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Abstract
The prediction of everyday human behavior is a central goal in the behavioral sciences. However, efforts in this direction have been 
limited, as (1) the behaviors studied in most surveys and experiments represent only a small fraction of all possible behaviors, and (2) it 
has been difficult to generalize data from existing studies to predict arbitrary behaviors, owing to the difficulty in adequately represent-
ing such behaviors. Our paper attempts to address each of these problems. First, by sampling frequent verb phrases in natural language 
and refining these through human coding, we compile a dataset of nearly 4000 common human behaviors. Second, we use distributed 
semantic models to obtain vector representations for our behaviors, and combine these with demographic and psychographic data, to 
build supervised, deep neural network models of behavioral propensities for a representative sample of the US population. Our best 
models achieve reasonable accuracy rates when predicting propensities for novel (out-of-sample) participants as well as novel behaviors, 
and offer new insights for modeling psychographic and demographic differences in behavior. This work is a first step towards build-
ing predictive theories of everyday behavior, and thus improving the generality and naturalism of research in the behavioral sciences.

Keywords  Transformer models · Machine learning · Distributed semantics · Decision-making

Introduction

People engage in thousands of complex actions and behaviors 
over the course of the day. They may read the news in the morn-
ing, send emails in the afternoon, play with their children in the 
evening, and worry about the future at night. These behaviors 
are the causes and the consequences of mental activity, of social, 
economic, and political reality, and of human well-being and 
flourishing. For this reason, the study of everyday behavior is 
of special interest to cognitive, behavioral, and social scientists, 
and a central focus of academic disciplines such as psychology.

However, established theories and methodologies in psy-
chology and other fields have difficulty predicting the occur-
rence of everyday behaviors, and are unable to formally 

relate these behaviors to the abstracted variables observed 
in artificial laboratory environments (see Bhatia & Stew-
art, 2018; Bhatia et al., 2019 for a discussion). Of course, 
many survey-based methods and theories do use common 
behavioral patterns as stimuli, for example, items in per-
sonality (Goldberg, 1990) and risk (Blais & Weber, 2006) 
questionnaires. However, these stimuli are hand-picked by 
experimenters and restricted to narrow domains of human 
psychology. Thus, results from questionnaire-based studies 
cannot easily be generalized to the thousands of everyday 
behaviors that could be of interest to researchers.

Ultimately, the complexity and wide scope of naturalistic 
behavior makes it especially difficult to study. We do not cur-
rently have a way of formally representing the nearly infinite set 
of everyday behaviors, and are thus unable to formulate scientific 
theories capable of predicting and explaining these behaviors.

In this paper, we propose and test a new approach to 
quantifying naturalistic behavior. Specifically, we suggest 
that common behaviors can be represented as verb phrases 
(e.g., read the news, send email, play with children, or 
worry about the future), and that recent advances in natu-
ral language processing, such as transformer networks and 
other deep language models (Cer et al., 2018; Devlin et al., 
2018), can be used to give these phrases high-dimensional 
vector representations that preserve their meanings. Such 
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representations can be obtained for nearly any natural lan-
guage phrase, which implies that it is possible to develop 
formal models that can take arbitrary human behaviors (in 
the form of vector representations) as inputs or alternatively 
produce these behaviors as outputs, facilitating more natu-
ralistic behavioral theorizing.

Although we consider a number of ways in which 
researchers can use vector representations of behaviors, our 
focus in this paper is on the predictive modeling of behavio-
ral propensities, that is, on building machine learning mod-
els capable of predicting how likely different people are to 
perform thousands of everyday behaviors. To facilitate such 
an analysis, we first compile a very large dataset of com-
mon behaviors based on the natural language occurrence 
frequencies of hundreds of thousands of verb phrases. We 
then offer a subset of these phrases to human participants to 
measure self-reported behavioral propensities. Finally, we 
use the vector representations of the verb phrases (obtained 
from deep language models) as inputs in machine learning 
models, to predict the behavioral propensities of our partici-
pants. Our aim is to make such predictions for out-of-sample 
behaviors as well as for out-of-sample participants (i.e., par-
ticipants, behaviors, and participant-behavior combinations, 
that our model is not trained on), in order to test the gen-
eralizability of our approach. We also examine the ability 
of this approach to predict group-level (psychographic or 
demographic) differences in behavioral propensities. Fig-
ure 1 outlines the key computational and empirical steps 
performed in the current paper.

The study of behavioral propensity, and individual dif-
ferences in behavior propensity, is a key focus of research 
in psychology, especially in subfields like judgment and 
decision-making, moral psychology, personality research, 
and clinical psychology (e.g., Bruine de Bruin et al., 2007; 

Cacioppo & Petty, 1982; Blais & Weber, 2006; Goldberg, 
1990; Lovibond & Lovibond, 1995; Patton et al., 1995; 
Rushton et al., 1981; Schwartz et al., 2002). For these rea-
sons, scholars in other fields, such as marketing, manage-
ment, policy, and economics, are also interested in describ-
ing and understanding how likely people are to engage in 
different behaviors. Our paper will test the applicability of 
deep language models, such as transformer networks, to the 
study of naturalistic behavior in these diverse domains, and 
form the basis of future research that uses these models in 
order to better understand behavior and its correlates.

Transformer Models of Language

The past few years have seen impressive technological 
breakthroughs in computational linguistics: Computer mod-
els are now able to achieve unprecedented levels of perfor-
mance in question answering, semantic entailment, machine 
translation, sentiment analysis, and other natural language 
understanding tasks. Perhaps the most impressive advances 
have come from a new type of deep neural network language 
model known as the transformer (Cer et al., 2018; Devlin 
et al., 2018; Radford et al., 2018; Vaswani et al., 2017; 
Brown et al., 2020). The details of transformer models are 
complex, but in brief, a transformer is a stack of encoders 
followed by a stack of decoders, where inside each encoder/
decoder is a feed-forward neural network and a self-attention 
mechanism, with decoder modules having one additional 
self-attention mechanism (Fig. 2). The self-attention mecha-
nism itself is also sophisticated, but essentially, as a trans-
former processes each word in a phrase or sentence, self-
attention enables the transformer to look at other words in 
the input sequence for information about how to best encode 

Fig. 1   Core components of our study. Blue boxes refer to the analysis 
performed in the section titled “Corpus Analysis to Obtain Common 
Behaviors,” the yellow box refers to data collection described in the 
section titled “Survey of Behavioral Propensities,” and the green box 

refers to the analysis in the section “Predictive Modeling of Behavio-
ral Propensities.” P&D refers to participant psychographic and demo-
graphic data
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the current word. For example, in a sentence like Russelli 
likes hisi cat, attention allows the internal representations for 
his to be influenced by the representation for Russell, since 
there is a co-reference relation between these words (see 
supplemental materials for a technical walkthrough of the 
attention mechanism, and see Alammar, 2018 for an accessi-
ble, illustrated introduction to the transformer and especially 
attention). When trained on appropriately large amounts of 
text data, transformers can produce vector representations 
that approximate key elements of sentence meaning, and 
can subsequently be used as inputs in secondary machine 
learning models that fine-tune the vector representations for 
down-stream tasks.

