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Abstract

This paper provides a new multi-dimensional clustering approach for unobserved

heterogeneity in panel data models. Each unit is associated with multiple clusters.

For example, a firm can belong to the high productivity group and the low output

elasticity group. In contrast, the standard one-dimensional clustering approach would

be based on separate groups for each productivity-elasticity pair. Our approach pro-

vides substantial gains in estimation accuracy when unobserved features have sparse

interactions, e.g., there are only a few firms with high productivity and low output

elasticity. We propose an estimator for the unobserved group memberships and the

group-specific and common parameters in a nonlinear GMM framework and derive its

large sample properties. In particular, we provide the first classification consistency

result in a nonlinear GMM setup. We re-evaluate the rise of aggregate markup in

De Loecker, Eeckhout, and Unger (2018) by replacing their sector-specific production

functions with a cluster-based ones. We find that the upward trajectory persists, but

the magnitude is less pronounced after accounting for multi-dimensional heterogeneity.
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1 Introduction

Firms, individuals, and countries are heterogeneous in multiple dimensions. For example,

firms can differ in their productivities, in their output elasticities of variable inputs, and

in their output elasticities of capital.1 A flexible specification of the production function

ideally allows for heterogeneity in all three of these features. For practical estimation, the

key question is how to specify a flexible yet parsimonious and tractable econometric model

that is consistent with such multi-dimensional unobserved heterogeneity in the data. In a

panel data context, this paper proposes a framework to assign multiple cluster memberships

to each cross-sectional unit, where each cluster membership is determined by one particular

characteristic of the unit. We estimate the memberships as well as cluster-specific and

common parameters in a nonlinear generalized method of moments (GMM) framework.

Recent years have seen increasing popularity of modeling heterogeneity through clusters.

In panel data analysis, allowing each cross-sectional unit to have its own regression coeffi-

cient often leads to a large number of parameters and a poor estimation of them. Instead,

researchers may divide the whole population into a finite-number of clusters and explore the

commonality within and differences across clusters. The cluster membership could be known

(Bester and Hansen (2016)) or estimated by machine learning methods (Lin and Ng (2012);

Ando and Bai (2016); Bonhomme and Manresa (2015), BM hereafter; Su, Shi, and Phillips

(2016), SSP hereafter). Similar to clusters, finite mixtures models can be used to model

group-wise heterogeneity (Sun (2005); Kasahara and Shimotsu (2009)). Hahn and Moon

(2010) provide economic foundations for fixed effects with a finite support. In a Bayesian

setting, correlated random effects distributions modeled flexibly with Dirichlet process mix-

ture priors can also capture forms of group heterogeneity (e.g., Liu (2018)). This paper

contributes to the literature in various ways, discussed in the following paragraphs.

First, multiple clustering has the benefit of borrow strength among units that are homo-

geneous in one dimension but heterogeneous in other dimensions. By introducing multiple

memberships, units in one cluster share some features but differ in other features. Existing

methods are one-dimensional, giving only one membership to each unit and requiring units

in a cluster to share all features. For example, in our empirical estimation of the production

function, we pool all firms that share the same variable input elasticity together to estimate

this common parameter, regardless of the other two features, i.e., productivity and capital

1Throughout the paper we will refer to these elasticities simply as variable input and capital elasticities,

respectively.
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elasticity. Yet, we allow for heterogeneity and cluster patterns in these other features. To

fit the production example into the one-dimensional clustering framework, one would only

assign firms to the same cluster if their production functions are identical in all dimensions.

This results in much smaller cluster sizes and more cluster-specific parameters to estimate.

Second, multi-dimensional clustering is robust to sparse interactions among different

features. To estimate cluster-specific parameters, we need a large number of observations

from each group. The one-dimensional approach cuts the data finer by requiring all features

to be the same in a cluster, making it possible that some cluster is much smaller than others.

In the context of the production function example, the one-dimensional framework requires

a large number of firms with high productivity and low output elasticity. The proposed

multi-dimensional approach only requires a large number of highly productive firms and a

large number of firms with low output elasticity separately.

Third, we establish classification consistency of the group membership in a nonlinear

GMM framework. The group membership in each dimension is estimated by the K-means

method. This theoretical analysis builds on the important classification consistency result in

BM. The main difference is that the group memberships here are estimated by a nonlinear

GMM criterion instead of a linear least square criterion with heterogenous intercept. We do

not allow the parameters to be time-varying as in BM. To the best of our knowledge, SSP

is the only paper that considered classification based on a GMM criterion. However, they

restricted it to a linear IV model. Classification with other types of criteria are considered,

for instance, by SSP, Liu, Schick, Shang, Zhang, and Zhou (2018), Gu and Volgushev (2019).

The asymptotic results require both large N and large T , but allow T to grow much slower

than N . Thus, they are compatible with relatively short panels with a large number of

cross-sectional observations. The number of clusters for each feature can be determined by

a quasi-Bayesian information criterion. Homogeneity is a special case with one cluster.

Fourth, we derive the asymptotic distributions of the cluster-specific and common pa-

rameters. SSP model some parameters to be cluster-specific and some parameters to be

unit-specific. The latter results in incidental parameter bias that is subsequently corrected.

Different from their approach, we model the multi-dimensional heterogeneity symmetrically

by assuming all heterogeneous parameters follow cluster patterns. The added flexibility is

that different parameters are associated with different memberships. Once the memberships

are consistently estimated, we impose the estimated memberships and construct a pooled

GMM criterion. All cluster-specific and common parameters are estimated with
√
NT rate.



This Version: July 30th, 2021 3

We use the proposed multi-dimensional clustering technique to estimate firm-level Cobb-

Douglas production functions for a subset of two digit sectors defined by the North American

Industry Classification System (NAICS). Within each two-digit sector, we allow for multi-

dimensional group heterogeneity in terms of total factor productivity, and output elasticities

with respect to variable inputs and capital. The production functions are estimated on

a sequence of rolling panel data sets for publically traded firms. Using the approach of

De Loecker and Warzynski (2012), we scale the estimated variable-input elasticities by the

revenue-to-variable-cost ratio to obtain an approximation of firm-level markups. We then

aggregate the firm-level markups to compute an aggregate markup for each rolling sample

and re-examine the rise of aggregate markups documented by De Loecker, Eeckhout, and

Unger (2018). Our main finding is that the overall level of aggregate markup is lower and the

rise in the markup between 1970 and 2016 is less pronounced once one accounts for group

heterogeneity among publically-traded firms within two-digit NAICS sectors.

The remainder of the paper is organized as follows. Section 2 describes the model and

the estimation procedure. Section 3 provides some key regularity conditions and shows

consistency of the estimators. Section 4 starts with some heuristic arguments on classification

of group memberships with a nonlinear GMM criterion Subsequently, we provide formal

results on classification consistency and the asymptotic distribution of the GMM estimator

based on a pooled criterion. Section compares the proposed multi-dimensional clustering to

standard one-dimensional clustering in a Monte Carlo simulation. The empirical analysis is

presented in Section 6. Finally, Section 7 concludes. Proofs, data definitions, and additional

numerical results are relegated to an Online Appendix.

Throughout the paper, we adopt the following notations. For vectors a, b, we use (a, b)

to denote (a′, b′)′, unless the dimension is defined otherwise. Let ||A|| denote the Frobenius

norm of a matrix A. When A is a symmetric, let µmax(A) and µmin(A) denote the largest

and smallest eigenvalues of A. Let 1{·} denote the indicator function. All asymptotic results

are obtain as N and T pass to infinite jointly.

2 Model and Estimator

We have panel data {wit : i = 1, ..., N ; t = 1, ..., T} and use them to estimate unknown

parameters θi = (ai, bi, λ) ∈ A × B × Λ based on moment conditions. The parameter

space A,B,Λ are subsets of Rda , Rdb , Rdλ , respectively. To study applications where N is
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significantly larger than T, we provide a parsimonious model of ai and bi by two separate

group patterns. Let gi ∈ {1, ..., ng} denote the membership for ai and hi ∈ {1, ..., nh} denote

the group membership for bi. We have

ai =


α1 if gi = 1
...

...

αng if gi = ng

and bi =


β1 if hi = 1
...

...

βnh if hi = nh

. (1)

Let

α = (α1, ..., αng) ∈ Rdα×dng and β = (β1, ..., βnh)Rdβ×dnh .

denote the group-specific values. We can write

ai = α(gi) and bi = β(hi), (2)

where α(gi) = αgi denotes the gthi column of α, similarly, β(hi) = βhi denotes the hthi column

of β. With the two-dimensional group patterns, the unknown parameters are

θ = (α, β, λ), G = (g1, ..., gN), H = (h1, ..., hN). (3)

The parameter space is (θ,G,H) ∈ Θ × ΓG × ΓH , where Θ = Ang × Bnh × Λ and ΓG and

ΓH are sets of all possible partitions of {1, ..., N} into ng and nh groups, respectively. We

assume ng and nh are known for now. In practice, they can be selected by the Bayesian

information criterion given below.

