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toward longer-term stability. The tetraalkyl 

phosphonium salt stably shuttles protons 

from the anode as the cation to donate them 

to nitrogen reduced at the cathode to form 

an ylide. Critically, this salt is not consumed 

like the previously reported sacrificial alcohol 

donor. The salt also enhances ionic conduc-

tivity, which allows this system to achieve 

high NH
3
 production rates (60 nmol s-1 cm-2) 

in 20-hour experiments at 20 bar N
2
. 

Despite these advances, no reported sys-

tem is ideal. The ideal system would operate 

at negligible overpotential (that is,  toward 

100% potential efficiency), with high current 

densities (>1 A/cm2) because of  high turnover 

frequencies, have a lifetime of at least 5 years, 

and achieve 100% selectivity to NH
3
 (see blue 

stars in the figure). The best turnover num-

bers are still only ~105 per site, well below the 

ideal of ~1010 per site. Crucially, the depend-

ence on metallic lithium results in a built-in 

requirement for high potential losses given 

the negative reduction potential of Li+. The 

organic electrolyte is also highly resistive, 

which results in an incredibly low energy ef-

ficiency (13, 14). 

The SEI layer itself could be a source 

of instability. During NH
3
 synthesis, the 

organic electrolyte continues to undergo 

reduction  and product accumulation on 

the electrode surface, which increases re-

sistance (13). Battery science could provide 

key insights for improving the stability and 

effectiveness of the N
2
 reduction SEI, which 

is still uncharacterized and unoptimized. 

An effective SEI may even enable the use of 

water as a proton donor. j
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By Sudeep Bhatia1 and Lisheng He2 

I
magine a choice between two gambles: 

getting $100 with a probability of 20% 

or getting $50 with a probability of 80%. 

In 1979, Kahneman and Tversky pub-

lished prospect theory (1), a mathemati-

cally specified descriptive theory of how 

people make risky choices such as these. 

They explained numerous documented vio-

lations of expected utility theory, the domi-

nant theory at the time, by using nonlinear 

psychophysical functions for perceiving un-

derlying probabilities and evaluating result-

ing payoffs. Prospect theory revolutionized 

the study of choice behavior, showing that 

researchers could build formal models of 

decision-making based on realistic psycho-

logical principles (2). But in the ensuing de-

cades, as dozens of competing theories have 

been proposed (3), there has been theoreti-

cal fragmentation, redundancy, and stagna-

tion. There is little consensus on the best de-

cision theory or model. On page 1209 of this 

issue, Peterson et al. (4) demonstrate the 

power of a more recent approach: Instead 

of relying on the intuitions and (potentially 

limited) intellect of human researchers, the 

task of theory generation can be outsourced 

to powerful machine-learning algorithms. 

The popularity of prospect theory led 

to new research programs in psychology, 

economics, business, and neuroscience, as 

well as to the development of descriptive 

models for domains like intertemporal, so-

cial, strategic, and consumer choice (5–7). 

Prospect theory also helped practitioners 

and policy-makers derive practical insights 

on how to improve individual and organi-

zational decision-making (8). But the pros-

pect theory approach to modeling choice 

behavior is not without drawbacks. Re-

searchers who propose new theories usu-

ally make complicated assumptions about 

processes such as perception, attention, 

memory, and emotion, as well as sources 

of noise and error in choice. The theories 

themselves are tested only on small data-

sets of choices and are seldom compared 

against the large set of preexisting models. 

This is unavoidable, given the long inter-

disciplinary history of decision research 

and the complexity of risky choice: It is 

fairly easy for decision scientists to intuit a 

psychological explanation for an expected 

utility violation, but even the most tal-

ented (human) theorist will have difficulty 

deriving predictions that distinguish their 

account from dozens of preexisting expla-

nations. Newer theories are often similar 

to previously published models, and many 

theories closely mimic each other’s pre-

dictions on benchmark datasets (3). Even 

though the rate of theory production is 

accelerating, there has been little gain in 

predictive accuracy on these datasets over 

the past 20 years (9). 

In response to these trends, some re-

searchers have begun to emphasize out-
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of-sample predictions and comprehensive 

model comparisons on large datasets of 

human decisions (10, 11). In doing so, they 

have brought yet another discipline, ma-

chine learning, into this already highly in-

terdisciplinary mix. Old theories need not 

be discarded; rather, they can be imple-

mented as inductive biases or constraints 

in these models, increasing algorithms’ 

learning efficiency and boosting model 

performance. 

Peterson et al. showcase the true power 

of this approach. They begin by collecting 

new experimental data on risky decisions 

for more than 10,000 distinct choice prob-

lems involving gambles with probabilistic 

monetary payoffs, exceeding the size of 

prior datasets by an order of magnitude. 

