2 [B(Be- )]~ DY, (W0- . 7) (B.42)

for ¥¢_ = between @K— () and ‘ﬁz?,n- Combining (B.39)-(B.42)
yields

n'?B(Byx- ) (@x— (i) — w,?f,,,) = (), Wwhere

() = [Hy (g, k)]~ [Hi (., 7k.0)Skbk + G(rx)] . (BA43)
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Applying (B.37) to k = K and normalizing the criterion function
by n, we obtain

n(Qiem - Qe )
= (2D}, W ) B
x (0B ) (TG — w2 ,))
5 (0BG (B om0 — i)
x (1B 1703, W mOB (A1)
x (2B (P (m0 = -, ) (B.44)
= _% [H (i, 70.0)Skbic + Gie (i) [Hic (e, 7)1

x [Hk (., 7k.0)Sk bk + Gk () |

following (B.39), (B.40), and (B.43). Because 7k minimizes Q (),
applying the argmax CMT, we obtain

Tk = 7y (B.45)
Because @,(7 (x) = @Kﬂ the CMT and (B.43) yield
”1/23(51<-,n) (@K— - 1/’K-,n)
= n"2B(Bc ) (Ve G — V- )
- nl/zB(ﬂK*,n) (Wl(’,n - 1/’,2—,”)
= 1 (wg) — Skbx. (B.46)

where Sy by is a vector of the same size as Y- but with the sub-
vector of Bk replaced by by and the rest replaced by zeros. The
convergence in (B.45) and (B.46) hold jointly because there are
both functionals of the same underlying stochastic processes. This
completes the proof. O

Part (b). When ||n'/2Bg || — oo, Lemma 2 applies to k = K
with .+ omitted in the expression. This provides (i) consistency
of § and (ii) the rate of convergence in Lemma 2(c) with k = K.

Define the first and second order derivatives of Q,(6) wrt 6 by

—n™" Y "B(B)dy.( (. 0)Uy (), with

=1
B(B) = diag{(14y+d; > 1ar, 1Bl -+

Dy (6) =

La, 1Bs ')

doc (7, )
= (g(xts 72'),, Zt/ a)/]gfn (Xtv T[l])a ey w;(gﬂl( (X[a 7[1,())/ (B47)
and
n
D;(®) = B(p) (nl D o @)y (. )
t=1
n
-ty U[(e)d;,t(9)> B(B), where (B.48)
t=1
Oapxds  Oapxd, g Xe, 0)
dj (@)= Odxdy  Odrxa;  Odxds
8k X, 0) Odyxd, 85" (X, 0)

and &g (X;, 0) and 8¢ (X;, 6) follow the definitions in (B.15) and
(B.16).

Because # minimizes Q,(#), a mean-value expansion of the FOC
around 6, implies that

6 — 6, =—[D2(6")] ' D}(6n) (B.49)
for some 6* between @ and O,.
Evaluate D} () at 6, and normalize it by n'/2 [B(8,)] ",
n'/? [B(Ba)] ™" Dy (6n) —a N(0, 24 (o, wp)). (B.50)
Pre- and post-multiply D3 (6) by [B(8)]™ ",
n
BB 'D; (OB =n"" Zdei,t(ﬂ,w)do,t(ﬂ, w)
t=1
n
—n7' Y U0, 0), (B.51)
t=1
where we have
n
n' > UO)d;(6) = 0p(1) ath =67, (B.52)

for any 6* between 6 and 0, following the arguments used to show
(B.23). It follows that

[B(8)1™'D;(6)[B(B)]™" —p H (70, o) (B.53)
for any 6 between 6 and On. In addition, Lemma 2(c) for k = K
implies that [B(8,)]~'B(8*) —p I for B* between 8 and B,.

Putting together results for the first and second order deriva-
tives, we obtain

n'/2B(B,) (6 —

— (IB(B)1'D2 (") [B(B)1Y) ™" n2 [B(Bn)] ™" D} (6r)

—a N(0, H(ro, o) ™' 24 (770, wo)H (170, w0) ™). (B.54)
Proof of Theorem 2. Under the null hypothesis Hy : R6,, = vy, the
Wald statistic W, (R) is
Wa(R) = n[R (9 — 6,)] [RB'(B)Z,B"' (BR] '

x [R(6 —6n)] (B.55)
We first show
en = Wa(R) — Wy (R*) = 0,(1). (B.56)

Because D* (75) is non-singular with w.p.a.1, W,(R) = W, (D* (:5)
A'R) w.p.a.1. Decompose the rotated matrix A'R as
AR=R"+¢}, (B.57)

where ¢f = A'R — R* is defined implicitly. Using this decomposi-
tion, we have

—~ o 11
W, (D*(B)AR) = o' [RZ‘HR/] 3. where

7 =n'"D*(B) (R* + &}) @ — 6n)

R =D*(B) (R*+e5)B™" ®. (B.58)
Following the definition of RT (8) in (4.14),
R=R'(B) + D*(B)e;B' (), (B.59)

where D*(ﬂ)e;D ‘(,8) = 0,(1) because (i) the matrix A;R; in &} is

multiplied by ||,3,<|| ||/3,|| 1 which is 0p(1) forj < k and (ii) AR is
upper block diagonal by construction. To study p, write it as

7 = pn + n'/*D* (B)ei 6,
pn = n2D* (B)R* @y — 6,).