We assume group patterns and moment conditions hold for the true values of the parame-

ters. For each i, let g0
i and h0

i denote the true group memberships and θ0
i = (α0(g0

i ), β
0(h0

i ), λ
0)

denote the true value for θi = (α(gi), β(hi), λ). The moment condition is

Mi(θ
0
i ) = E

[
m
(
wit; θ

0
i

)]
= 0 (4)

hold for all i and t. The GMM estimator is2

(
θ̂, Ĝ, Ĥ

)
= arg min

(θ,G,H)∈Θ×ΓG×ΓH

Q̂(θ,G,H), (5)

where

Q̂(θ,G,H) = N−1

N∑
i=1

Q̂i(θ, gi, hi), (6)

2 Fernandez-Val and Lee (2013) and SSP also use the same type of criterion in the presence of unit-specific

parameters. In our case the unit-specific parameters are the group memberships.
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and

Q̂i(θ, gi, hi) =

[
T−1

T∑
t=1

m (wit;α(gi), β(hi), λ)

]′
WiNT

[
T−1

T∑
t=1

m (wit;α(gi), β(hi), λ)

]
.

(7)

for some finite-dimensional function m(wit; ·) ∈ Rdm and weighting matrix WiNT .

Application: Production Function Estimation. Consider a Cobb-Douglas production

function

yit = a0
i + b0

i vit + c0
i kit + ωit + εit, (8)

where yit, kit, vit are the observed log output, log capital input, and log variable inputs

(including labor, intermediate inputs, materials, etc), ωit is an unobserved productivity shock

that is known to the firm, and εit is an unobserved output shock that is realized after the

factor inputs have been chosen. The productivity shock ωit follows an AR(1) process

ωit = ρ0ωit−1 + ξit, (9)

where the innovation ξit is uncorrelated with input choices prior to period t. The output shock

εit is uncorrelated with any input choices at period t and before. For a markup calculation

following De Loecker and Warzynski (2012) and De Loecker, Eeckhout, and Unger (2018),

the parameter of interest is the output elasticity of the variable input, i.e., b0
i . The rest are

nuisance parameters. As in these papers, we assume the capital input kit is determined at

period t− 1 and firms choose the variable input vit optimaly at period t.

Let

∆yit(ρ) = yit − ρyit−1, ∆kit(ρ) = kit − ρkit−1, ∆vit(ρ) = vit − ρvit−1 (10)

denote the differencing terms given the parameter ρ. Then we have

∆yit(ρ
0)− a0

i (1− ρ0)− b0
i∆vit(ρ

0)− c0
i∆kit(ρ

0) = ξit +
(
εit − ρ0εit−1

)
. (11)

Let zit denote a vector of capital and variable inputs choices prior to period t plus the

constant term. In the empirical application in Section 6 we will use zit = (1, kit, kit−1, vit−1)′.

This ensures that zit is uncorrelated to the right hand side of (11). We have the moment

condition

E
[
zit
(
∆yit(ρ

0)− a0
i (1− ρ0)− b0

i∆vit(ρ
0)− c0

i∆kit(ρ
0)
)]

= 0. (12)

For illustration purpose, we consider a model with two-dimensional group heterogeneity

based on ai and bi and assume ci = c for all i. In this case, the common parameter is
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λ = (c, ρ). With the two-dimensional group membership gi and hi for ai and bi, respectively,

we have

m (wit; θi) = zit (∆yit(ρ)− ai(1− ρ)− bi∆vit(ρ)− ci∆kit(ρ)) , where

ai = α(gi), bi = β(hi), and ci = c. (13)

In the empirical estimation, we allow for three-dimensional heterogeneity on ai, bi, ci and set

the common parameter λ = ρ. In this case, each firm i has three memberships and the model

can be adjusted accordingly. �

In practice, we compute the GMM estimator in (5) by Lloyd’s Algorithm. Given G and

H, θ̂ is a GMM estimator based on Q̂(θ,G,H). Given θ and H, we minimize the GMM

criterion function to determine the group memberships Ĝ. After re-estimating θ and holding

G fixed, the group memberships H are also determined by the GMM criterion function.

In the subsequent description of the algorithm, M is a large number that ensures that

the algorithm does not terminate after one iteration and ε is a number close to zero that

characterizes the tolerance level for improvements in the objective function.

Algorithm 1 (Lloyd’s Algorithm)

1. Initialization, k = 0: Provide an initial guess (Ĝ(0), Ĥ(0)). Let c = 0 and Q̂(0) = M .

2. Iterations, s > 0: Until c = 1 execute the following steps:

(a) Using the last iteration’s estimate of group memberships (Ĝ(s−1), Ĥ(s−1)), estimate

the parameter θ:

θ̂ = arg min
θ∈Θ

Q̂
(
θ, Ĝ(s−1), Ĥ(s−1)

)
.

(b) For i = 1, . . . , N , determine the g-group membership:

ĝ
(s)
i = arg min

gi∈{1,...,ng}
Q̂i

(
θ̂, gi, ĥ

(s−1)
i

)
.

(c) Re-estimate the parameter θ:

θ̂(s) = arg min
θ∈Θ

Q̂
(
θ, Ĝ(s), Ĥ(s−1)

)
.

(d) For i = 1, . . . , N , determine the h-group membership:

ĥ
(s)
i = arg min

hi∈{1,...,nh}
Q̂i

(
θ̂, ĝ

(s)
i , hi

)
.

(e) Assess convergence: let Q̂(s) = Q̂
(
θ(s), Ĝ(s), Ĥ(s)

)
and set

c = 1
{∣∣Q̂(s) − Q̂(s−1)

∣∣ ≤ ε
}
.



This Version: July 30th, 2021 7

3 Assumptions and Consistent Estimation

First, we assume the following identification condition and regularity conditions on the data

generating process.

Assumption ID. For any η, min
1≤i≤N

inf
||θi−θ0i ||>η

||Mi(θi)|| > ε > 0.

Assumption R. (i) {wit, t = 1, 2, ...} are i.i.d. across i. For each i, {wit : t = 1, 2..., }
is stationary strong mixing with mixing coefficients αi(·), where α(·) = sup

i
αi(·) satisfies

α(τ) ≤ cαr
τ for some cα > 0 and r ∈ (0, 1).

(ii) The true value θ0
i lies in the interior of the convex compact set Θ = A×B × Λ for all i.

(iii) There exists a function f(wit) such that sup
θi∈Θ
||m(wit; θi)|| ≤ f(wit) and ||m(wit, θi) −

m(wit, θi)|| ≤ f(wit)||θi − θi|| for all θi, θi ∈ Θ. E|f(wit)|q <∞ for some q ≥ 6.

Application (Continued). We assume the following conditions hold for the produc-

tion function estimation. (i) {(vit, kit, ξit, εit) : t = 1, ...} are i.i.d. over i. For each i,

{(vit, kit, ξit, εit) : t = 1, ...} is stationary strong mixing that satisfies Assumption R(i).

E(εit) = 0, E(ξit) = 0, E(εitkit−τ ) for τ ≥ 0, E(εitvit−τ ) for τ ≥ 1. (ii) θi = (ai, bi, ci, ρ) ∈
Θ = A × B × C × [0, ρ] for some ρ < 1, where A,B, C ∈ R are all convext and com-

pact. The true value θ0
i is in the interior of Θ. (iii) Let xit(ρ) = (1,∆vit(ρ),∆kit(ρ), ωit−1)′.

µmin(E[zitxit(ρ)]′) ≥ δ for some δ > 0 for any ρ ∈ [0, ρ]. (iv) Let dit = (1, yit, yit−1, vit, vit−1, kit, kit−1).

For some C < ∞ and q ≥ 6, E||zitdit||q ≤ C. Assumption ID and Assumption R hold for

the production function example under conditions (i)-(iv). �

Assumption NT. N2 = O(T q/2−1), where q ≥ 6 is the constant in Assumption R1(iii).

Assumption NT allows N to be much larger than T, if the condition holds for a large q,

which further translates to the moment condition in Assumption R1(iii). Alternatively, one

can also impose tail condition on f(wit) directly, as in BM.

Under Assumption R1 and NT, SSP establishes the uniform convergence result3

P

{
max

1≤i≤N
sup
θi∈Θ

∥∥∥∥∥T−1

T∑
t=1

m (wit; θi)− E[m (wit; θi)]

∥∥∥∥∥ ≥ η

}
= o(N−1) (14)

for any η > 0, as N, T →∞. To establish the estimation consistency in Lemma 3.1 below, the

convergence rate o(N−1) can be replaced with o(1) in (14). However, to subsequently show

the K-mean classification consistency for the memberships, the o(N−1) rate is necessary.