Transformer models that encode phrases and sentences 
as vectors are, in a sense, an evolution of older models that 
produce vectors for words, like LSA (Landauer & Dumais, 
1997), BEAGLE (Jones & Mewhort, 2007), Word2Vec 
(Mikolov et al., 2013), or GloVe (Pennington et al., 2014), 
based on the distributional statistics of words in large col-
lections of texts. In both word vector models and phrase and 
sentence encoders, vectors for linguistic units are obtained 
such that similar words, phrases, or sentences occupy nearby 
positions in semantic space. In addition, our application of 
transformer-derived sentence vector representations to pre-
dicting complex, real-world behaviors is largely inspired by 
various applications of word vector models in psychology. 

These applications include list and category recall, simi-
larity and relatedness judgments, and free association (for 
review, see Bhatia et al., 2019; Jones et al., 2015; Lenci, 
2018; Mandera et al., 2017), but perhaps most relevant for 
the present work are applications of word vector models 
to judgments about the psychological properties of words 
and phrases, e.g., the “riskiness” of potential risk sources 
like smoking or skydiving (Hollis et al., 2016; Bhatia 2019; 
Bhatia et al., 2021; Richie et al., 2019; Utsumi, 2020; Zou 
& Bhatia, 2021). In this work, ratings for a particular kind 
of judgment (e.g., riskiness) are directly linearly regressed 
onto the vectors for words (e.g., potential risk sources). This 
approach can explain about half of the variation in out-of-
sample subject-averaged judgment ratings, and strongly 
outperforms an association/similarity baseline that merely 
measures the similarity between a target word (e.g., smok-
ing), and words representing the judgment dimension (e.g., 
risky or unsafe; Richie et al., 2019). We will take a similar 
approach when predicting propensities of behavior phrases. 
The advantage of using transformer models to obtain phrase 
vectors, over simply, say, averaging GloVe or Word2Vec 
vectors in a phrase, is that such models will take into account 
the order and identity of all words within a phrase when 
computing a vector. Obviously, the order of words within 
a phrase or sentence, and not just their identity, is a critical 
component of meaning (cf dog bites man vs man bites dog).

Fig. 2   Transformer model architectures. The transformer contains 
a stack of encoders and a stack of decoders. Inside each encoder/
decoder is an attention mechanism (or two, for decoders) and a feed-
forward network. While a typical transformer, with both encoders and 

decoders, can be used for sequence-to-sequence prediction, as in the 
visualized English-French translation example, BERT and USE make 
use of only the encoder stack (in different ways) to obtain phrase rep-
resentations. Figure adapted from Alammar (2018)
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Transformers have grown in popularity and variety since 
their introduction, but in this work, we will focus on two 
prominent transformers, USE (Universal Sentence Encoder, 
Cer et al., 2018) and BERT (Bidirectional Encoder Repre-
sentations from Transformers, Devlin et al., 2018), due to 
their accessibility via off-the-shelf tools and their high per-
formance on semantically nuanced natural language under-
standing tasks. We describe each briefly.

Whereas a complete transformer model is a sequence-
to-sequence model which is used for tasks like machine 
translation or POS tagging, USE utilizes only the encod-
ing subgraph of the transformer architecture. Thus, the final 
output of this subgraph is a real-valued vector representation 
for each word of a phrase or sentence, which are simply 
summed,1 element-wise, to obtain a fixed-length vector for 
the entire phrase or sentence. The model used in the current 
paper has 512-dimensional vectors which can be obtained 
from the TensorFlow implementation of USE (Abadi et al., 
2015; Cer et al., 2018). This model was trained using next 
sentence prediction on text from Wikipedia, web news, web 
question–answer pages, and discussion forums. This model 
also received training on the Stanford Natural Language 
Inference (SNLI) corpus (Bowman et al., 2015). Pre-trained 
on these tasks, USE generalizes very well to related tasks, 
including sentiment analysis, question classification, and 
sentence similarity (Cer et al., 2018).

A major shortcoming of USE and similar transformers is 
that it is “unidirectional,” in the sense that every token can 
only attend to the previous tokens in the self-attention lay-
ers of the transformer. To resolve this problem, Devlin et al. 
(2018) developed BERT, the Bidirectional Encoder Repre-
sentations from Transformer, which does allow the represen-
tation for a token to vary by what comes before and after it. 
As with USE, fixed-length representations of sentences can 
be obtained by aggregating (e.g., summing) over the token 
representations at various hidden layers of the network. The 
BERT model used in this paper was trained using masked 
word prediction (in which the modeler randomly masks 
some of the tokens from the input, and the objective is to 
predict the original vocabulary ID of the masked word based 
only on its context) and next sentence prediction, on text 
from Wikipedia and Google Books. After being fine-tuned 
on additional task-specific data, this model demonstrated (at 
the time) state-of-the-art performance in many NLP tasks, 
including question answering, sentiment analysis, and sen-
tence acceptability. The primary application in this paper 
will not be fine-tuning the full BERT model but rather use 
the 768-dimensional out-of-the-box vectors offered by the 
bert-as-a-service Python package (Xiao, 2018).

We acknowledge that, of course, vector representations 
obtained from the above models are not always able to accu-
rately capture sentence meaning: They sometimes generate 
errors in syntactically complex sentences and fail at com-
mon sense reasoning (e.g., McCoy et al., 2019). There is 
also a philosophical debate about whether semantics can 
be inferred purely from the statistics of natural language 
(Lake & Murphy, 2021, Marcus, 2020, or Bender & Koller, 
2020). Nonetheless, the success of transformer models in 
tasks involving simpler sentence structure and limited high-
level reasoning implies that these models may have practical 
utility for quantifying simple phrases and sentences corre-
sponding to common human behaviors. We would expect 
phrases and sentences that pertain to similar behaviors to be 
given similar vector representations by these models.