—6,), where

(B.60)
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The second term n'/2D* (ﬁ)e; 6, —6,) = 0p(1) because its compo-
nents are n'/?(| e[| (A}R;) (TTy; — 74;.n) forj < k.By Theorem 1, the
convergence rate of 77, is n'/2|| 8, |, which is an order of magni-

tude larger than n'/2 ||7§1k || forj < k.Putting together (B.58)-(B.60),
we have

Wa(R) = Wa(D* (B)AR)
= (pn+ 0, (D) [(RIB) + 0p(1)) Z (R'(B) + 0,(D) |
X (pn +0p(D).

= P;V{]Pn + én
= Wn(R*) + &n,

where ¢, is implicitly defined by the third equality. Comparing the
second and the third lines of (B.61), &, = 0p,(1) provided that (i)
pn = 0,(1), (ii) £, = 0,(1), and (jii) Amin(Z; ") > 0 w.pa.l,
given that R (ﬁ) has full rank by construction. We investigate these
terms below.

We first consider weak identification in part (a). Following
(4.16), pp = R1(B)E&,, where &, = n'/>B(8)(6 — 6,). To derive the
asymptotic distribution of &, define a stochastic process indexed
by 7, :

-1

(B.61)

12p(R. Do — Y-

n B(fzx ﬁ(m,()) (WK (Ta) = Y »n) ) (B.62)
n"2 [Bay Gruo) | (o = syn)

Applying (B.33)with k = K, we have B(Bx— (774, ) [B(Bx—.n)] ! =

IdK]d+ 0p(1). Applying it together with Theorem 1(a) and the CMT
yields

Enl(mryy) = (

&= E(Ty) = E(T],), (B.63)
where

T (g, ) — Skbk
E(ﬂlk) B (H TBk (T[lK)H (ﬂlK - nlk-0)> (B.64)

To study @ = (@), ..., wy), note that fork = 1,...,K —
1 1Bl ™ (By, — Ban) = 0p(1) following Lemma 2(c). This im-

plies By, = Buen + 1Bynllop(1) and By, I/l Brnll = 14 0p(1).
Hence,

~ ﬂlk
W = —=<
Byl
— ﬂlk - ,Blk,n ||/€1;kn|| ﬁlk,n ||/3/{;<,n|| » Op0- (865)
1Buenll  MByll Byl 118yl
For the last group,
~ 123 122 o (773,
wx =1 By /I Byl = ——— (B.66)
lzpe Ty )|
by Theorem 1(a) and the CMT. Thus,
~ g (7T5,)
o= o(r]) = w0, -, Wk-10, Kif . (B.67)
”TﬂK (an)”

The covariance matrix is > = [H(7, ®)]"' 2, @)[HF, ®)]".
Define

Hir, ) =n""Y " dp (1, 0)dg (7, ).

(B.68)
t=1
Lemma A.1 implies that
H(r, ) =, H(r, o) (B.69)

uniformly over (77, w), which implies that

H = H(mg- o, an, w(nj{K)). (B.70)

For the other term, we have

n
Qo ="' ) Uldy (7. @)dy (7. D)

t=1

n
-1 2 ~ o~ ~ o~
'Y Uy (7. D)dg (7, B)
t=1
K

n
T 21171 Z Ut (Z (glk (Xf’ j-[lk,n)/ﬂlk,n
t=1

k=1

- glk (Xt’ ﬁlk)/glk) ) de,t(ﬁ’ a)de,[(ﬁ’ ’(D)/

n K
+ n_l Z (Z (glk (Xt’ nlk,n)/ﬂl,(,n

t=1 k=1

2
- glk (Xt’ ﬁlk),ﬁlk) ) d@,t(ﬁv a)de,t(ﬁ’ ZO\),

= Q¢(7k- 0, 7Ty, 0(7y,)),  Where 2, (7, ®)

= By, [Uldp (0, 0)dy (7, )] . (B.71)

Thus,

3= Do, 75, 0(1)) = Z (77,) - (B.72)

Putting together (B.63) and (B.72), we obtain eg = 0,(1) by
(B.61). Furthermore, these results hold jointly. Therefore,

Wi(R) = oV on + 0p(1)
= R'B&) [RAERB)] " (R B)&n) + 0p(1)
= (R'(Bo)E(1})) [R' (o) Z (xR (Bo)] ™"
x (RM(BoIE()) .

where the first equality follows from (B.61) and &, = 0,(1), the
second equality follows from the definition of p, and V,, and the
convergence follows from the joint convergence of those in (B.63)
and (B.72).