3See Lemma S1.2(iii) of SSP.
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Assumption W. There exists nonrandom matrices Wi such that max
1≤i≤N

‖WiNT −Wi‖ →p 0

and min
1≤i≤N

µmin(Wi) = cW > 0 and max
i
µmax(Wi) = cW <∞.

Application (Continued). For the production function application, we can chooseWiNT =

(T−1

T∑
t=1

zitz
′
it)
−1. It corresponds to the optimal weighting matrix if the conditional variance

of the shocks are constant over time, although it may vary across i. For this choice of WiNT ,

Assumption W holds by (14) and condition E[ziz
′
i] has full rank and E||zi||2 <∞. �

The following Lemma shows that the estimators are consistent on average.

Lemma 3.1 Suppose Assumptions ID, R, NT, W hold. Then,

N−1

N∑
i=1

(
α̂(ĝi)− α0(g0

i )
)2 →p 0, N−1

N∑
i=1

(
β̂(ĥi)− β0(h0

i )
)2

→p 0, λ̂→p λ
0.

Next, we consider estimation of the group specific parameters α0 = (α0
1, ..., α

0
ng) and

β0 = (β0
1 , ..., β

0
ng). To this end, we add Assumption S, which states that each group is

well separated from the rest and each group size is a non-degenerate portion of the whole

population.

Assumption S. (i) For all g 6= g̃, h 6= h̃, ||α0
g − α0

g̃||2 > c and ||β0
h − β0

h̃
||2 > c for c > 0.

(ii) N−1

n∑
i=1

1{g0
i = g} → πg > 0 and N−1

n∑
i=1

1{h0
i = h} → ψh > 0 for all g ∈ {1, ..., ng} and

h ∈ {1, ..., nh}.

Assumption S(ii) allows for sparse interactions between two types, i.e.,

N−1

N∑
i=1

1{gi = g and hi = h} → 0 for some (g, h).

One can handle the two-dimensional clustering model with the one-dimensional method by

calling {i : gi = g and hi = h} a cluster. However, this one-dimensional method does

not allow for sparse interactions, because the number of observations in this interaction is

too small. The two-dimensional clustering method solves this problem because we estimate

α(gi) with all observations that share the membership gi, regardless of hi. The same argument

holds for the estimation of β(hi).

Note that the criterion function Q̂(θ,G,H) is invariant to relabeling the group member-

ships in (θ,G,H). Without loss of generality, we assume (θ̂, Ĝ, Ĥ) is already suitably rela-

beled such that we can show α̂ = (α̂1, ..., α̂ng) is a consistent estimator of α0 = (α0
1, ..., α

0
ng)

and β̂ = (β̂1, ..., β̂nh) is a consistent estimator of β0 = (β0
1 , ..., β

0
ng) below.
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Lemma 3.2 Under the assumptions for Lemma 3.1 and Assumption S, θ̂ →p θ
0, i.e., α̂→p

α0, β̂ →p β
0, λ̂→p λ

0.

It is worth pointing out that N−1

N∑
i=1

(α̂(ĝi) − α0(g0
i ))

2 in Lemma 3.1 and ||α̂ − α0||2 in

Lemma 3.2 are two different measures between the estimator and the true value. The former

is based on α̂(ĝi), where the group membership ĝi could be possibly misclassified. The later

α̂ does not consider the group membership classification.

4 Classification and Asymptotic Distribution

Given θ̂, Ĝ and Ĥ are K-mean estimators of the group memberships that minimize the non-

linear GMM criterion function Q(θ̂, G,H). BM provide consistency of the K-mean clustering

for linear least squares estimation. SSP study classification with the GMM criterion using

a shrinkage procedure, but also restrict it to linear models. We extend classification consis-

tency to nonlinear GMM problems and allow for multiple-dimensional K-mean methods.

Before presenting the formal result, we first illustrate the intuition and key arguments.

For the ease of notation in subsequent arguments, write

mit(θ, g, h) = m(wit;α (g) , β(h), λ), (15)

for any g ∈ {1, ..., ng}, h ∈ {1, ..., nh}. Because θ̂ →p θ0, it is sufficient to consider θ̂ ∈ Nη =

{θ ∈ Θ : ||θ − θ0|| ≤ η} for some positive number η.

Given θ̂, for any (gi, hi) 6= (g0
i , h

0
i ), we have

P
{
ĝi = gi, ĥi = hi

}
≤ P

{
Q̂i(θ̂, gi, hi) < Q̂i(θ̂, g

0
i , h

0
i )
}
. (16)

By Assumption W,

Q̂i(θ̂, gi, hi) ≥ c1

∥∥∥∥∥ 1

T

T∑
t=1

mit(θ̂, gi, hi)

∥∥∥∥∥
2

,

Q̂i(θ̂, g
0
i , h

0
i ) ≤ c2

∥∥∥∥∥ 1

T

T∑
t=1

mit(θ̂, g
0
i , h

0
i )

∥∥∥∥∥
2

(17)
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for some positive constants c2 and c1, with probability approaching 1. To bound the proba-

bility of misspecifying the membership of i to (gi, hi), it is therefore sufficient to bound

Pi,gh(θ̂) = P

c1

∥∥∥∥∥ 1

T

T∑
t=1

mit(θ̂, gi, hi)

∥∥∥∥∥
2

≤ c2

∥∥∥∥∥ 1

T

T∑
t=1

mit(θ̂, g
0
i , h

0
i )

∥∥∥∥∥
2
 . (18)

With a decomposition,

1

T

T∑
t=1

mit(θ̂, gi, hi) =

(
1

T

T∑
t=1

mit(θ̂, gi, hi)− E[mit(θ̂, gi, hi)]

)
+ E[mit(θ̂, gi, hi)], (19)

where (i) the first term on the right hand side is a op(1) noise term and (ii) the second term

E[mit(θ̂, g, h)] is a signal term that is strictly positive and bounded away from 0 conditional

on θ̂ ∈ Nη for η small enough. This positive signal for misspecified group is ensured by the

separability condition in Assumption S and the identification condition in Assumption ID.

By a similar decomposition for T−1

T∑
t=1

mit(θ̂, g
0
i , h

0
i ), we can show that (i) the noise is also

op(1) and (ii) the signal term E[mit(θ̂, g
0
i , h

0
i )] is arbitrarily small with θ̂ ∈ Nη for η small

enough because E[mit(θ
0, g0

i , h
0
i )] = 0. We can show that, under Assumption R and NT, the

probability of the noise terms being larger than the positive signal term converges to 0 at

rate o(N−1). Therefore, we have Pi,gh(θ̂) converges to 0 at o(N−1) rate and the who group

can be classified consistently. The result is presented in the Theorem below and its formal

proof is given in the Appendix.

Theorem 4.1 Suppose Assumptions ID, R, NT, W, S hold.

P
{
Ĝ = G0 and Ĥ = H0

}
→ 1 as N, T →∞,

where G0 = {g0
1, ..., g

0
N} and H0 = {h0

1, ..., h
0
N} are the true memberships.

Next we study estimation of θ0 = (α0
1, ..., α

0
ng , β

0
1 , ..., β

0
nh
, λ0).Given the group membership

Ĝ and Ĥ, we can estimate θ0 by minimizing a pooled GMM criterion

θ̃ = arg min
θ∈Θ

Q̃(θ), where Q̃(θ) = m̃(θ)′WNT m̃(θ), (20)

with

m̃(θ) = (NT )−1

N∑
i=1

T∑
t=1

m
(
wit;α(ĝi), β(ĥi), λ

)
, (21)
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and WNT is a weighting matrix which could depend on Ĝ and Ĥ. In a linear instrumental

variable model with heterogeneous coefficients, SSP show that the pooled estimator θ̃ is

preferred to θ̂ in (5) because θ̂ typically is less efficient and suffers from asymptotic bias.

Under Theorem 4.1, θ̃ has the same asymptotic distribution as the oracle estimator, which

is defined analogous to θ̃ but imposing the true memberships G0 and H0. Thus, we derive

the asymptotic distribution of θ̃ by studying the oracle estimator.

We first look at the first order derivative of the moment conditions. We assume that the

function m(wit, ·) is differentiable in all parameters. Define

mθ

(
wit; θ

0
i

)
=

[
∂

∂α
m
(
wit; θ

0
i

)
:
∂

∂β
m
(
wit; θ

0
i

)
:
∂

∂λ
m
(
wit; θ

0
i

)]
∈ Rdm×(dang+dβnh+dλ), (22)

where

∂

∂α
m
(
wit; θ

0
i

)
=

[
∂

∂α1

m
(
wit; θ

0
i

)
: · · · : ∂

∂αng
m
(
wit; θ

0
i

)]
∈ Rdm×(dαng),

∂

∂β
m
(
wit; θ

0
i

)
=

[
∂

∂β1

m
(
wit; θ

0
i

)
: · · · : ∂

∂βnh
m
(
wit; θ

0
i

)]
∈ Rdm×(dβnh). (23)

Under the group structure, m(wit, θ
0
i ) do note depend on αg for g 6= g0

i or βh for h 6= h0
i .