Consider, for example, the verb phrases p1 = paint a 
house, p2 = decorate a room, and p3 = rent a room. p1 and p2 
are highly similar behaviors despite having different verbs 
and nouns: both would likely be involved in home renova-
tion. p2 and p3 share a word (room) but are otherwise quite 
different, as they concern different events (decorating vs 
renting; in linguistic terminology, the verbs are the “head” 
of the verb phrases and thus typically contribute more to 
its meaning than the direct object or other dependents of 
the verb). Transformer models are useful for quantifying 
behaviors as they are able to correctly represent the emer-
gent meanings of the word combinations in such phrases. 
To illustrate this, we passed these phrases through the Uni-
versal Sentence Encoder (USE) (Cer et al., 2018), to gen-
erate representations that preserve the semantic similarity 
of sentences. The USE model gave us 512-dimensional 
vector representations x1, x2, and x3, for the three phrases. 
We found that there is a cosine similarity of 0.77 between 
x1 and x2, but only 0.64 between x2 and x3, indicating that 
the USE model judges p1 and p2 to be more similar despite 
these phrases not sharing any words. Note that the previous 
generation of vector representation models, like Word2Vec 
(Mikolov et al., 2013), are unable to capture this pattern, 
as they cannot represent novel2 multi-word phrases except 
by averaging, which does not respect the centrality of the 
verb phrase head that we indicated above. Indeed, perform-
ing the above tests with a Word2Vec bag-of-words model 
gives a cosine similarity of 0.71 between x1 and x2, and 0.77 
between x2 and x3, suggesting that this model incorrectly 
judges p2 and p3 to be more similar.

1  The sum is also divided by the square root of the length of the 
phrase or sentence, to normalize for sequence length.

2  It is possible to detect strong collocations like New York City in a 
collection of texts, and then tokenize such collocations as a single 
unit, and learn vectors for that unit. Of course, this does not help the 
generation of vectors for novel phrases that were not treated as a sin-
gle unit in the tokenization (like paint a house).
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Predictive Modeling of Behavior

If verb phrases that describe naturalistic behaviors can be 
quantified with vector representations, then it is possible 
to build predictive models that take vector representations 
of behavior as inputs and produce, as outputs, predictions 
regarding other variables associated with these behaviors.

One such variable could be an individual’s propensity 
to engage in the behavior. Consider, for example, a dataset 
with a set of behaviors as well as (self-reported or observed) 
measurements of how likely an individual is to engage in 
the behaviors relative to others. We can use a standard lin-
ear regression to regress the behavioral propensity variable 
on the vectors for the behaviors obtained from transformer 
models like BERT or USE. Such a regression will learn a 
relationship between points in the vector space of behaviors 
and the behavioral propensity variable, and thus implicitly 
characterize how different behaviors vary in terms of behav-
ior propensity. Such a model would also be able to make pre-
dictions when given a novel out-of-sample behavior; i.e., a 
behavior that is not in its training dataset. If such predictions 
are accurate, then the model could, in principle, be applied 
to thousands of additional behaviors that can be expressed 
as verb phrases and be given vector representations, allow-
ing us to extrapolate behavioral propensities from the train-
ing data, in order to better understand the individual in 
consideration.

We could also use a similar approach on a dataset with 
behavioral propensities of multiple individuals. Such an 

approach may also benefit from individual-level variables 
(e.g., those involving demographics and psychographics), 
which could be introduced as covariates into the above 
regression. Of course, more sophisticated machine learn-
ing techniques may yield better predictions. One promis-
ing approach is a multilayer perceptron, that projects the 
input variables (in our case, the vector representations for 
behaviors and possibly demographic and psychographic 
variables for individuals) onto one or more intermediary, 
hidden layers. Hidden layers of this type can be used to learn 
interactions between behaviors and various individual-level 
characteristics, thus describing behavioral propensities on 
the group level, as well as sources of individual-level vari-
ability. Thus, a predictive model that accommodates inter-
actions between individual-level characteristics and aspects 
of the behavior would be able to predict that an extraverted 
individual is more likely to engage in sociable behaviors (go 
to a party) and less likely to engage in solitary behaviors 
(read a book), while an introverted individual is likely to 
display the reverse pattern. Such models may also succeed 
at making predictions for out-of-sample individuals (in addi-
tion to out-of-sample behaviors). In this paper, we use both 
(regularized) linear regression models and neural network 
models to map behavior vectors and individual-level data 
onto behavioral propensity ratings from large numbers of 
participants. These models are summarized in Fig. 3.

The approach introduced here is not just limited to behav-
ioral propensities. Any variable associated with a behav-
ior could be predicted in a similar manner. For example, a 

Fig. 3   Behavioral propensity predictive models. To predict behavio-
ral propensity ratings, we used phrase representations—from BERT, 
USE, or Word2Vec—and participant demographic and psychographic 

variables. We tried L2-regularized linear regression (left), as well as 
multilayer perceptrons, which can capture interactions among our fea-
tures (right)
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dataset of human ratings of the riskiness of different behav-
iors (e.g., Blais & Weber, 2006) can be used to train the 
above models, and subsequently predict how (potentially 
out-of-sample) individuals would evaluate the riskiness of 
(potentially out-of-sample) behaviors. Similar techniques 
would also work for other judgments, e.g., those involving 
the moral appropriateness of behaviors or the gender stereo-
typicality of behaviors. These, and other extensions of our 
framework, are examined in detail in the discussion section 
of this paper.

Building a Set of Common Behaviors

Of course, any predictive modeling analysis that uses large 
numbers of variables to make predictions requires a large 
amount of training data. In our case, we require not only 
ratings from a large and diverse group of participants (the 
details of which we will provide in the subsequent section), 
but also ratings of a large and diverse set of common behav-
iors. In this section, we describe the collection of a novel 
dataset of thousands of phrases describing human behaviors.

Obtaining Initial Dataset of Verb Phrases

We began by extracting the 1000 most frequent verbs in 
the Corpus of Contemporary American Literature (COCA; 
Davies, 2009). We then used Google Books’ n-gram data-
set (Michel et al., 2011) to construct verb phrases to popu-
late our dataset of human behaviors. For each of the 1000 
COCA verbs, we obtained the 100 most frequent 3-g, 4-g, 
and 5-g phrases from the n-gram dataset beginning with the 
given verb. This resulted in the creation of a list of ~ 300,000 
n-grams. Notably, many of the resulting n-grams in the data-
set were not valid verb phrases. For example, say that the 
is the second most common 3-g beginning with the verb 
say, likely because it is a common prefix of other complete 
phrases that have the verb say.

As an initial attempt to prune these cases from our data-
set, we performed part-of-speech (POS) tagging with the 
natural language processing package spaCy (Honnibal & 
Montani, 2017), to produce a POS sequence for each verb 
phrase. We then examined the 150 most frequent POS 
sequences. Although these 150 sequences accounted for 
only about 1.5% of all unique POS sequences in our 300,000 
n-grams, they accounted for a majority of n-grams. From 
these 150 POS sequences, we then manually selected 16 
sequences that consistently produced complete and gram-
matically correct verb phrases (see our OSF repository 
for a complete list). We selected these POS sequences by 
first randomly sampling 20 verb phrases from the 100 most 
frequent POS sequences, and then randomly sampling 10 
verb phrases from the 101st to 150th most frequent POS 

sequences. We reviewed the sampled verb phrases and chose 
16 POS sequences whose sampled verb phrases were valid at 
least 50% of the time, and that we did not expect would con-
sistently produce invalid behaviors. Using only n-grams with 
POS sequences matching these 16 sequences, we reduced 
the dataset to 31,942 n-grams. While POS tagging signifi-
cantly helped reduce the number of invalid verb phrases, 
many n-grams that either did not constitute complete verb 
phrases or were not valid human behaviors remained in the 
dataset. To solve these issues, we turned to human coding.