Next, we prove part (b). Theorem 1(b) implies that

&n (k) —>a§ ~ N(0, (0, o))

because Bfl(’EK(an))B(ﬁIK,,,) = 1g + 0,(1) when group K in-
volves semi-strong or strong identification. In addition, the angle
parameters and the covariance matrix satisfy

(B.73)

(B.74)

®—pwo = (W ..., 0, and ) —p X (70, wo) (B.75)

following the arguments in (B.65) for k = K and the consistency of
71, in this case. Therefore, &, = 0,(1) following the calculation in
(B.61). Furthermore, the Wald statistic satisfies

WaR) =4 [RT(B0)E] [RT(Bo) ZoRT (Bo)' ] ™" [RT(B0)E]
~ X (B.76)

because R'(By) and X, both have full rank. This completes the
proof. O

Corollary 1. follows directly from Theorem 2.
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Proof to show (4.25). When testing the null hypothesis Hy
RO, = v™!!, the Wald statistic W, (R) can be written as

Wh(R) =n [R (é— 9,,) + (Rgn _ vgull)]’
« [ B2 R

x [R(O — 6n) + (RO — v™)]. (B.77)
Because D* (/E)A/ is a full rank matrix w.p.a.1, we have
Wa(R) = n[D*(B)AR (6 — 6,) + D*(B)A" (R, — ”“”)]
[D*GDARB*Wﬁ)Z'B*Vﬂ)RADWﬁ)]
D*(,B)AR(\ —I—D*(,B)A/ (RQ null)]
= @+ 40 [RER] @+ 40, (B.78)
where
Ay = 02D (B)A’ (RG, — v™™") (B.79)

and p and R are defined in (B.58). In the proof of Theorem 2, we
have shown

B = pn+0p(1) = R'(B)& + 0, (1),
where &, = n'>B(B)(® — 6,) (B.80)
and

R=R'(B) + 0,(1) (B.81)

in all identification scenarios. In addition, p, = 0,(1) and R =
0,(1) in all cases. This shows the results in (4.25). O

Appendix C. Proofs for the asymptotic size

Proof of Theorem 3. In the original model in (1.1), the DGP is
determined by B = (B,...,B,), ¢, m = (7q,...,7,), and §.
Because the identification strength of 7; is determined by || 5;||, we
parameterize B as (|| B;ll, 0j), where

o; = Bi/lIBjll. (C.1)

Without loss of generality, define o; = 1% if B; = 0. Note that this

angle parameter oj is different from w; defined above. The former
is based on the original parameterization B; whereas the latter is
based on the grouping result ;31]..

The DGP is determined by
r=Bills - Bl o e 0y, 8 T @) € A (C2)
Define a function
hn(An)
= (n"?1B1all, - 021 Bonll, gUlBrall, - -, 1BpnlD), ) ,(C3)
where
18l
gl - 1B 1) = (—f
llBell j#e

_ (I|ﬂ1 I Al 1Byl 1Byl ) (C4)

B2 Bl BT 1Bl
where [|B;l|/1l Bell € Ry U {oo} and, by definition, |8/l Bell = oo
if B = 0.In (C.3), g(IB1.nll5 .- -, I Bp,nll) determines the relative

convergence rate, which is needed to specify the grouping result {.
Recall that in (5.3), we define

h = (4, by, wo, o) = (4, by, wo, Bo, Lo, o, Po)- (C5)

It is a one-to-one transformation between h and the limit of h;,,(A,,)
because (4, by, , wo) determines the limit of n'/2||8y 4|, ..., n!/?
| Bp.nll and g(ll B1nll, - - -, I Bp,nll), and vice versa.

For any sequences of true parameters {1, : n > 1} for which the
limit of h,(A,) can be parameterized as h € H, Theorem 2 shows
that W, (R) —4 W(h).In other words, the limit distribution is index
by h. (For convenience, if h,(A,) converges to a limit that can be
reparameterized as h € H, below we also say h,(A,) — h.) Under
Assumption CV1, W(h) is continuous at Xi,1—th € H.Therefore,
the coverage probability satisfies

CPa(An) = Pr(Wo(R) < x4 1_o) = Pr(W(h) < xa 1_,)
= CP(h). (C.6)

The generic results in ACG provide a link between the
pointwise results in (C.6) along {A, : n > 1} and the uniform
results for the asymptotic size in (5.1) and (5.2). Take the asymp-
totic size for a confidence set for an example. The arguments in
ACG roughly go as follows. By the definition of inf and liminf,
liminf,_, o infiep CPR(A) = limy_, o0 CPp, (Ap,) for some subse-
quence {p,} of {n}. Theorems 2.1 and 2.2 of ACG prove that, for a
confidence set, AsySz = infycy CP(h) if “For any subsequence {p,}
of {n} and any sequence {A,, € A : n > 1} for which h,,(4;,) —
h € H, CPp, (Ap,) — CP(h) for some CP(h) € [0, 1].” (This is As-
sumption B of ACG with CP(h) = CP~(h) = CP*(h).) This state-
ment is analogous to (C.6), except that (C.6) is established for the
full sequences {A, : n > 1}, rather than for the subsequences {4, }.
The full sequence result in (C.6) verifies Assumptions B1 and C1
in ACG. Lemma 2.1 of ACG shows that a missing link between the
subsequence result and the full sequence result is Assumption B2
of ACG, which states “For any subsequence {p,} of {n} and any se-
quence {A,, : n > 1} for which h,, (1,,) — h € H, there exists
a sequence {A; € A : n > 1} such that h,(A;} — h € H and
A* = Ap,, Vn > 1.” In other words, Assumption B2 of ACG en-
sures that the set of subsequence limits along h,, (A, ) is the same
as the set of full sequence limits along h,, (1), the latter of which
is given in (C.6). Therefore, it remains to verify Assumption B2 of
ACG to complete the proof.