Thus, we have

∂

∂αg
m
(
wit; θ

0
i

)
= 1

{
g0
i = g

}
mα(wit, θ

0
i ) for g = 1, ..., ng,

∂

∂βh
m
(
wit; θ

0
i

)
= 1

{
h0
i = h

}
mβ(wit, θ

0
i ) for h = 1, ..., nh, (24)

where

mα(wit, θi) =
∂

∂ai
m (wit; ai, bi, λ) ∈ Rdm×dα ,

mβ(wit, θi) =
∂

∂bi
m (wit; ai, bi, λ) ∈ Rdm×dβ . (25)

The Jacobian matrix is

J = lim
N→∞

N−1

N∑
i=1

E
[
mθ

(
wit; θ

0
i

)]
. (26)

The covariance of the moment condition is

Ω = lim
N→∞

lim
T→∞

N−1

N∑
i=1

ΩiT (θi,0), where

ΩiT (θ0
i ) = T−1

T∑
t=1

T∑
s=1

E
[
m
(
wit; θ

0
i

)
m
(
wis; θ

0
i

)′]
. (27)
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These limits exist because the data is strong mixing over t, i.i.d. over i, and there is a

finite-number of groups whose share converges to constants. We add the following regularity

condition to derive the distribution of θ̃.

Assumption E. (i) J and Ω both have full rank.

(ii) WNT →p W for some full rank matrix W as N, T →∞.

(iii) Assumption R(iii) holds with m(wit; θi) replaced by mθ(wit; θi) and Θ replaced by a

neighborhood around θ0.

Theorem 4.2 Suppose Assumptions Suppose Assumptions ID, R, NT, W, S, E hold. Then,

√
NT

(
θ̃ − θ0

)
→d N(0, V ), where V = (J ′WJ)

−1
J ′WΩW (J ′WJ)

−1
.

In the estimation, αg only shows up in the moment function m(wit;α(ĝi), β(ĥi), λ) if

ĝi = g, i.e., individuals whose coefficient ai belong to the gth group. However, the estimator

α̂g also depends on individuals in other groups through the estimation of β and λ. This is

different from the case of a one-dimensional clustering considered by linear GMM problem

in SSP, where the estimator of cluster specific parameter only depends on individuals in that

cluster.

Application (Continued). In this application, the Jacobian matrix is

J = E[mθ

(
wit; θ

0
i

)
] = −E[zit((1− ρ0),∆vit(ρ

0),∆kit(ρ
0), ωit−1)] (28)

which is full rank under condition (iii) for this example and ρ0 < 1. Let uit = ξit +(
εit − ρ0εit−1

)
. The covariance matrix is

Ω = Σ∞j=−∞Γj, where Γj = E[zitz
′
it−juituit−j]. (29)

We assume Ω is positive definite. In the first step, we use WNT = Idm . In the second

step, we use the optimal weighting matrix WNT = Ω̂−1, where Ω̂ is a heteroskedasticity and

autocorrelation consistent (HAC) covariance estimator of Ω , see Newey and West (1987)

and Andrews (1991). In the construction of the HAC estimator, we replace the expectation

with the sample average over both i and t because this is for the pooled estimator. Similarly,

we can get a consistent estimator of J by replacing the expectation with the sample average

over both i and t and replacing ρ0 with the pooled estimator ρ̃. Assumption E(iii) holds

under condition (iv) for this example, listed below Assumption R. �
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The GMM criterion with the optimal weighting matrix is

Q̃(ng, nh) = m̃(θ̃)′Ω̂−1m̃(θ̃), (30)

where we make it clear that m̃(θ) and Ω̂ are constructed with classification based on ng and

nh groups for α and β, respectively. A BIC criterion for the problem is

BIC(ng, nh) = (NT ) Q̃(ng, nh) + log(NT )(ngdα + nhdβ). (31)

In practice, we can choose (ng, nh) to minimize BIC(ng, nh) with 1 ≤ ng ≤ gmax and

1 ≤ nh ≤ hmax for some user-selected upper bounds gmax and hmax. Besides the BIC criterion,

a wide range of penalty can be derived for model selection consistency, as shown by BM and

SSP for clusters and Bai and Ng (2002) and Cheng, Liao, and Schorfheide (2016) for factor

models. Different from these papers, all parameter are estimated at the
√
NT rate in this

problem and the J statistic, i.e., (NT ) Q̃(ng, nh), is a natural analog of the log-likelihood.

Therefore, the BIC criterion in (31) is a natural choice for selecting the number of clusters.

A formal testing procedure for ng and nh similar to that in Lu and Su (2016) is worth

investigating but is beyond the scope of this paper.

5 Monte Carlo Experiment

We conduct a small Monte Carlo experiment to illustrate the difference between multi-

dimensional and one-dimensional clustering in a simple location model. Let wit = (w1,it, w2,it)
′.

α(k), β(l), k, l ∈ {1, 2} are the parameters of interest and the group memberships are denoted

by gi and hi. We assume that the following moment condition holds at the true parameter

values:

E
[
wit − (α0(g0

i ), β
0(h0

i ))
′] = 0. (32)

Defining θ = (α(1), α(2), β(1), β(2))′ and WiNT = I, where I2×2, where I2×2 identity matrix,

we obtain

Q̂(θ, gi, hi) =

(
T−1

T∑
t=1

w1,it − α(gi)

)2

+

(
T−1

T∑
t=1

w2,it − β(hi)

)2

(33)

=
(
w̄1,i − α(gi)

)2
+
(
w̄2,i − β(hi)

)2
,

where w̄j,i is the time series average of the wj,it’s. Rather than modeling the law of motion

of wj,it explicitly, we simply make distributional assumptions about the w̄j,i’s. For large
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T , we expect the sample averages to be approximately normally distributed, which is why

we are assuming a data generating process (DGP) of the following form (omitting the 0

superscripts)

w̄i =

[
w̄1,i

w̄2,i

]
∼ N

([
α(gi)

β(hi)

]
,

[
σ2(gi, hi) 0

0 σ2(gi, hi)

])
, gi, hi ∈ {1, 2}. (34)

We consider the following parameterization:

[
(α(k), β(l), σ2(k, l))

]
k,l∈{1,2} =

[
(0.3, 0.3, 0.1) (0.3, 0.7, 4.0)

(0.7, 0.3, 0.5) (0.7, 0.7, 2.5)

]
. (35)

The parameters α(k), β(l) and the group memberships gi and hi are estimated based on

the following objective function

Q̂(θ,G,H) = N−1

N∑
i=1

(
w̄1,i − α(gi)

)2
+N−1

N∑
i=1

(
w̄2,i − β(hi)

)2
. (36)

In our stylized DGP, the co-clustering algorithm determines the group memberships gi from

w̄1,i, whereas the group memberships hi are determined from w̄2,i. The GMM estimator

(θ̂, Ĝ, Ĥ) has the following representation. There are cutoff points α̂∗ and β̂∗ such that

ĝi =

{
1 if w̄1,i < α̂∗

2 otherwise
ĥi =

{
1 if w̄2,i < β̂∗

2 otherwise

and

α̂(k) =
N−1

∑N
i=1 w̄1,i1{ĝi = k}

N−1
∑N

i=1 1{ĝi = k}
, β̂(l) =

N−1
∑N

i=1 w̄2,i1{ĥi = l}
N−1

∑N
i=1 1{ĥi = l}

, k, l ∈ {1, 2}.

In this simple linear setting in which the estimators are sample averages, the GMM estimator

θ̂ is identical to pooled GMM estimator θ̃ in (20).

Under a single-dimensional clustering approach one would form four separate groups

which we denote by (1, 1), (1, 2), (2, 1), and (2, 2). The parameters ai and bi could now

take on four different values each. Accordingly, we write ai = αc(gi, hi) and bi = βc(gi, hi).

Here we use c subscript to indicate one-dimensional clustering. The resulting least squares

objective function takes the form

Q̂c(θc, G,H) = N−1

N∑
i=1

(
w̄1,i − αc(gi, hi)

)2
+N−1

N∑
i=1

(
w̄2,i − βc(gi, hi)

)2
. (37)
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Table 1: Monte Carlo Results

Membership

Known Estimated

Algorithm MSE Bias2 MSE Bias2

Estimate of α(1)

2D Clustering (0.3, · , · ) .0082 0 0.401 0.320

1D Clustering (0.3, 0.3, 0.1) .0008 0 0.686 0.183

1D Clustering (0.3, 0.7, 4.0) .0320 0 2.853 1.814

Estimate of α(2)

2D Clustering (0.7, · , · ) .0060 0 1.220 1.127

1D Clustering (0.7, 0.3, 0.5) .0040 0 1.397 1.007

1D Clustering (0.7, 0.7, 2.5) .0200 0 1.399 0.743

Unit-level Estimate of ai

2D Clustering .0071 0 0.875 .0416

1D Clustering .0142 0 1.025 .0063

Notes: The results are based on nsim = 2, 000 samples of size N = 500 with 125 observations from each of
the four groups.