These choice problems and the decisions 

that humans ultimately made in these 

problems are then used to train deep neu-

ral networks, a class of machine-learning 

models that can flexibly extract nonlinear 

functions for describing data. Peterson 

et al. find that such networks are able to 

mimic human decisions with a very high 

accuracy rate, substantially outperforming 

existing (human-generated) risky choice 

models; their model achieved roughly half 

the mean squared error demonstrated by 

prior approaches. In learning to mimic hu-

man decisions, the networks also discover 

many of the psychological properties of es-

tablished behavioral theories, such as the 

psychophysical functions used by prospect 

theory. The flexibility of deep networks 

allows them to find better mathematical 

implementations for these properties and 

learn other properties necessary for de-

scribing data that have not been previously 

identified by human researchers. 

The predictive gains of Peterson et al. 

relative to existing human-generated theo-

ries are impressive enough; however, the 

authors also analyze the modeling assump-

tions that lead to good performance. To do 

this, they implement various constraints 

on their networks, each of which limits the 

ways in which the networks manipulate the 

available gambles to make choices. For ex-

ample, one constrained network allows for 

a payoff to be transformed nonlinearly and 

be multiplied against its (nontransformed) 

probability, resembling the assumptions of 

expected utility theory. This network per-

forms poorly relative to a more complex 

network that allows for both probabili-

ties and payoffs to be transformed, as in 

prospect theory. This network is, in turn, 

outperformed by other networks that also 

allow for the payoffs and probabilities of 

different gambles to interact and influence 

each other’s transformations. 

The architecture of the winning model 

in Peterson et al.’s analysis places it among 

a class of context-dependent decision 

theories that propose that the utility or 

disutility obtained from a single gamble 

(e.g., $100 with 20% probability) is not 

determined in isolation but depends on 

the other gambles available in the choice 

problem (e.g., $50 with 80% probability). 

Decision-makers do not attach a fixed util-

ity to any given gamble; rather, utility is 

based on competing gambles and can vary 

from choice problem to choice problem. 

Peterson et al. also show that high accu-

racy rates are possible from a model com-

posed of an expected utility theory com-

ponent and a prospect theory component, 

with each component being selectively ap-

plied based on the set of available gambles. 

This analysis illuminates how decision 

context guides and constrains evaluation 

mechanisms and shows how interpretable 

theoretical insights can be obtained from 

the behavior of deep neural networks. 

Future work will undoubtedly extend 

Peterson et al.’s approach to other behav-

ioral domains [e.g., risk perception, moral 

judgment, and strategic choice (12–14)]. 

These models will also be used to discover 

new choice problems to test the boundaries 

of existing theories. Advances in explain-

able artificial intelligence will also allow 

researchers to better understand the be-

havior of deep networks in terms of estab-

lished theoretical principles. Ultimately, 

the increased availability of large datasets 

and improvements in computing power 

will make machine learning an indispens-

able component of the decision scientist’s 

toolbox, revitalizing (and perhaps, once 

again, revolutionizing) theoretical re-

search on human choice behavior. j
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 Expanding 
gliogenesis
The generation of glial 
cell types in adult mice 
could provide strategies 
for brain repair

By Katherine T. Baldwin1 and Debra L. Silver2

T
he adult mammalian brain retains 

the capacity to generate new neurons 

and glia, a feature that is important 

for learning, memory, and response 

to injury (1). Neural stem cells (NSCs) 

in germinal regions of the adult brain, 

such as the ventricular-subventricular zone 

(V-SVZ) and the dentate gyrus of the hippo-

campus, are a major source of new neurons 

and glia (1). Glia, including astrocytes, oligo-

dendrocytes, ependymal cells, and microglia, 

are non-neuronal cells that play critical roles 

in brain function. Although the neurogenic 

functions of stem cells in the adult V-SVZ 

have been studied extensively, their gliogenic 

properties are less well understood. On page 

1205 of this issue, Delgado et al. (2) reveal 

previously undescribed gliogenic origins and 

glial cell types in the adult mouse brain. This 

discovery suggests that adult gliogenesis is 

more widespread than previously thought, 

laying the groundwork for potential regen-

erative therapies.

During development, stem cells rapidly 

divide; however, in adult tissues, they are 

mostly quiescent (3).  The largest popula-

tion of NSCs in the adult mammalian brain 

resides in the V-SVZ, lining the lateral and 

septal walls of the lateral ventricle. They 

are maintained in a dormant state by both 

intrinsic factors and extrinsic cues from the 

surrounding niche, which is composed of 

ventricular cerebrospinal fluid (CSF) derived 

from the choroid plexus, and vasculature, ep-

endymal cells, and neurons (1) .

 The spatial location of NSCs confers their 

identity, with different regions of the V-SVZ 

generating distinct cell types (4). NSCs lin-

ing the lateral and septal walls generate in-

terneurons that populate the olfactory bulb, 

whereas those in the dorsal-lateral V-SVZ 

generate oligodendrocytes (5, 6). Although 

both NSCs and astrocytes share similar mor-
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