Now we verify Assumption B2 of ACG, “For any subsequence
{pn} of {n} and any sequence {A,, : n > 1} for which hp, (Ap,) —
h € H, there exists a sequence {A; € A : n > 1} such that
ha(A3} — h € Hand A} = Ap,,Vn > 1.” To be clear with
the notation, let us call thlS new full sequence {A; : k > 1}. We
aim to construct a full sequence {A;} which is the same as A,
for k = p, and h(A}) — hask — oo. The question is how
to fill in the sequence for k ;é pn for any n This new sequence
A = (Ilﬂi‘kll, ||/3*k|| ‘71 K ~-~7<7 & dp) k> 1)
is defined as follows @i )Vk = pn defme A,*; = Ap, € A, and (ii)
Vk € (pna pn—H)- define

N Pull Bjpy
- a ; — hi; €R
=1 ) VPl Byl =
1B b) /Pl Bipnl > 0.
forj=1,...,p,
O'jfk = Oj.pn
forj=1,....p, & =&, T = Tpys G = Gpy- (C.7)

For k between p, and pn1, || Bkl for the weak identification group

is constructed in a way such that the limit of ~/k|| Bi.k|l is the same
as /PullBjp, ll. (Note that p denotes the number of nonlinear re-
gressors in the original model, whereas p,, indexes the subsequence
to be consistent with the notation in ACG.) For k large enough, we
can always construct A; as proposed because the parameter space
is a product space that contains a neighborhood of 8 arbitrarily
close to 0.
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It remains to show that hy(A;) — hif hy, (Ap,) — h. (i)
It is clear that \fk||;3j’fk|| and ,/p; B p, |l have the same limit by
construction in (C.7). (ii) A; and A,, also have the same limit
by construction in (C.7) because I ﬁ*k” converges to 0 if and
only if ||Bjp, |l converges to 0. (iii) We now show the limits of
gUBLll - 185D and g(l1Bip, . - - . [ By, ) are the same by
showing ||/3*k||/||5z1<|| and ||B;, m”/”ﬂi pn” have the same limits
for all £ # j.In (C.7), we have cases (a) and (b) for ||8; ,, |l de-
pending on its rate of convergence. Now we discuss three cases.
(1) If |IBjp, |l and ||Bep, |l are both in case (a) or both in case
) MBS M/ NBE Il = 1Bpa I/ 1 Be.p Il (2) I 1B, II s in case (a)

and ||Bep, |l is in case (b), we have ||B;jp, I/l Bepall — 0. Then,

1B/ BE Ml = (/P / NN Bipy I/ 1| Bepy | = 0. (3)IE (| By p, | s i
case (b) and || B¢ p, |l is in case (a), we have || Bj p, I /| Be.pa Il = 00.
Then, (185 /1B5 ]l = (Vk/ /B lIBipnll /I Bepull —  00. This
shows that hy(Af) and hp, (Ap,) have the same limit as desired,
which in turn verifies Assumption B2 in ACG. As explained above,
the results in (C.6) verifies Assumptions B1 and C1 in ACG. The
desired result follows directly from Lemma 2.1, Theorem 2.2, and
Theorem 2.1(c) of ACG. O

Proof of Theorem 4. We first introduce some notations. For a
sequence of constants {¢c, : n > 1}, let ¢, — [cy, c2] denote
c1 < liminf, o ¢; < limsup,_, o Cn < C3.

Below we show (i) the pointwise convergence result in
Assumption B1 of ACG hold for the robust test “For any sequence
{hy(Ay) — h € H,CP(A,) — [CP~(h),CP*(h)] € [0, 1]} and
(ii) the lower bound is achieved as in Assumption C1 of ACG
“CP~(h)) = CP*(hy) for some h; € H such that CP~(h;) =
infycyy CP~(h).” As in the proof of Theorem 3, we invoke Theorem
2.1(c) of ACG for this proof. The same reparameterization for A
and h,(A,) is necessary. Assumption B2 of ACG is the same for
the standard test and the robust test, thus it remains to verify
Assumptions B1 and C1 of ACG for the robust test and confidence
interval based on the plug-in critical value.

To verify Assumption B1 of ACG, we first show that for any se-
quence of true parameters {),, : n > 1} for which h, (1) converges
to a limit that can be reparameterized as hy € H, the coverage
probability satisfies

Pr(Wa(R) < C1-a) — [CP™ (ho), CP* (ho)] (C3)

for some CP~(hy), CP™ (hy) € [0, 1]. Here we use hg € H rather
than h € H to denote the sequence under consideration, whereas
h is a generic notation in the definition of the plug-in critical value.
To verify Assumption C1 of ACG, we show CP~ (h;) = CP*(h;) for
some h; € H such that CP~(h;) = infyey CP~(h) = 1 — «. Then,
Theorem 2.1(c) of ACG implies that the asymptotic sizeis 1 — «.