It is now no longer additively separable because the αc(·) and βc(·) functions depend on both

gi and hi. The standard one-dimensional clustering algorithm divides the α-β plane into four

sections. However, unlike in the case of the two-dimensional clustering, the boundaries of

these segments are not simply given by the intersection of a horizontal and a vertical line.

We now generate samples nsim = 2, 000 samples of size N = 500 from the DGP in

(34). Each sample has 125 observations from the four groups. The results are summarized

in Table 1. We report mean-squared errors (MSE) and squared bias for α̂(·) and âi. The

estimation error for ai can be decomposed as follows:

âi − ai =
(
α̂(gi)− α(gi)

)
+
(
α̂(ĝi)− α̂(gi)

)
.

The first term captures the error caused by the estimation of α(·), assuming that the group

memberships are known. In this case all estimates are unbiased. The resulting MSEs capture

the estimation variance and are summarized in the second column of Table 1. They can

be directly calculated by taking appropriate averages of σ2(gi, hi). For instance, for two-

dimensional clustering we obtain an MSE(α̂(1)) of 0.25 · (σ2(1, 1)/125 + σ2(1, 2)/125). One-

dimensional clustering generates two estimates MSE(α̂(1, l)) = σ2(1, l)/125, l ∈ {1, 2}.
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Because the two-dimensional clustering estimator is based on the identity weight matrix,

under known group memberships it dominates the one-dimensional estimate based on the

high-variance cluster, α̂(1, 2), but not the estimate based on the low-variance cluster, α̂(1, 1).

The four groups have equal shares in the simulated samples. Therefore, the MSEs associated

with the unit-level estimates of ai are simply averages of the MSEs associated with the

estimates of the various α’s. Due to this averaging, the two-dimensional clustering dominates

the one-dimensional clustering even if group memberships are known.

The results in the last two columns of Table 1 capture both the estimation error of the

α’s and the misclassification errors. If the group membership has to be estimated, the MSEs

increase drastically. This is not surprising because the centers of the group-specific Normal

distributions in (34) are close to each other relative to their respective variances. Roughly

50% of the observations are missclassified. While the bias component of the one-dimensional

clustering estimator often exceeds that of the two-dimensional clustering procedure, the

pooling of observations leads to a strong variance reduction so that in terms of MSEs the

two-dimensional clustering estimator clearly dominates.

The parameterization of the DGP in (35) sets a very high bar for the clustering algo-

rithms. Under the large (N, T ) asymptotics the variance of w̄j,i will shrink as T →∞. This

makes it easier to detect the group memberships and the bias from the classification error

would eventually vanish.

6 Empirical Analysis

Our empirical analysis re-examines the rise of aggregate markups documented by De Loecker,

Eeckhout, and Unger (2018). Rising markups are a reflection of a decrease of competitiveness

within sectors and can contribute to the observed fall of the labor share and increase in income

inequality. We show that allowing for multi-dimensional group heterogeneity within firms in

two-digit NAICS sectors leads to a lower level of estimated markups and a smaller growth

rate. Section 6.1 reviews the specification of the production function and the computation of

the markups. The data set and the model specifications considered in the empirical analysis

are described in Section 6.2. The empirical results are presented in Section 6.3.
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6.1 Production Function and Markups

We will now estimate firm-level Cobb-Douglas production functions. Each firm is part of a

sector d which we take to be a a two-digit NAICS sector. We follow the setup discussed in

Section (2). The production function and the autoregressive law of motion for the unobserved

productivity shock ωit are given in (8) and (9), respectively. For convenience, we reproduce

the equations:

yit = ai + bivit + cikit + ωit + εit, ωit = ρωit−1 + ξit.

The GMM estimation is based on the moment conditions (12). Recall that the production

function is quasi-differenced to eliminate the serial correlation in ωit and the vector of in-

struments is defined as zit = (1, kit, kit−1, vit−1)′. We allow for group heterogeneity in ai, bi,

and ci. In addition to α(·) and β(·), we define γ(·) to characterize the group-specific values

of ci. We use ji to indicate group memberships for the third group and nj to denote the

number of groups.

Based on the estimated variable input elasticities we compute an estimate of the firms’

markups. De Loecker and Warzynski (2012) show that if vit induces no dynamic constraints

in the firm’s cost minimization problem and if the firm’s capital is predetermined, then the

markup can be expressed as a function of the revenue-to-variable-cost ratio

muit = bi
pyit exp[yit]

pvit exp[vit]
, (38)

where pyit and pvit are firm-specific prices of the output and the variable input, respectively.

Using market shares, we aggregate the firm-level markups to the sectoral level and the

economy-wide level. Let Idt be the set of firms i that belong to sector d. Then the sector-

level and the economy-wide markups are given by

mudt =
∑
i∈Idt

(
pyit exp[yit]∑
i∈Idt

pyit exp[yit]

)
muit, mut =

N∑
i=1

(
pyit exp[yit]∑N
i=1 p

y
it exp[yit]

)
muit. (39)

6.2 Data Set, Model Specifications, and Estimation

As in De Loecker, Eeckhout, and Unger (2018) and Flynn, Gandhi, and Traina (2019),

the firm-level data set is constructed from the Compustat Fundamentals (North America)

database. We take a time period t to be one year. The firms’ Sales of Goods and Cost of

Goods Sold are used as output and variable input, respectively. The firms’ capital stocks

are calculated based on the perpetual inventory method using the Net Property, Plant, and
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Table 2: Two-Digit-Level Sectors Used in Estimation of Models with Group Heterogeneity

NAICS Description

21 Mining, Quarrying, and Oil and Gas Extraction

23 Construction

31 Manufacturing (Food, Apparel, and other Consumer Goods)

32 Manufacturing (Paper, Wood, Petroleum, Chemical,

and Non-Metallic Minerals Related)

33 Manufacturing (Furniture, Metal, Electronic, and Machinery Related)

42 Wholesale Trade

44 Retail Trade (Food, Apparel, Vehicles, and other Consumer Goods)

45 Retail Trade (Entertainment, Department Stores, Online, etc.)

48 Transportation

51 Information

54 Professional, Scientific, and Technical Services

56 Administrative and Support Services, etc.

62 Health Care and Social Assistance

72 Accommodation and Food Services

Equipment series. Nominal variables are converted to real variables using the appropriate

deflators. Our sample starts in 1961 and ends in 2016. Further details on data definitions,

transformations, and subsample selection are provided in the Online Appendix.

There are 22 two-digit NAICS sectors. We exclude the following sectors from the sub-

sequent analysis: Finance and Insurance (NAICS 52), Real Estate and Rental and Leasing

(NAICS 53), and Public Administration (NAICS 92). Five sectors (NAICS 11, 49, 61, 71,

81) have relatively few firms so that there are not enough observations in the cross section to

estimate group-specific effects. We will estimate production functions for firms in these sec-

tors by imposing homogeneity. The 14 sectors for which we estimate group-specific firm-level

production functions are listed in Table 2.

The subsequent analysis is conducted for firms that are associated with the same two-

digit NAICS sector d. Hence, we drop the sector sub- and superscripts d if no ambiguity

arises. We estimate the coefficients of the production function (8) for a sequence of rolling

samples. The length of the rolling sample is T = 10 years. The first sample spans the period
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from 1961 to 1970 whereas the last rolling sample ranges from 2007 to 2016. The estimation

for sector d includes firms for which we have at least one observation between t = 1, . . . , T .

We set the number of groups for ai, bi, and ci equal to ng = nh = nj = 3.4 We refer

to the results obtained from our multi-dimensional clustering estimator implemented with

Algorithm 1 as estimated heterogeneity. In addition, we consider two alternative estimators.

The homogeneity estimator is based on imposing that all firms within a sector d use the same

production function. This corresponds to ng = nh = nj = 1. The subsector heterogeneity

estimator assumes that the production functions differ across three-digit NAICS codes. Thus,

it is based on a grouping determined by a statistical agency instead of an estimation criterion.

An important set in the empirical analysis is to determine the sector-specific degree

of heterogeneity in the production function coefficients. To do so, we use a quasi-Bayesian

information criterion introduced in (31). For sample τ and model specification m, we rewrite

the criterion as

BICτ (m) = Sτ Q̃τ,m(θ̃, Ĝ, Ĥ, Ĵ) + km logSτ , (40)

where km is the number of group-specific and homogeneous coefficients and Sτ is the total

number of observations in each panel τ , accounting for the fact that the panel is unbal-

anced.5 Thus, we will use the criterion to compare the three above-mentioned specifications:

estimated heterogeneity, homogeneity, and subsector heterogeneity.