Human Coding and Validation Study

To ensure that the dataset of n-grams contained valid behav-
iors, we needed to remove all phrases that were not (1) com-
plete and grammatically correct verb phrases or (2) plausible 
for an individual to perform. We thus designed an annota-
tion study where participants were tasked with coding the 
phrases from our dataset based on these criteria.

Participants  We recruited 438 participants (51% female, 
Mage = 36, SDage = 12) through Prolific Academic to par-
ticipate in coding our list of phrases. Data collection was 
limited to participants from the USA whose first language 
was English. Participants were only allowed to participate 
once in this task and were paid approximately $10 per hour.

Procedure  Participants were given a set of instructions 
explaining our criteria for behavioral plausibility and gram-
matical correctness. Participants were provided multiple 
examples of complete phrases that are valid human behav-
iors, as well as strategies that could be used to evaluate how 
well a phrase met these criteria. For example, one strategy 
for testing whether or not a verb phrase is complete is by 
checking whether or not it can be said in response to a ques-
tion like, “What does the person/animal/thing/etc. do?” Fur-
ther details of these instructions, examples, strategies, and 
criteria can be found in our OSF repository.

Participants then moved to a training section to develop 
a stronger sense of how phrases might or might not meet 
the validation criteria. Participants were given eight prede-
termined phrases and asked to rate these phrases on a scale 
from 1 (definitely not a valid human behavior) to 5 (defi-
nitely a valid human behavior) on the criteria provided. After 
rating a phrase, an explanation would appear on the screen 
explaining why the participant’s rating was correct or incor-
rect. Following this training section, participants moved to 
the main portion of the study. Further details of the training 
section can be found in our OSF repository.

For the main portion of the study, participants were 
randomly assigned to evaluate a subset of approximately 
250 phrases from the 31,942 n-grams remaining from the 
POS-based filtering. On average, each phrase received 3.125 
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ratings (SD = 0.77). We also utilized attention checks: ran-
domly placed, researcher-generated phrases that obviously 
met or did not meet the criteria listed in the instructions. For 
example, kick the ball meets the validation criteria, while eat 
the very does not.

Results  We ignored data from participants that did not cor-
rectly evaluate at least 75% of the attention checks, leading 
to 406 of 438 participants being retained. Inter-annotator 
agreement was measured by taking a phrase’s average rat-
ing, noting the direction (> 3 or < 3), and then dividing the 
number of annotators that rated the phrase in that direction 
by the total number of annotators for that phrase. If the 
phrase rating did not have a direction (i.e., total number of 
ratings was even between < 3 and > 3, or all = 3), then the 
rating given was a 0. We thus observed an average inter-
annotator agreement score of 0.71 across all phrases, indi-
cating that participants were effectively evaluating phrases. 
Using the data from these 406 human coders, we removed 
all phrases from our dataset that received an average rating 
below 4.5. This reduced the total size of the dataset to ~ 6500 
n-grams constituting complete verb phrases that describe 
valid human behaviors.

Additional Cleaning and Similarity Reduction

The human validation study was useful in removing the 
majority of phrases that did not meet our criteria for a valid 
human behavior. However, due to the difficulty of this task, 
some phrases that did not fully meet the criteria remained 
in the dataset. Human error along with inconsistent struc-
ture between the phrases, specifically with determiners and 
pronouns, prompted a need to further clean and code the 
dataset.

To address both of these issues, we developed a data cod-
ing procedure, the details of which can be found in our OSF 
repository. Phrases were deemed valid if they were com-
plete verb phrases, had a clear direct object (if one existed), 
were plausible for an individual to perform, and were able 
to inform us about a clear and meaningful behavior an indi-
vidual would likely engage in. All pronouns in valid phrases 
were replaced with the appropriate form of someone or my 
such that the phrase made sense from the participant’s per-
spective (e.g., kiss her cheek became kiss someone’s cheek). 
To fix phrases that were missing a direct object, either some-
thing or someone was inserted in the appropriate location in 
the phrase (e.g., push over the edge became push someone 
over the edge). To ensure consistency among determin-
ers, all instances of the were replaced by a or an or were 
removed entirely (e.g., arrange the flowers became arrange 
flowers and drink the soda became drink a soda) unless the 
the was necessary for the phrase’s meaning to remain the 
same (e.g., live in the wilderness). The phrases in the dataset 

were first coded and cleaned by the researchers, and then 
reviewed by a research assistant to ensure all phrases were 
coded correctly.

Furthermore, many phrases were nearly synonymous 
with each other (e.g., throw the ball vs throw the balls). 
Therefore, we used the pre-trained BERT model to extract 
feature vectors for our phrases and used these vectors to 
cluster semantically similar phrases. We clustered phrases 
whose vectors had cosine similarities of over 0.9, looked 
through each cluster of phrases, and kept any phrase within 
a cluster that had a unique meaning. If multiple phrases were 
synonymous in a cluster, we chose the phrase that had the 
most general meaning as the one to keep. Two researchers 
performed this task separately and all disagreements were 
resolved by consensus. This procedure led to the removal 
of 951 phrases yielding a final dataset of 3938 verb phrases 
describing plausible human behaviors.

While human coding was useful in further refining the 
set of valid human behavior phrases, it also provided valu-
able annotations of tens of thousands of n-grams on their 
grammatical correctness and whether or not they described 
plausible human behaviors for an individual to perform. 
Using these annotations, we can train classifiers on vectors 
of these n-grams to predict whether or not an n-gram is a 
complete verb phrase referring to a plausible human behav-
ior. As predicting grammaticality and behavioral plausibil-
ity of our verb phrases is not the primary aim of this paper, 
details of this analysis are left to supplemental materials, and 
we only report here that, using BERT to derive phrase repre-
sentations, we were able to achieve accuracy rates over 90% 
and F-scores over 0.85. Thus, these classifiers could be used 
to validate the addition of thousands of potential behavior 
phrases to our dataset, improving its comprehensiveness. We 
return to this issue of the comprehensiveness of our behavior 
phrases in the discussion.