For a given hy € H, its corresponding elements are J o,
g0, Ty,,0, and yo. We define an infeasible critical value under hg
as

Ci—q(ho) = sup W;_,(h), where
heHy
Hy = {h € H: dx = dg0, 0y, = Wy 0,

7y, = 1y,0fork < K}. (C.9)

This infeasible critical value ¢;_, (hg) does not depend on the data.
Because hy € Hy,

Ci—a(ho) = Wi_g(ho). (C.10)
Recall the plug-in critical value defined as
Cn1—a = SUp Wi_o(h), where
heH
= {(heH: dx = dw, wy, = Bu /1Byl
and 7y, = 7y, fork < K}. (C.11)

In the definition of ﬁ Ik, wy,, my, for k < K are estimated. The
grouping rule J is not specified except for the last group J.

Along a sequence of true parameters {A, n > 1} for
which h,(A;) converges to a limit that can be reparameterized as
ho € H, we first show that the estimated weak identified set {y,
is no smaller than the true weak identification set JlK 0 wpal
ie,Pr(dgo C JlW) — 1. Therefore, imposing J{x to be JlW inH is
less restrictive than imposing Jx to be {k ¢ in Hy. Here we assume
there exist weakly identified regressors and they are collected in
Jk o following the grouping rule. When no regressors are weakly
identified, the Wald statistic has a chi-square distribution and the
limit of the coverage probability is greater than or equal to 1 — «
because Cy.1-o > X{.1_, by construction.

Considerj € {0, Theorem 1 and (B.72) imply

NN 1/2
1S, = (nBj(Z)~"Bi/dgy)"”

—a (15, (1) (i) 1, () dg) 2

where Tp; (7x) is the subvector of () associated with 8; and
X(ry) is a submatrix of X' (;r) associated with g;, for both of which
7, ..., Tgx_1 are evaluated at the limit of the true values. By As-
sumption 5, infy eq, Zj(mx) > 0. Hence, ICSj, = 0,(1) and
ICSj n < Kkn w.p.a.1. because k, — oo. This proves

(C.12)

Pr(dxo € ) — 1. (C.13)

It follows that any element that does not belong to IW must
be in the semi-strong or strong identification group. Therefore,
,Blk/”,Blk | —p wy,,0and 7 | ke = p yi0 for k < K for any group spec-
ification { where Jx = le

For a given group specification {, the quantile W;_,(h) with
wy, = Bu /By |l and wy, = 7, converge in probability to the
quantile of W;_, (h) with w,, = wy, 0, 77y, = 7y, 0 under Assump-
tion CV2. This follows the same line of arguments for Theorem 3 of
Andrews and Guggenberger (2009b). Because Pr(dx o € dw) — 1,
w.p.a.1,

C1-g(ho) <TCp1—q + 0p(1). (C.14)
Combining it with (C.10), w.p.a.1, we have
Wi—a(ho) < Cp1—a + 0,(1). (C.15)

Under the sequence of true parameters associated with hg € H,

Theorem 2 shows that W, (R) —4 W(hg). Therefore,
Pr (Wa(R) < Cp1-a)

> Pr(Wy(R) + 0p(1) < Wi_g(ho) &

Wi—a(ho) < Cp1—a + 0p(1))

= Pr(Wn(R) + 0,(1) < Wi_o (o))

— Pr(Wy(R) + 0p(1) < Wi_qo(ho) &

Wi—q(ho) > Cn1—a + 0,(1))

> Pr(Wy(R) + 0p(1) < Wiy (ho)) — Pr(Wi—q (ho)

> ’En,lfa + Op(]))

—->1—aq, (C.16)

where the convergence follows from W, (R) —4 W(hp), the Slut-
sky’s theorem, and (C.15). Therefore, for any hg € H, (C.8) holds
with CP~(hg) = 1 — a. The value of CP* (h) does not matter for
asymptotic size. We simply take CPT (hg) = 1.

To show infy,cy CP~(h) = 1 — «, we consider the case where
all parameters are strongly identified, e.g., 8, — Bjo # 0 for all
j=1,...,p.Inthis case,

12

Ky ICSin = (ky 'n'/?) (B/(Z)~"Bi/dg) " — o0 (C.17)
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Table C.1
Size-adjusted power (x 100) for Hy : 8, = 0 when By, = n~/2b,, B1, = n~/?b;.
b, =0 b, =1 b, =2 b, =3 b, =4 b, =6 b, =8 b, =10
by Robust
0 5.4 10.7 26.3 50.1 733 97.2 99.9 100.0
1 5.2 9.5 23.7 46.2 70.9 97.2 100.0 100.0
2 4.8 7.9 21.0 443 70.4 97.3 100.0 100.0
3 4.5 7.1 20.3 44.6 71.6 97.6 100.0 100.0
4 4.6 7.2 214 46.5 73.7 97.9 100.0 100.0
6 5.0 9.1 254 515 771 98.3 100.0 100.0
8 5.4 10.2 271 53.0 77.7 98.3 100.0 100.0
10 5.5 104 27.2 53.0 77.8 98.3 100.0 100.0
by Standard
0 54 13.8 35.0 57.8 74.3 849 85.5 85.5
1 5.2 11.8 31.8 55.9 74.3 85.7 86.2 86.2
2 4.8 10.5 311 56.8 76.0 87.4 87.9 87.9
3 45 10.5 32.0 58.4 77.6 88.7 89.2 89.2
4 4.6 11.2 331 59.8 78.6 89.4 89.8 89.8
6 5.0 12.5 34.7 61.0 79.3 89.9 90.4 90.4
8 54 133 35.5 61.6 79.8 90.3 90.8 90.8
10 55 135 35.8 61.7 80.0 90.4 90.9 90.9