6.3 Empirical Results

We will begin with evidence of firm heterogeneity within two-digit industries, discuss esti-

mation results for the manufacturing sector (NAICS 32) in more detail, and then present

summaries of the results across all sectors and rolling samples.

Model Selection. Table 3 summarizes the results from applying the information criteria.

Rather than computing the BIC for each period separately, we are averaging over multiple

samples. We report the averaged BIC in (40) and its components for the heterogeneous and

homogeneous specifications. Under heterogeneity there are generally ten free parameters:

three productivities α(·), three variable input elasticities β(·), three capital elasticities γ(·),
and the autoregressive coefficient ρ. For a few industries we use slightly more restrictive

specifications. Under homogeneity, there are four parameters to estimate. For all sectors,

the heterogeneous specification is preferred to the homogeneous specification. The reduction

4There are three exceptions; see notes for Table 3.
5Under subsector heterogeneity we also estimate separate ρ’s for each three-digit industry.
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Table 3: Model Selection

Heterogeneity Homogeneity

NAICS BIC SQ̃m km logS km BIC SQ̃m km logS km

21 223 131 92 10 36,508 36,471 37 4

23 81 30 51 7 12,775 12,746 29 4

31 2,685 2,593 92 10 23,700 23,663 37 4

32 532 434 98 10 75,791 75,752 39 4

33 511 401 110 10 135,938 135,894 44 4

42 110 30 80 9 27,507 27,472 35 4

44 89 5 84 10 16,935 16,901 34 4

45 401 319 82 10 15,132 15,099 33 4

48 1,015 929 86 10 14,749 14,714 35 4

51 749 652 97 10 69,851 69,812 39 4

54 1,074 985 89 10 35,755 35,719 36 4

56 1,188 1,113 75 9 16,418 16,385 33 4

62 1,180 1,100 80 10 20,568 20,536 32 4

72 795 712 83 10 14,932 14,899 33 4

Notes: All table entries are rounded. Due to data limitations we restricted the heteroneity in three industries.
For 23 we use ng = 3 (productivity), nh = 2 (variable inputs), nj = 1 (capital). For 42 we use ng = 3
(productivity), nh = 2 (variable inputs), nj = 2 (capital). For 56 we use ng = 3 (productivity), nh = 3
(variable inputs), n2 = 1 (capital).

in the goodness-of-fit term SQ̃m induced by the additional parameters outweighs the increase

in the penalty term km logS by a wide margin.

Estimated Parameters and Groupings. Table ?? contains estimates of firm-specific

productivities α(·), variable input elasticities β(·), and capital elasticities γ(·). We consider

four non-overlapping samples. Each of the samples features substantial heterogeneity in

productivity. The heterogeneity in variable input and capital elasticities in the early samples,

1965-74 and 1975-84 is less pronounced. These periods feature only one or two, instead of

three, distinct estimate of β(·) and γ(·). From 1985 onwards, the amount of heterogeneity

appears to be increasing, as the parameter estimates for the three β(·) and γ(·) groups are

quite different from each other.

The two panels of Table 6 provide information about the number of firms belonging to

each of the groups. Here we focus on the 2007-16 sample estimates of parameters and group
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Table 4: Parameter Estimates

Productivity Variable Input Capital

Sample α̂(1) α̂(2) α̂(3) β̂(1) β̂(2) β̂(3) γ̂(1) γ̂(2) γ̂(3)

Manufacturing (NAICS 33)

1976-1986 0.02
(0.01)

0.061
(0.002)

0.124
(0.019)

0.71
(0.057)

0.761
(0.049)

0.786
(0.072)

0.027
(0.032)

0.087
(0.048)

0.219
(0.051)

1987-1997 0.148
(0.024)

0.3
(0.01)

0.32
(0.031)

0.902
(0.02)

0.904
(0.003)

0.913
(0.025)

0.051
(0.043)

0.065
(0.05)

0.079
(0.057)

1998-2008 0.423
(0.02)

0.651
(0.021)

0.734
(0.02)

0.866
(0.058)

0.877
(0.004)

0.877
(0.035)

0.103
(0.013)

0.106
(0.025)

0.119
(0.03)

2009-2019 0.244
(0.016)

0.304
(0.017)

0.364
(0.009)

0.94
(0.077)

0.942
(0.077)

0.951
(0.007)

0.052
(0.0431)

0.056
(0.044)

0.063
(0.041)

Mining (NAICS 21)

1976-1986 −0.074
(0.162)

0.026
(0.063)

0.079
(0.2)

0.311
(0.215)

0.423
(0.113)

0.469
(0.148)

0.202
(0.185)

0.5
(0.121)

1.111∗
(0.13)

1987-1997 −0.117
(0.039)

−0.001
(0.072)

0.045
(0.02)

0.441
(0.209)

0.604
(0.415)

0.638
(0.075)

0.122
(0.0118)

0.297
(0.449)

0.67
(0.221)

1998-2008 −0.229
(0.149)

0
(0.046)

0.115∗
(0.059)

0.708
(0.109)

0.717
(0.055)

0.737
(0.051)

0.312
(0.163)

0.353
(0.065)

0.376
(0.16)

2009-2019 −0.1643
(0.038)

0.025
(0.058)

0.2∗
(0.073)

0.152
(0.157)

0.33
(0.07)

0.359
(0.039)

0.448
(0.143)

0.57
(0.223)

0.771∗
(0.122)

memberships. Because firms enter and exit the panels, we compute the number of group

members for a particular year within the estimation sample, namely 2016. Panel (1) of the

figure has the estimates of the group-specific parameters and the number of group members.

Except for the high-productivity group (α̂(3) = 0.676), which only has five members and

capture probably some outliers in the sample, all other groups have a substantial number of

observations, allowing us to sharply estimate the group-specific coefficients. Panel (2) reports

the number of firms associated with the 3 ∗ 3 ∗ 3 = 27 parameter combinations that can be

formed based on the nine α(·), β(·), and γ(·) estimates. The most striking feature is that

the entries in the table are sparse, in the sense that many cells have less than 10 firms. As

pointed out previously, there are very few high productivity firms. More interestingly, there

are few firms with medium productivity, high capital elasticity and low or medium variable

input elasticity. For these sparse configurations, a one-dimensional clustering strategy based

on 27 groups would have been very inefficient. Our multi-dimensional approach allows us to

“extrapolate” our estimates into these sparsely-populated cells.

Figure 2 depicts the composition of the three variable cost elasticity groups for 2016. Each

segment of the pie chart corresponds to a different three-digit subsector of the Manufacturing
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Table 5: Group Sizes: Manufacturing (NAICS 33), 1994-2004 Sample, 1999 Firms

Panel (1)

Productivity Variable Input Capital

α̂(1) α̂(2) α̂(3) β̂(1) β̂(2) β̂(3) γ̂(1) γ̂(2) γ̂(3)

Estimate −0.349
(0.072)

0.087
(0.016)

0.213
(0.031)

0.379
(0.063)

0.501
(0.083)

0.647
(0.069)

0.157
(0.04)

0.328
(0.238)

0.596
(0.159)

Members 324 626 784 463 25 1246 987 370 377

Panel (2)

α̂(1) α̂(2) α̂(3)

β̂(1) β̂(2) β̂(3) β̂(1) β̂(2) β̂(3) β̂(1) β̂(2) β̂(3)

γ̂(1) 25 1 61 254 4 30 18 1 593

γ̂(2) 8 1 67 40 3 160 31 10 50

γ̂(3) 10 1 150 68 3 64 9 1 71

Table 6: Group Sizes: Mining (NAICS 21), 1978-1988 Sample, 1983 Firms

Panel (1)

Productivity Variable Input Capital

α̂(1) α̂(2) α̂(3) β̂(1) β̂(2) β̂(3) γ̂(1) γ̂(2) γ̂(3)

Estimate −0.222
(0.059)

0.039
(0.066)

0.332
(0.037)

0.151
(0.037)

0.262
(0.159)

0.781
(0.08)

0.0269
(0.0938)

0.453
(0.056)

0.786
(0.101)

Members 122 104 127 42 97 214 132 140 81

Panel (2)

α̂(1) α̂(2) α̂(3)

β̂(1) β̂(2) β̂(3) β̂(1) β̂(2) β̂(3) β̂(1) β̂(2) β̂(3)

γ̂(1) 3 27 9 0 19 15 7 21 31

γ̂(2) 0 4 54 2 8 32 23 4 13

γ̂(3) 1 5 19 1 2 25 5 7 16
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Figure 1: Group Composition: Manufacturing (NAICS 33), 1994-2004 Sample, 1999 Firms

Group β̂(1) = 0.38 Group β̂(2) = 0.5 Group β̂(3) = 0.647

Notes: 331 = Iron and Steel Mills and Ferroalloy Manufacturing, 332 = Forging and Stamping, 333 = Agri-
culture, Construction, and Mining Machinery Manufacturing, 334 = Computer and Peripheral Equipment
Manufacturing, 335 = Electric Lighting Equipment Manufacturing, 336 = Motor Vehicle Manufacturing,
337 = Household and Institutional Furniture and Kitchen Cabinet Manufacturing, 339=Other Miscellaneous
Manufacturing.