Describing the Content of Behavior Phrases

As our final set of valid behavior phrases is very large and 
very rich, it is worthwhile exploring the distribution of syn-
tactic structures and semantic content within them, espe-
cially with an eye towards detecting types of behaviors that 
are over- or under-represented in our dataset. Table 1 con-
tains the ten most frequent POS sequences contained with 
our final set of valid behavior phrases, as well as example 
phrases of each sequence, and the frequency of the POS 
sequence. It is apparent that our phrases span a rich vari-
ety of syntactic structures, ranging from relatively simple 
VERB-DETERMINER-NOUN sequences like avoid a colli-
sion to more complex structures like VERB-ADPOSITION-
DETERMINER-ADJECTIVE-NOUN as in cook in a dou-
ble boiler. Although we have not performed any automatic 
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semantic parsing or semantic role labeling of our phrases to 
derive a structured semantic representation or label words in 
our phrases for semantic roles like agent, patient, and theme, 
we strongly suspect that, to the extent that syntactic structure 
often follows semantic structure, our behavior phrases also 
span a great range of semantic structures.

To explore semantic content (as opposed to semantic 
structure) in a more direct way, we performed two analy-
ses. First, we conducted a dictionary-based analysis with 
the well-known LIWC dictionary (Pennebaker et al., 2015), 
which contains lists of words in various categories, like 
work, home, and leisure. For example, LIWC’s list of lei-
sure-related words includes alcohol, mall, and yoga. For 
each of these categories (excluding syntactic categories 
like articles or conjunctions; see our OSF repository for all 
LIWC categories), we counted the total number of words, 
across all behavior phrases, falling into a given category.

Figure 4 displays the 15 most and least frequent catego-
ries across all of our phrases. Again, our phrases span a vari-
ety of categories, but some appear (much) more frequently 
than others. The most common categories include space 
(with words like above, map, within), cognitive processing 
(words like think, know, believe), drives (words like accom-
plish, command, motivate), and social (words like help, 
together, talkative). Other categories that strike us as central 
to human life, like death (words like alive, grieve, war) and 
sex (words like nude, abortion, womb), are vanishingly rare, 
with only seven phrases containing sexual words according 
to LIWC.3 It is also notable that the male category appears 
nearly three times as often (43 times) as the female category 
(15 times), despite LIWC having more words for female than 

male.4 This gender bias, and the absence of sexual words, 
may be a result of our usage of the Google Books n-grams 

Table 1   The ten most frequent 
part-of-speech sequences 
contained within our final set 
of valid behavior phrases. Also 
indicated are randomly selected 
examples of each sequence, and 
the frequency of the part-of-
speech sequence

Part-of-speech sequence Example phrase Frequency

VERB-DET-NOUN avoid a collision 1285
VERB-ADP-DET-NOUN complain to the police 589
VERB-ADP-NOUN die in battle 337
VERB-ADJ-NOUN spread my wings 314
VERB-NOUN assemble equipment 251
VERB-DET-NOUN-ADP-NOUN restore some semblance of order 206
VERB-DET-ADJ-NOUN embrace the christian faith 158
VERB-ADP-DET-ADJ-NOUN cook in a double boiler 113
VERB-NOUN-PART-NOUN quote someone’s words 107
VERB-PART-DET-NOUN squeeze out a tear 102

Fig. 4   Frequency of 15 most and 15 least common LIWC categories 
in the final set of valid behavior phrases. (Bars can exceed the total 
number of phrases because a category can appear multiple times in a 
phrase.) The figure excludes syntactic categories

3  We do acknowledge that it is not altogether clear how often we 
should expect phrases of a certain topic to appear. Moreover, it is not 
clear that the token frequency of a topic in the phrase set has to reflect 
the centrality or frequency of a type of behavior in human life. Still, 
having only 7 of ~ 4000 phrases concern sexuality strikes us as severe 
underrepresentation.

4  As a particularly striking example of this bias, the phrase admire a 
man is in our dataset, but admire a woman is not.
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dataset in particular, or even generic corpora in general. We 
return to this issue in the discussion.

For our second analysis to better understand the seman-
tic content of our phrase set, we performed clustering of 
phrase vectors. First, we extracted 512-dimensional vec-
tors for each behavior phrase using the Universal Sen-
tence Encoder. We used this language model instead of, 
e.g., BERT, because USE obtains state-of-the-art perfor-
mance on sentence similarity without fine-tuning, and 
clustering is similarity-driven (Cer et al., 2018). We then 
performed k-means clustering on all 3938 behavior phrase 
vectors, with k = 8. To determine a word’s importance to a 
cluster, we performed the following procedure. First, we 
lower-cased all words and removed stop words and non-
alphabetic tokens. Then, we counted the frequency of all 
words, and divided a word’s frequency in a cluster by the 
sum of its frequency in all clusters, to obtain a word’s rel-
ative importance to a cluster. Figure 5 shows word clouds 
for each cluster of the foregoing analysis, with words 
sized according to their relative importance to a cluster. 
These clusters appear to span diverse domains including 
digital actions, money and career-related behaviors, travel 
and physical activities, household tasks, problem-solving, 
and social activities, suggesting that our approach is able 
to uncover and quantify a wide range of common human 
behaviors.

Survey of Behavioral Propensities

In this section, we describe the methodology for our sur-
vey that was used to collect data on participants’ propen-
sity to commit certain behaviors, as well as their psycho-
graphic and demographic data. Our aim was to use this 
latter data, along with vectors from transformer models 
of the behavior phrases, to predict propensities to perform 

behaviors, both for out-of-sample behaviors and out-of-
sample participants.

Participants

We recruited 319 participants on Prolific Academic. Our 
sample was chosen to be representative of the age, gender, 
and race distribution of the USA. Participants were only 
allowed to participate once and were paid approximately 
$10 per hour.

Psychographic Measures

We collected the following questionnaires to measure psych-
ographic features of our participants: Ten Item Personality 
Inventory (Gosling et al., 2003), Domain-Specific Risk-Tak-
ing Scale (Weber et al., 2002), Barratt Impulsiveness Scale 
(Patton et al., 1995), Self-Report Altruism Scale (Rushton 
et al., 1981), Grit Scale (Duckworth & Quinn, 2009), Satis-
faction With Life Scale (Arrindell et al., 1999), and Maxi-
mization Scale short (Nenkov et al., 2008).

Design and Procedure

In the first section of our study, participants were randomly 
assigned to a single block containing a subset of approxi-
mately 247 behaviors from the finalized dataset of human 
behaviors. There were 16 blocks of phrases—15 contained 
247 behaviors and 1 contained 233 behaviors. Note that 
while the sample of participants was representative across 
multiple demographic variables, each block was not guar-
anteed to be evaluated by a representative sample. In total, 
there were 78,116 evaluations of individual phrases col-
lected in the study.

Participants were told that we were interested in under-
standing how much they agreed with the statement “Rela-
tive to others, I am likely to X” where X was one of our 

Fig. 5   Word clouds describing k-means clusters in our set of 3938 behaviors
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behavior phrases. Participants rated how much they agreed 
with this given statement on a Likert scale from 1 (strongly 
disagree) to 7 (strongly agree). Participants were told to 
compare themselves against the general population, rather 
than solely their peers, while evaluating the statements. 