Note: For each (b1, by), the rejection probabilities for the standard test are adjusted such that the robust test and
the standard test have the same rejection probabilities under the null. n = 500, 719 = 0.

because «;, diverges to oo slower than n'/2. Therefore, when all pa-
rameters are strongly identified, 4y = @ w.p.a.1, which implies
that Gy 1o = Xt?,—,l—a w.p.a.1 in this case. In addition, Theorem 2

shows that W(hg) ~ Xi in this case. Therefore, when all parame-
ters are strongly identified,

Pr(Wy(R) <Cni—a) = Pr(W(ho) < xi 1) =1—0a. (C.18)

Let h; denote the limit of h,(X;) when all parameters are strongly
identified, i.e,, Bo; # O for all j in h;. (C.18) shows CP~(h;) =
CP*(h;) = 1—a.This completes the verification of Assumption C1
of ACG and concludes that the asymptotic size of the robust con-
fidence set is 1 — «. The proof for the test is the same except that
H, H(v), Cy,1—q are replaced by H(v), H(v), Cy,1—« (v), respectively,
and the coverage probability is replaced by the rejection probabil-
ity. The same arguments apply to robust tests and confidence sets
based on the ¢ statistic. O

References

Andrews, D.W.K,, 1994. Asymptotics for semiparametric econometric models via
stochastic equicontinuity. Econometrica 62 (1), 43-72.

Andrews, D.W.K., Barwick, P.J., 2012. Inference for parameters defined by moment
inequalities: a recommended moment selection procedure. Econometrica 80
(6), 2805-2826.

Andrews, D.WK,, Cheng, X., 2012. Estimation and inference with weak, semi-
strong, and strong identification. Econometrica 80 (5), 2153-2211.

Andrews, D.W.K,, Cheng, X., 2013. Maximum likelihood estimation and uniform
inference with sporadic identification failure. . Econometrics 173 (1), 36-56.

Andrews, D.W.K,, Cheng, X., 2014. GMM estimation and uniform subvector
inference with possible identification failure. Econometric Theory 30, 287-333.

Andrews, D.W.K., Cheng, X., Guggenberger, P., 2011. Generic Results for Establish-
ing the Asymptotic Size of Confidence Sets and Tests, Cowles Foundation Dis-
cussion Papers 1813. Cowles Foundation for Research in Economics, Yale Uni-
versity.

Andrews, D.W.K,, Guggenberger, P., 2009a. Hybrid and size-corrected subsampling
methods. Econometrica 77 (3), 721-762.

Andrews, D.W.K., Guggenberger, P., 2009b. Validity of subsampling and plug-
in asymptotic inference for parameters defined by moment inequalities.
Econometric Theory 25 (03), 669-709.

Andrews, D.W.K,, Guggenberger, P., 2010. Asymptotic size and a problem with
subsampling and with the m out of n Boostrap. Econometric Theory 26,
426-468.

Andrews, D.W.K,, Guggenberger, P., 2014a. Asymptotic Size of Kleibergen’s LM and
Conditional LR Tests for Moment Condition Models, Discussion paper. Yale
University and Pennsylvania State University.

Andrews, D.W.K.,, Guggenberger, P., 2014b. Identification—and Singularity-Robust
Inference for Moment Condition Models, Discussion paper. Yale University and
Pennsylvania State University.

Andrews, D.W.K., Moreira, MJ., Stock, J.H., 2006. Optimal two-sided invariant
similar tests for instrumental variables regression. Econometrica 74 (3),
715-752.

Andrews, D.W.K,, Ploberger, W., 1994. Optimal tests when a nuisance parameter is
present only under the alternative. Econometrica 62 (6), 1383-1414.

Andrews, D.W.K,, Soares, G., 2010. Inference for parameters defined by moment
inequalities using generalized moment selection. Econometrica 78 (1),

119-157.

Andrews, D.W.K.,, Stock, J.H., 2007. Testing with many weak instruments.
J. Econometrics 138 (1), 24-46.

Andrews, 1., 2013. Conditional Linear Combination Tests for Weakly Identified
Models, Discussion paper. MIT.

Andrews, 1., Mikusheva, A., 2012. A geometric approach to weakly identified
econometric models, Discussion paper. MIT.

Andrews, L, Mikusheva, A., 2015. Maximum likelihood inference in weakly
identified DSGE models. Quant. Econ. 6, 123-152.

Antoine, B., Renault, E., 2009. Efficient GMM with nearly-weak instruments.
Econom. . 12 (s1), S135-S171.

Antoine, B., Renault, E., 2012. Efficient minimum distance estimation with multiple
rates of convergence. J. Econometrics 170 (2), 350-367.

Bec, F., Salem, M.B., Carrasco, M., 2010. Detecting mean reversion in real exchange
rates from a multiple regime STAR model. Ann. Econ. Stat. (99/100), 395-427.