Figure 2: Group Composition: Mining (NAICS 21), 1978-1988 Sample, 1983 Firms

Group β̂(1) = 0.15 Group β̂(2) = 0.26 Group β̂(3) = 0.78

Notes: 211 = Oil and Gas Extraction, 212 = Mining, 213 = Support Activities for Mining.

sector 32. The figure shows that each of the 7 subsectors is represented in each group. In fact,

the subsector shares are very similar across β(·) groups. Thus, the estimated classification

is very different from the classification of the statistical agency.

Elasticity Estimates. The firm-specific markups depend on the elasticity estimates b̂i and

the average markup is a function of the distribution of the b̂i’s within and across industries;
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Figure 3: Quantiles of Estimated Elasticities Across Sectors
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Notes: The graphs depicts the 10%, 25%, 50%, 75%, 90%, and 95% quantiles of the cross-sectional distribu-
tions of the estimated elasticities across all two-digit sectors included in the analysis.

see (38) and (39). In the top row of Figure 3 we plot quantiles of the cross-sectional dis-

tribution of the variable input elasticity estimates b̂i. The time series dimension of the plot

traces out the sequence of rolling samples based on which we are estimating the produc-

tion functions. The year on the x-axis corresponds to the midpoint (sixth observation) of

each estimation sample. Because the our data set ends in 2016, the last five cross-sectional

distributions for 2012 to 2016 are based on estimates from the 2007-16 sample.
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The b̂i estimates are weighted by the market share of firm i in that particular year.

Because market shares fluctuate over time and firms enter and exit, the distribution of

parameter estimates between 2012 and 2016 varies, even though the underlying estimates

α̂(·), β̂(·), and γ̂(·) are the same. The columns of subplots in the figure correspond to the

three model specifications estimated heterogeneity, subsector heterogeneity, and homogeneity.

Under estimated heterogeneity the b̂i estimates are lower than under subsector heterogeneity.

By construction the estimates that impose homogeneity are generally less dispersed because

they are identical within sector.

The second row shows the evolution of the cross-sectional distribution of the returns

to scale, b̂it + ĉit. The sequence of medians fluctuates slightly below one indicating that

the median firm operates approximately with constant returns to scale. The dispersion of

the returns to scale estimates is larger under estimated heterogeneity than under the other

two specification. This is consistent with the interpretation that grouping firms incorrectly

(or imposing homogeneity), leads to estimates that average over high and low population

parameters and are not representative of the dispersion in the population. The last row of

Figure 3 shows the quantiles of the autocorrelation estimates. Under estimated heterogeneity

all ρ̂’s are very close to one, whereas for the other two specifications the estimates in the

bottom quantiles often fall below 0.8.

Markup Estimates. Figure 5 shows the cross-sectional distribution of estimated markups

over time, weighted by the firms’ market shares. The timing convention is the same as in Fig-

ure 3. Recall that the markups are obtained by scaling the b̂i’s by the revenue-to-variable-cost

ratio; see (38). Because the elasticity estimates obtained from the estimated heterogeneity

specification are lower than from the other two specifications, so are the markups. In the

bottom panels we show empirical distribution functions for the years 1990, 2000, and 2016.

The graphs indicate a clear stochastic dominance. In all three periods, the distribution func-

tion associated with estimated heterogeneity lies above the distribution functions obtained

from the other two specifications, indicating that the estimated markups are lower.

Using (39) we now compute estimates of the average markup across the sectors consid-

ered in our analysis. The results are depicted in Figure 5. The main result is that the overall

level of the aggregate markup is lower and the rise in the markup between 1970 and 2016

is less pronounced under estimated heterogeneity, than it is under subsector heterogeneity

and homogeneity. Estimated slope coefficients from a simple deterministic time trend model

imply that according to the estimated heterogeneity version markups have risen by approxi-

mately 0.4 percentages annually. Under the homogeneity specification the annual increase is
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Figure 4: Distribution of Markups Across Sectors

Time Series of 10%, 25%, 50%, 75%, 90%, and 95% Quantiles

Estimated Heterog. Homogeneity

Cumulative Distribution Functions

1990 2000 2016

Notes: Top row: the graphs depict the evolution of the 10%, 25%, 50%, 75%, 90%, and 95% quantiles of the
cross-sectional distributions of the estimated elasticities across all two-digit sectors included in the analysis.
Bottom row: cumulative distribution functions for selected years based on estimated heterogeneity (red,
solid), homogeneity (green, dashed-dotted).

on average 0.7 percentages. Because our selection criterion prefers chooses the estimated het-

erogeneity specificaton for the majority of sectors, we regard the resulting markup estimates

from this specification as more reliable.

7 Conclusion

Explicitly modeling and estimating heterogeneous parameters, as opposed to simply “dif-

ferencing them out” and focusing exclusively on homogeneous parameters, is an important
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Figure 5: Aggregate Markups

Notes: Estimated heterogeneity (red), homogeneity (green).

development in the panel data literature. Our paper contributes to this literature by de-

veloping a GMM framework that allows for multi-dimensional group heterogeneity. In this

framework each unit is associated with multiple groups, where each group is formed for a

different characteristic of the unit. In the application, we clustered firms based on their

productivity, and their elasticities of output with respect to variable inputs and capital. In

our application we show that accounting for multi-dimensional group heterogeneity leads to

lower estimates of the level and growth of aggregate markups than specifications that assume

production technologies are homogeneous within two-digit NAICS sectors.
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Online Appendix for “Clustering for
Multi-Dimensional Heterogeneity”

Xu Cheng, Frank Schorfheide, and Peng Shao

A Proofs

Proof of Lemma 3.1. Define the population criterion

QN(θ,G,H) = N−1

N∑
i=1

Qi(θ, gi, hi), where

Qi(θ, gi, hi) = E[m (wit;α(gi), β(hi), λ)]′WiE[m (wit;α(gi), β(hi), λ)]. (A.1)

By Assumption W and (14), we have the uniform convergence

sup
(θ,G,H)∈Θ×ΓG×ΓH

|Q̂N(θ,G,H)− Q̂N(θ,G,H)| = op(1). (A.2)

Define

d(θ,G,H) = N−1

N∑
i=1

di (θi) , where

di(θi) =
(
α(gi)− α0(g0

i )
)2

+
(
β(hi)− β0(h0

i )
)2

+ ||λ− λ0||2. (A.3)

We show that, for any δ > 0, there exists ε > 0 such that

inf
d(θ,G,H)>δ

QN(θ,G,H) ≥ ε. (A.4)

Given that θi has a compact support Θ for all i, let C = sup
i

sup
θi∈Θ

di(θi) < ∞. Let S = {i :

di(θi) > δ/2} and NS =
N∑
i=1

1{i ∈ S}. Note that di(θi) ≤ C for i ∈ S and di(θi) ≤ δ/2

for i /∈ S. Thus, NSC + (N − NS)δ/2 ≥ Nd(θ,G,H) ≥ Nδ, which implies that NS ≥
Nδ/(2C − δ) > Nδ/(2C). Then,

inf
d(θ,G,H)>δ

QN(θ,G,H) ≥ inf
d(θ,G,H)>δ

N−1
∑
i∈S

Qi(θ, gi, hi) ≥
Ns

N
min
i∈S

Qi(θ, gi, hi) ≥
δ

2C
ε∗,

(A.5)

where the last step holds because min
i∈S

Qi(θ, gi, hi) ≥ ε∗ for some ε∗ > 0 by Assumption ID

and W. Thus, the identification condition for QN(θ,G,H) in (A.4) holds with ε = δε∗/(2C).