Participants completed this task for all behaviors in their 
assigned block before moving on to the next portion of 
the study.

In the second section of the study, participants completed 
the psychographic questionnaires mentioned above. After 

Fig. 6   Histogram of raw subject ratings (A), and histogram of standard deviations in ratings for each behavior phrase (B)

Table 2   Top: Phrases with 
the lowest (left) and highest 
(right) mean ratings. Bottom: 
Phrases with the lowest (left) 
and highest (right) standard 
deviation in rating across 
subjects

Phrase Mean rating Phrase Mean rating
kill my father 1.05 finish high school 6.63
suck on a pacifier 1.16 participate in a study 6.50
burn houses 1.16 answer a question 6.47
abuse my children 1.19 breathe again 6.45
burn patients 1.20 reflect on a subject 6.42
steal from the poor 1.25 think of someone 6.37
commit violent crimes 1.25 answer questions 6.36
assist in an execution 1.25 search for information 6.35
cast someone into a furnace 1.30 open the door for myself 6.32
explode a bomb 1.30 save a document 6.32
Phrase Rating std Phrase Rating std
kill my father 0.22 grab a cup of coffee 2.61
burn houses 0.37 travel the world 2.55
suck on a pacifier 0.37 thank my wife 2.55
abuse my children 0.40 enroll in high school 2.54
assist in an execution 0.44 scare easily 2.49
explode a bomb 0.47 pray for myself 2.49
commit a felony 0.48 embrace the christian faith 2.48
burn patients 0.52 behave like a lady 2.44
engage my attention 0.54 proclaim the message of salvation 2.44
commit violent crimes 0.55 sing in a choir 2.42
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completing the psychographic questionnaires, participants 
indicated their education level, race, gender, income level, 
age, marital status, and employment status, in that order.

Summary of Phrase Ratings

We briefly report some descriptive summaries of the pro-
pensity ratings for our behaviors. First, Fig. 6A contains a 
histogram of all behavior ratings. The mean propensity rat-
ing for all behavior phrases was 4, and more importantly, 
the standard deviation of this distribution was 1.9, suggest-
ing substantial variability that might be modeled. The top 
of Table 2, in contrast, shows phrases with the highest and 
lowest propensity ratings when averaged across subjects. 
Sensibly, the lowest rated phrases tend to be criminal (e.g., 
kill my father) behaviors while highly rated phrases are 
extremely mundane, universal behaviors (e.g., open the door 
for myself). To the extent that some behaviors generally tend 
to be rated low and others rated high, predictive models that 
only rely on phrase representations could suffice.

However, different subjects often rated the same phrase 
rather differently. Figure  6B shows the distribution of 
phrase-level standard deviations: on average, phrases had 
a standard deviation of 1.7 in their ratings across subjects. 
Phrases with this level of variation include behaviors like 
yield to temptation (1.8) and abandon a plan (1.5). It is plau-
sible that variation in ratings for these behaviors might relate 
to individual differences in, say, self-control, grit, and/or 
impulsiveness. Similarly, the bottom of Table 2 shows the 
phrases with the most and least variability across subjects. 
Again, subjects tended to rate criminal behaviors similarly, 
but showed substantial variability in behaviors reflecting 
differences in personal taste (grab a cup of coffee), mari-
tal status (thank my wife), and religious affiliation (embrace 
the Christian faith). To account for individual differences in 
these types of behaviors, predictive models would need to 
rely on phrase representations, psychographic/demographic 
information, and their interaction.

Predictive Modeling of Behavioral 
Propensities

Methods

The primary goal of this paper was to evaluate the effec-
tiveness of predicting behavioral propensities of individuals 
from phrase vectors provided by transformer models (BERT 
and USE). By collecting measurements of how likely indi-
viduals are to engage in certain behaviors, we were able to 
use different machine learning models to regress the behav-
ioral propensity variable onto the vectors for the behaviors 
obtained from the transformer models. These regressions 

allowed us to learn the relationships between the vector 
space of the behaviors and the behavioral propensity rat-
ings. Because this regression was being calculated using the 
behavioral propensities of multiple individuals, we hoped 
that individual-level psychographic and demographic vari-
ables might be useful covariates in this regression in order to 
predict behavioral propensity on the individual level.

We evaluated the success of both BERT and USE vec-
tors for this task by training regularized ridge regressions 
with Scikit-learn (Pedregosa et al., 2011), and multilayer 
perceptions (MLPs) with Keras (Chollet et al., 2015) and 
TensorFlow (Abadi et al., 2015). As mentioned in the intro-
duction, the hidden layers in the MLP may allow us to model 
interactions between participant characteristics and behavior 
phrase characteristics, e.g., the tendency for extraverted indi-
viduals to be more likely to perform social behaviors (go to a 
party) than solitary behaviors (read a book), and introverted 
individuals to do the reverse.

We used the phrase vectors, alongside psychographic 
and demographic data, as input features for the behavioral 
propensity prediction task. Individual-level psychographic 
data were given as either aggregated (i.e., each participant 
received a single scalar score for Grit, Agreeableness, Open-
ness to Experiences, Satisfaction with Life, Risk Taking, 
Conscientiousness, Altruism, Impulsiveness, Maximiza-
tion, Extraversion, and Emotional Stability using the scor-
ing methods described in the sources of the questionnaires) 
or non-aggregated (i.e., each participant’s score for each 
questionnaire item was used individually in the feature set). 
All ridge regressions were run with a grid search over alpha 
using 20 evenly spaced values on a log scale between e5 and 
e−5. All multilayer perceptrons (MLP) contained 4 layers: 
the first with 1000 neurons and a ReLU activation func-
tion, a hidden layer with 200 neurons and a ReLU activation 
function, another hidden layer with 50 neurons and a ReLU 
activation function, and a final layer with one neuron with 
a linear activation function to provide a propensity rating. 
Additionally, dropout was set to 50% between each layer. 
Each MLP was trained using tenfold cross-validation with 
100 epochs per fold, where each epoch trained the MLP in 
batches of 20 items at a time. Ten percent of the training data 
was preserved as a validation set in order to avoid overfit-
ting. We also introduced an early stopping method where the 
model in the current fold would end training early if valida-
tion loss did not improve for 10 consecutive epochs to avoid 
overfitting. As a baseline, we also tested a Word2Vec model 
with phrase vectors obtained from averaged word vectors 
(continuous bag-of-words; Mikolov et al., 2013) using the 
regularized ridge regression and MLP techniques.