Billingsley, P., 1968. Convergence of Probability Measures. In: Wiley Series in
probability and Mathematical Statistics: Tracts on probability and statistics.
Wiley.

Box, G.E.P., Cox, D.R., 1964. An analysis of transformations. J. R. Stat. Soc. Ser. B Stat.
Methodol. 26 (2), 211-252.

Caner, M., 2010. Testing, estimation in GMM and CUE with nearly-weak
identification. Econometric Rev. 29 (3), 330-363.

Caves, D.W., Christensen, L.R., Tretheway, M.W., 1980. Flexible cost functions for
multiproduct firms. Rev. Econ. Stat. 62 (3), 477-481.

Chaudhuri, S., Zivot, E., 2011. A new method of projection-based inference in GMM
with weakly identified nuisance parameters. ]. Econometrics 164 (2), 239-251.

Chen, X., Ponomareva, M., Tamer, E., 2014. Likelihood inference in some finite
mixture models. J. Econometrics 182 (1), 87-99.

Choi, I, Phillips, P.C.B., 1992. Asymptotic and finite sample distribution theory for IV
estimators and tests in partially identified structural equations. ]. Econometrics
51(1-2), 113-150.

Clark, J.A., 1984. Estimation of economies of scale in banking using a generalized
functional form. J. Money. Credit. Bank 16 (1), 53-68.

Davies, R.B., 1977. Hypothesis testing when a nuisance parameter is present only
under the alternative. Biometrika 64 (2), 247-254.

Davies, R.B., 1987. Hypothesis testing when a nuisance parameter is present only
under the alternative. Biometrika 74 (1), 33-43.

Dufour,].-M., 1997. Some impossibility theorems in econometrics with applications
to structural and dynamic models. Econometrica 65 (6), 1365-1388.

Dufour, J.-M., Taamouti, M., 2005. Projection-based statistical inference in linear
structural models with possibly weak instruments. Econometrica 73 (4),
1351-1365.

Dufour, J.-M., Taamouti, M., 2007. Further results on projection-based inference in
IV regressions with weak, collinear or missing instruments. J. Econometrics 139
(1), 133-153.

Elliott, G., Miiller, U.K., Watson, M.W., 2012. Nearly Optimal Tests when a Nuisance
Parameter is Present Under the Null Hypothesis, Discussion paper. UCSD and
Princeton University.

Giannakas, K., Tran, K.C., Tzouvelekas, V., 2000. Efficiency, technological change and
output growth in Greek olive growing farms: a Box-Cox approach. Appl. Econ
32(7),909-916.

Granger, CW],, Terasvirta, T., 1993. Modelling Non-Linear Economic Relationships.
Oxford University Press, no. 9780198773207 in OUP Catalogue.


http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref1
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref2
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref3
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref4
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref5
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref6
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref7
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref8
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref9
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref10
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref11
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref12
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref13
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref14
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref15
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref16
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref17
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref18
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref19
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref20
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref21
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref22
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref23
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref24
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref25
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref26
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref27
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref28
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref29
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref30
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref31
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref32
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref33
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref34
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref35
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref36
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref37

228 X. Cheng / Journal of Econometrics 189 (2015) 207-228

Guerron-Quintana, P., Inoue, A, Kilian, L., 2013. Frequentist inference in weakly
identified dynamic stochastic general equilibrium models. Quant. Econ. 4 (2),
197-229.

Guggenberger, P., Kleibergen, F., Mavroeidis, S., Chen, L., 2012. On the asymptotic
sizes of subset AndersonCRubin and Lagrange multiplier tests in linear
instrumental variables regression. Econometrica 80 (6), 2649-2666.

Guggenberger, P., Smith, RJ., 2005. Generalized empirical likelihood estimators
and tests under partial, weak, and strong identification. Econometric Theory
21(04), 667-709.

Hahn, J., Kuersteiner, G., 2002. Discontinuities of weak instrument limiting
distributions. Econom. Lett. 75 (3), 325-331.

Hansen, B.E., 1996. Inference when a nuisance parameter is not identified under the
null hypothesis. Econometrica 64 (2), 413-430.

Kitamura, Y., Phillips, P.C.B., 1997. Fully modified IV, GIVE and GMM estimation
with possibly non-stationary regressors and instruments. J. Econometrics 80
(1),85-123.

Kleibergen, F., 2002. Pivotal statistics for testing structural parameters in
instrumental variables regression. Econometrica 70 (5), 1781-1803.

Kleibergen, F., 2005. Testing parameters in GMM without assuming that they are
identified. Econometrica 73 (4), 1103-1123.

Kleibergen, F., 2014. Efficient size correct subset inferencen in linear instrumental
variables regression, Discussion paper. Brown University.

Kuan, C.-M., White, H. 1994. Artificial neural networks: an econometric
perspective. Econometric Rev. 13 (1), 1-91.

Lee, L.-f., 2005. Classical inference with ML and GMM estimates with various rates
of convergence, Discussion paper. Ohio State University.