Results in (A.5) is analogous to Lemma A.4 in Liu et al. (2018).
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Finally, we show the consistency result by combining (A.2) and (A.4). For any δ > 0,

there exists ε > 0, such that

P
{
d(θ̂, Ĝ, Ĥ) > δ

}
≤ P

{
QN(θ̂, Ĝ, Ĥ) ≥ ε

}
= P {d1 + d2 + d3 ≥ ε} , (A.6)

where

d1 = QN(θ̂, Ĝ, Ĥ)− Q̂N(θ̂, Ĝ, Ĥ),

d2 = Q̂N(θ̂, Ĝ, Ĥ)− Q̂N(θ0, G0, H0),

d3 = Q̂N(θ0, G0, H0)−QN(θ0, G0, H0). (A.7)

Because d2 ≤ 0 by definition of the estimator and d1 = op(1) and d3 = op(1) by (A.2), (A.6)

implies that P{d(θ̂, Ĝ, Ĥ) > δ} → 0 for any δ > 0. This completes the proof. �

Proof of Lemma 3.2. Given Lemma 3.1 and Assumption S, this Lemma follows from

the same arguments used to show Lemma B.3 of BM. The arguments can be applied to

α and β separately in our set-up. There is no need to take sample average here because

our parameters are not time-varying. Lemma B.3 also shows how to relabel the groups and

shows that this is a one-to-one mapping with probability approaching 1. �

Proof of Theorem 4.1. Let EW = 1{max
i
‖WiNT −Wi‖ ≤ η} for some small constant η,

Assumption W shows that EW = 1 with probability approaching 1. Conditional on EW = 1,

for (gi, hi) 6= (g0
i , h

0
i ), we have shown in (16)-(18) that

P
{
ĝi = gi, ĥi = hi

}
≤ P

{
Q̂i(θ̂, gi, hi) < Q̂i(θ̂, g

0
i , h

0
i )
}

≤ P

c1

∥∥∥∥∥ 1

T

T∑
t=1

mit(θ̂, gi, hi)

∥∥∥∥∥
2

≤ c2

∥∥∥∥∥ 1

T

T∑
t=1

mit(θ̂, g
0
i , h

0
i )

∥∥∥∥∥
2
 (A.8)

for constants c2 > c1 > 0. Using the decomposition in (19) and the triangle inequality,∥∥∥∥∥ 1

T

T∑
t=1

mit(θ̂, gi, hi)

∥∥∥∥∥
2

≥
∥∥∥bi(θ̂, gi, hi)∥∥∥− ∥∥∥δi(θ̂, gi, hi)∥∥∥2

, (A.9)

where

δi(θ̂, gi, hi) =
1

T

T∑
t=1

mit(θ̂, gi, hi)− E[mit(θ̂, gi, hi)],

bi(θ̂, gi, hi) = E[mit(θ̂, gi, hi)].
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By a similarly decomposition,∥∥∥∥∥ 1

T

T∑
t=1

mit(θ̂, g
0
i , h

0
i )

∥∥∥∥∥
2

≤
∥∥∥bi(θ̂, g0

i , h
0
i )
∥∥∥+

∥∥∥δi(θ̂, g0
i , h

0
i )
∥∥∥2

. (A.10)

Below we analyze the four terms δi(θ̂, gi, hi), bi(θ̂, gi, hi), δi(θ̂, g
0
i , h

0
i ), bi(θ̂, g

0
i , h

0
i ).

For θ̂ ∈ Nη = {θ ∈ Θ : ||θ − θ0||2 ≤ η2}, we have∥∥∥bi(θ̂, gi, hi)∥∥∥2

=
∥∥∥E[mit(θ̂, gi, hi)]− E[mit(θ

0, g0
i , h

0
i )]
∥∥∥2

≥ b1,i

(
α0
g, β

0
h

)
− b2,i (αg, βh) (A.11)

where

b1,i

(
θ0, gi, hi

)
=

∥∥E[mit

(
θ0, gi, hi

)
]− E[mit(θ

0, g0
i , h

0
i )]
∥∥2
,

b2,i

(
θ̂, gi, hi

)
=

∥∥∥E[mit(θ̂, gi, hi)]− E[mit(θ
0, gi, hi)]

∥∥∥2

, (A.12)

where the first term b1,i(θ
0, gi, hi) is due to misspecification of group and the second term

b2,i(θ̂, gi, hi) is due to the estimation error between θ̂ and θ0. By Assumption ID and S,

b1,i

(
θ0, gi, hi

)
≥ m0 (A.13)

for some m0 > 0 for any (gi, hi) 6= (g0
i , h

0
i ). By Assumption R(iii),

b2,i

(
θ̂, gi, hi

)
≤M0η

2 (A.14)

for some M0 <∞. Therefore, ∥∥∥bi(θ̂, gi, hi)∥∥∥2

≥ m0 −M0η
2. (A.15)

Similarly, we have∥∥∥bi(θ̂, g0
i , h

0
i )
∥∥∥ =

∥∥∥E[mit

(
θ̂, g0

i , h
0
i

)
]− E[mit(θ

0, g0
i , h

0
i )]
∥∥∥2

≤ M0η
2. (A.16)

Combining (A.8) with (A.9), (A.10), (A.15), (A.16), we obtain

Pi,gh(θ̂)

≤ P

{
c1m0 − c1M0η

2 − c2M0η
2 ≤ c1

∥∥∥δi(θ̂, gi, hi)∥∥∥2

+ c2

∥∥∥δi(θ̂, g0
i , h

0
i )
∥∥∥2
}
. (A.17)
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Take η > 0 small enough such that

s = c1m0 − c1M0η
2 − c2M0η

2 > 0. (A.18)

Note that δi(θ̂, gi, hi) and δi(θ̂, g
0
i , h

0
i ) both are differences between sample mean and popu-

lation mean. Under Assumption R,

max
1≤i≤N

P

{
c1

∥∥∥δi(θ̂, gi, hi)∥∥∥2

≥ s

}
= o(N−1),

max
1≤i≤N

P

{
c2

∥∥∥δi (θ̂, gi, hi)∥∥∥2

≥ s

}
= o(N−1), (A.19)

by Lemma S1.2(ii) of SSP. Therefore, for any (gi, hi) 6= (g0
i , h

0
i ),

max
1≤i≤N

P
{
ĝi = gi, ĥi = hi

}
= o(N−1) (A.20)

for θ̂ ∈ Nη. Because gi and hi both have finite support, we obtain

max
1≤i≤N

P
{
ĝi 6= g0

i , ĥi 6= h0
i

}
= o(N−1) (A.21)

for θ̂ ∈ Nη.

Finally, conditional on θ̂ ∈ Nη and EW = 1, we have

P
{
Ĝ = G0 and Ĥ = H0

}
= 1− P

{
1
{

(ĝi, ĥi) 6= (g0
i , h

0
i )
}

for some i
}

≥ 1−N max
1≤i≤N

P
{

(ĝi, ĥi) 6= (g0
i , h

0
i )
}

→ 1. (A.22)

By Lemma 3.2 and Assumption W, P{θ̂ ∈ Nη} → 1 and P{EW = 1} → 1, which gives the

desirable result together with (A.22). �

Proof of Theorem 4.2. Because Ĝ = G0 and Ĥ = H0 with probability approaching 1, θ̃

has the same asymptotic distribution as the oracle estimator θ that is obtained by assuming

G0 and H0 are known, i.e.,

θ = arg min
θ∈Θ

Q(θ), where Q(θ) = m(θ)′WNTm(θ), (A.23)

with

m(θ) = (NT )−1
N∑
i=1

T∑
t=1

m
(
wit;α(g0

i ), β(h0
i ), λ

)
. (A.24)
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Now we derive the asymptotic distribution of θ. This is a standard GMM problem. By

Assumption ID, E(ii), and (14), we have the typical identification and uniform convergence

conditions for the consistency of θ. To get the asymptotic distribution, it is sufficient to

show for some η > 0,

N−1

N∑
i=1

sup
||θi−θ0i ||≤η

∥∥∥∥∥T−1

T∑
t=1

mθ (wit; θi)− E [mθ (wit; θi)]

∥∥∥∥∥→p 0 (A.25)

and

(NT )−1/2
N∑
i=1

T∑
t=1

m
(
wit; θ

0
i

)
→d N(0,Ω) (A.26)

as N, T →∞. The first result in (A.25) follows from a uniform convergence over i, which is

obtained by applying Lemma S1.2(iii) of SSP under Assumption R and E(iii). The second

result in (A.26) follows from verifying a Lindeberg-Feller central limit theorem. Lemma

S1.12 of SSP proves a result of the same form and provide the details of the verification, see

p.29 of the Supplement to SSP. This completes the proof. �

Verification of Assumptions for the Production Function Example.

We first verify Assumption ID. For any θi = (ai, bi, ci, ρ), we have

∆yit(ρ) = a0
i (1− ρ) + b0

i vit(ρ) + c0
i kit(ρ) + (ρ0 − ρ)ωit−1 + ξit + εit − ρεit−1, (A.27)

and

E [zit (∆yit(ρ)− ai(1− ρ)− bi∆vit(ρ)− ci∆kit(ρ))]

= E
[
zit
((
a0
i − ai

)
(1− ρ) +

(
b0
i − bi

)
∆vit(ρ) +

(
c0
i − ci

)
∆kit(ρ) + (ρ0 − ρ)ωit−1

)]
(A.28)

under condition (i). Assumption ID holds under µmin(E[zitxit(ρ)]′) ≥ δ > 0 and ρ < 1.

Assumption R(i)-R(ii) holds automatically under conditions (i) and (ii). The first order

derivative is

mθ (wit; θi) = −zit[(1− ρ),∆vit(ρ),∆kit(ρ), yit−1 − ai − bivit−1 − ckit−1]. (A.29)

Assumption R(iii) and E(iii) holds under E||zitdit||q ≤ C. �
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