In the following section, we show the results of these 
models under 3 different methods of splitting the dataset. 
The first is a true random split over all the data, meaning 
that neither behaviors nor participants are guaranteed to 



	 Computational Brain & Behavior

1 3

be exclusively represented in either the training or testing 
dataset. The second splits the data by participants, guaran-
teeing that the models make behavioral propensity predic-
tions for the test set with out-of-sample participants. The 
final method splits the data by behaviors, guaranteeing that 
the models make predictions on out-of-sample behaviors. In 
order to normalize the data for each participant, each rating 
was z-scored with the given participant’s other ratings in the 
current testing or training set of the data and this rating was 
used in the given set instead of the raw rating.

Results

Figure 7A–I shows the out-of-sample correlation between 
actual propensity ratings and predicted propensity ratings 

for the ridge regression and multilayered perceptron mod-
els, using aggregated vs non-aggregated psychographic data, 
USE vs BERT vs averaged Word2Vec vectors, and the 3 
different types of splits of the dataset.

In all cases, except when using averaged Word2Vec 
word vectors as phrase representations, MLPs had more 
accurate predictions of behavioral propensity ratings 
than ridge regressions trained on the same dataset with 
the same input features. For every MLP model—except 
the models utilizing Word2Vec vectors, which saw simi-
lar behavioral propensity ratings between both types of 
psychographic data—non-aggregated psychographic data 
yielded slightly improved performance (average r = 0.441) 
over aggregated psychographic data (average r = 0.438) 
as an input in the feature space. This effect did not appear 

Fig. 7   A–I Out-of-sample performance for every (model type, [non-]
aggregate psychographic data, vector source) triple for each split of 
the dataset. Cells in the heatmaps indicate the Pearson correlation 

between individual evaluations of behavioral propensity and model 
predictions of behavioral propensity
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for the ridge regression models (average r = 0.417 vs 
r = 0.417). Psychographic and demographic data as a 
whole did not seem to impact model performance (average 
r = 0.409 vs average r = 0.410) across all models with and 
without psychographic or demographic data, respectively. 
Our best performing model, an MLP trained over a random 
test/train split of the dataset, performed only slightly worse 
when trained without psychographic data (r = 0.516) than 
with the psychographic and demographic data (r = 0.524). 
Without demographic or psychographic data, this model 
achieved a correlation of 0.506. It is notable that models 
trained with the vectors from transformer models alone 
still achieved high correlation values.

Excluding the models trained with averaged Word2Vec 
vectors, the models trained on a random test/train split of 
the dataset (Fig. 7A and B) outperformed models trained 
on splits over participants or behavior phrases. Of course, 
it must be noted that in a random test/train split of the 
dataset, the same phrase(s) or participant(s) (but not both) 
could appear in both the training and testing dataset. The 
models evaluated on ratings from behaviors that were 
entirely out-of-sample (Fig. 7D and E) performed worse 
than models evaluated on ratings from participants that 
were entirely out-of-sample (Fig. 7G and H) indicating 
that is harder to extrapolate to new behaviors than it is to 
new participants.

BERT vectors also yielded equal or improved model 
performance over USE vectors for all models except for 
the ridge regressions in Fig. 7D and E. This difference in 

performance is most notable in the MLP models in Fig. 7G 
and H where the MLP models trained with USE vectors had 
correlations that were, on average, 0.037 lower than the MLP 
models trained with BERT vectors.

Predictive Modeling of Group Differences

Methods

The previous analysis shows that we can predict individual-
level responses, but that, contrary to expectations, psycho-
graphic and demographic measures do not improve predic-
tive accuracy. One explanation of this result is that these 
measures are simply not predictive of propensities for the 
behaviors in our dataset. However, an alternative explana-
tion is that our models are unable to learn the (likely very 
complex) interactions between phrase meaning and psycho-
graphic/demographic variables. To distinguish these pos-
sibilities, we conducted another analysis that simplifies the 
modeling problem. First, for each demographic or psycho-
graphic variable, we constructed two groups (e.g., men 
and women for gender, or participants above the median 
Grit score and participants below the median Grit score). 
Then, for each behavior, we calculated the mean propensity 
within each half, and subtracted the mean of one half from 
the mean of the other. For example, the mean propensity of 
wear a dress was 1.4 for men and 4.2 for women, yielding a 
difference of − 2.7. The analogous difference of wear a tie, 

Table 3   Top phrases for groups based on the five psychographic and demographic variables with the greatest inter-rater reliability of group-
based differences

Variable Group Top phrases

Emotional stabil-
ity

Below median 
Emotional Sta-
bility

enroll in graduate 
school

worry a great deal explode from pres-
sure

vanish into the 
night

remain in school

Emotional stabil-
ity

Above median 
Emotional Sta-
bility

dance with some-
one

strengthen my 
family

drive in the 
country

buy a suit of 
clothes

swim in a pool

Marriage (Formerly) Mar-
ried

qualify for a mort-
gage

decorate a room wake up every 
morning

travel across the 
country

accompany a child

Marriage Never married criticize the 
actions of others

enroll in graduate 
school

ruin my life stay up all night sink to the bottom

Grit Below median Grit remember a name attend school enjoy life solve an equation quit a job
Grit Above median Grit publish a story rub against some-

one
smoke in a room wear a sword struggle for recog-

nition
Gender Female wear a dress marry some man behave like a lady decorate a room write in a book
Gender Male negotiate a price marry someone’s 

daughter
become a man marry a woman resemble a man

Risk taking Below median 
Risk Taking

qualify for finan-
cial aid

diagnose a prob-
lem

pay the full 
amount

hug my mother enroll in first grade

Risk taking Above median 
Risk Taking

shoot a gun spend a night with 
someone

spend a lot of 
money

flee a scene seize my prey
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by contrast, was 2.9, reflecting the fact that men reported 
greater propensity for that behavior than did women.

Table 3 contains such phrases for the five psychographic 
and demographic variables with the highest reliability as 
calculated by split-half correlation (calculation described in 
the next section). As can be seen, sensible phrases appear for 
other groups, e.g., explode from pressure was rated higher 
by emotionally unstable participants than by emotionally 
stable participants, while struggle for recognition was rated 
higher by participants high on grit than by participants low 
on grit. At the same time, some phrases seem unrelated to 
their group, e.g., enroll in first grade for participants low 
on risk taking (unless participants interpreted the phrase to 
refer to enrolling someone else, like a child, in first grade). 
As we shall see in the “Results,” odd top phrases may be due 
to issues of inter-rater reliability.

For each demographic or psychographic variable, we 
then attempted to predict these mean differences by training 
ridge regressions and MLP’s similar to those in the previous 
section (see Fig. 8). However, instead of constructing test-
train splits by random, participant, or behavior, we now just 

trained and tested models in tenfold cross-validation across 
all behaviors. In particular, we trained each ridge or MLP on 
a train set of 90% of the data (including gridsearch to find 
alpha, in the case of ridge regression), generated predictions 
of the mean differences for the remaining 10%, and repeated 
this for each of other nine train-test splits.