Lee, L.-f., 2010. Pooling estimates with different rates of convergence: a minimum
X2 approach with emphasis on a social interactions model. Econometric Theory
26 (01), 260-299.

Luukkonen, R., Saikkonen, P., Tersvirta, T., 1988. Testing linearity against smooth
transition autoregressive models. Biometrika 75 (3), 491-499.

Ma, J., Nelson, C.R,, 2010. Valid Inference for a Class of Models Where Standard
Inference Performs Poorly: Including Nonlinear Regression, ARMA, GARCH, and
Unobserved Components. In: Economics Series, vol. 256. Institute for Advanced
Studies.

McAleer, M., Medeiros, M.C., 2008. A multiple regime smooth transition
Heterogeneous Autoregressive model for long memory and asymmetries.
J. Econometrics 147 (1), 104-119.

McCloskey, A., 2012. Bonferroni-Based Size-Correction for Nonstandard Testing
Problems, Working Papers 2012-16, Brown University, Department of Eco-
nomics.

Montiel Olea, J.L., 2013. Efficient Conditionally Similar Tests: Finite-Sample Theory
and Large-Sample Applications, Discussion paper. New York University.

Moreira, M.J., 2003. A conditional likelihood ratio test for structural models.
Econometrica 71 (4), 1027-1048.

Nelson, C.R, Startz, R, 1990. Some further results on the exact small sample
properties of the instrumental variable estimator. Econometrica 58 (4),
967-976.

Nelson, C.R,, Startz, R., 2007. The zero-information-limit condition and spurious
inference in weakly identified models. J. Econometrics 138 (1), 47-62.

Phillips, P., 1989. Partially identified econometric models. Econometric Theory 5
(02), 181-240.

Phillips, P.C.B., Park, J.Y., 1988. On the formulation of wald tests of nonlinear
restrictions. Econometrica 56 (5), 1065-1083.

Qu, Z., 2014. Inference in DSGE models with possible weak identification. Quant.
Econ. 5, 457-494.

Radchenko, P., 2008. Mixed-rates asymptotics. Ann. Statist. 36 (1), 287-309.

Sargan, ].D., 1983. Identification and lack of identification. Econometrica 51 (6),

1605-1633.
Schorfheide, F., 2013. Advances in Economics and Econometrics: Theory and

Applications, Tenth World Congress. Vol. 3, chap. Estimation and Evaluation
of DSGE Models: Progress and Challenges. Cambridge University Press,
pp. 184-230.

Shi, X., Phillips, P.C, 2012. Nonlinear cointegrating regression under weak
identification. Econometric Theory 28 (03), 509-547.

Shintani, M., Terada-Hagiwara, A., Yabu, T., 2013. Exchange rate pass-through and
inflation: A nonlinear time series analysis. ]. Internat. money. Financ 32 (0),
512-527.

Sims, C.A., Stock, J.H., Watson, M.W., 1990. Inference in linear time series models
with some unit roots. Econometrica 58 (1), 113-144.

Staiger, D., Stock, J.H., 1997. Instrumental variables regression with weak
instruments. Econometrica 65 (3), 557-586.

Stock, J.H., Wright, ]., 2000. GMM with weak identification. Econometrica 68 (5),
1055-1096.

Terasvirta, T., 1994. Specification, estimation, and evaluation of smooth transition
autoregressive models. J. Amer. Statist. Assoc. 89 (425), 208-218.

Tripathi, G., 1999. A matrix extension of the Cauchy-Schwarz inequality. Econom.
Lett. 63 (1), 1-3.

van der Vaart, A., Wellner, J., 1996. Weak convergence and empirical processes.
In: Springer series in statistics. Springer.

van Dijk, D., Franses, P.H., 1999. Modeling multiple regimes in the business cycle.
Macroecon. Dyn. 3 (03), 311-340.

White, H., 1989. An additional hidden unit test for neglected nonlinearity
in multilayer feedforward networks. In: Neural Networks, 1989. IJCNN.,
International Joint Conference on. IEEE, pp. 451-455.


http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref38
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref39
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref40
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref41
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref42
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref43
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref44
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref45
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref46
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref47
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref48
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref49
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref50
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref51
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref52
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref54
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref55
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref56
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref57
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref58
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref59
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref60
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref61
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref62
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref63
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref64
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref65
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref66
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref67
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref68
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref69
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref70
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref71
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref72
http://refhub.elsevier.com/S0304-4076(15)00205-5/sbref73

	Robust inference in nonlinear models with mixed identification strength
	Introduction
	Uniformity and drifting sequences of distributions
	Asymptotic distributions of estimators
	Grouping rules and reparameterization
	Sequential peeling of the criterion function
	Asymptotic distribution in the reparameterized model

	Wald test and  t  test with mixed identification strength
	Rotation
	Rescaling matrix for asymptotic singularity of covariance matrix
	Non-standard distribution of the test statistic
	Asymptotic distribution of the wald statistic under the alternative

	Robust inference
	Potential size distortion
	Data-dependent non-standard critical values

	Appendix
	Auxiliary lemmas
	Proofs for asymptotic distributions of estimators and test statistics
	Proofs for the asymptotic size
	References