Results

Figure 9 shows the Pearson correlations between true and 
predicted mean differences, for each psychographic and 
demographic variable, for ridge and MLP, and for USE, 
BERT, and Word2Vec. First, we note that the ridge model 
typically does better than the MLP. This is likely due to 
the fact that there are not nonlinearities or interactions in 
this prediction exercise (by contrast, the individual behavior 
propensity prediction exercise involved potential interactions 
between the vector representations of the behavior and the 
vector representations for the individual). There are also 
fewer observations in the current prediction exercise (less 
than 4000 group differences for behaviors) vs the previous 

Fig. 8   Models of group differences in behavioral propensity. In con-
trast to the models of Fig. 3, reported in section “Predictive Modeling 
of Behavioral Propensities,” these models predict group differences 

(e.g., female mean propensity minus male mean propensity for wear 
a dress), based only on phrase representations from BERT, USE, or 
Word2Vec
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prediction exercise (which had more than 75,000 ratings). 
This implies that more complex models, like MLP, may have 
a harder time fitting the data in the current analysis.

We focus next on the results in Fig. 9A, which reports 
correlations based on all behaviors. As can be seen, mod-
est correlations are generally possible, with a mean correla-
tion of r = 0.17 across all embeddings and supervised model 
types, and minimal differences among these. Of course, 
this performance is lower than what we found when pre-
dicting behavior propensity ratings at the individual level 
in the previous section (~ r = 0.40). Furthermore, we found 
large differences between psychographic and demographic 

variables, with Maximization-based differences predicted at 
only r < 0.05 and Satisfaction with Life predicted at nearly 
r = 0.30.

We therefore sought explanations of (a) the generally 
modest performance in predicting group-based differences, 
and (b) the large differences in predictability of different 
group differences. Because we only collected 20 ratings per 
phrase such that each group (e.g., low Maximization) might 
only have about 10 ratings per phrase (or fewer for minor-
ity groups like Black or African-American respondents), 
we suspected low inter-rater reliability was the primary 
culprit. We therefore calculated the split-half correlation 

Fig. 9   Pearson correlations 
between predicted and true 
mean group differences in 
behavior propensity, for A all 
behaviors, and B behaviors 
showing large mean differences 
for a given variable. (Note that 
the color scale is different from 
Fig. 7, which also reports cor-
relations.)
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in group-based mean differences for every variable, as fol-
lows. First, for every phrase and group (e.g., low maximiz-
ers rating invest in stocks), we split the set of ratings in half 
and calculated means for each half. We then carried out 
analogous splitting and averaging for the complementary 
group (e.g., high maximizers rating invest in stocks), calcu-
lated differences of means between the first halves of each 
group and between the second halves of each group, and 
correlated these differences of means between the first and 
second halves. Each correlation was finally adjusted with 
the Spearman-Brown (Brown, 1910; Spearman, 1910) cor-
rection for split-half reliability, rcorrected = (2*r)/(1 + r). We 
conducted this process 10 times with different random splits 
into halves and averaged the correlations to obtain a single 
estimate of split-half correlation for every psychographic 
and demographic variable.

Figure 10 plots these split-half correlations against model 
performance (specifically, correlations between predicted and 
actual group differences, for the MLP trained on USE embed-
dings for behavior phrases). As can be seen, each variable’s 
predictability of group-based differences is well-explained 
by its inter-rater reliability, reflected in the strong correla-
tion between split-half correlation and model correlation 
(r = 0.76, p < 0.001). Furthermore, not only are reliability 

and performance strongly correlated, they are in fact nearly 
identical (as indicated by the tight clustering around the line 
y = x), suggesting that our models are generally performing 
as well as the (low) limits of inter-rater reliability will allow.

To give a sense of what performance might be possible 
if we had higher reliability in our data, we restricted atten-
tion to only those behaviors that showed strong group-based 
differences. To extract these behaviors, for each variable, 
we ranked behaviors by mean group difference, and then 
retained just the top 10% and bottom 10% of this ranking. 
This retains, for example, wear a dress and wear a tie for the 
gender variable, as these are among the behaviors at the top 
and bottom of the ranking of female-male mean differences, 
respectively, but drops sleep in a bed as this is in the middle 
80% of the behaviors for gender. Figure 9B reports correla-
tions only among these top 10% and bottom 10% behaviors. 
As comparing to Fig. 9A shows, performance is naturally 
higher when restricting analysis to only behaviors showing 
large group differences (r = 0.29 in behaviors with large dif-
ferences, vs r = 0.17 in all behaviors). Of course, we believe 
the power of our approach is in automatically constructing 
a large, comprehensive set of behaviors, so manually curat-
ing behaviors in this way is both post hoc, and limits the 
generalizability of our approach.

Fig. 10   Split-half correlation 
(x-axis) against the correlation 
between predicted and actual 
mean differences of behavior 
propensity for USE embeddings 
combined with MLP (y-axis), 
for every dimension
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Overall, this pattern of results suggests that psycho-
graphic- and demographic-dependent variations in behav-
ioral propensities are predictable from phrase represen-
tations, at least when predicting group-level propensities 
(as opposed to individual-level propensities, as in the last 
section). Furthermore, our reliability analysis suggests 
our modeling approach might achieve better performance 
with more reliable data, which we suspect would emerge 
simply with collecting more ratings per phrase, or even 
through alternative scaling methods like Best–Worst Scal-
ing (Kiritchenko & Mohammad, 2017). Hence, we suspect 
we have only scratched the surface of what is possible with 
our approach.

Discussion

Vector Representations of Behavior

The space of naturalistic human behavior is vast, and thus 
nearly impossible to comprehensively quantify and analyze. 
This is why most theories in the cognitive and behavioral 
sciences are parametrized and tested using highly stylized 
experimental tasks or surveys. However, in order to develop 
formal scientific theories of naturalistic human cognition 
and behavior, researchers need to be able to quantitatively 
represent the nearly limitless set of behaviors that people 
engage in on a day-to-day basis.

This project attempts to address this important concep-
tual and technical challenge. The core insight underlying our 
approach is as follows: Many naturalistic human behaviors 
can be described with simple natural language verb phrases 
and sentences. Using deep language models, such as trans-
formers, the meanings of these phrases and sentences can be 
quantified as vectors in high-dimensional semantic spaces. 
Importantly, semantic vectors can be obtained for nearly 
any phrase or sentence, which implies that quantified rep-
resentations are feasible for thousands of common human 
behaviors.

The ability to quantify naturalistic behaviors using high-
dimensional vector representations opens up many new 
avenues of research in psychology and related disciplines. 
Specifically, it is possible to use quantified representations 
of behaviors as inputs into formal models that attempt to 
predict important psychological variables associated with 
behaviors. To facilitate such an analysis, we collected a data-
set of naturalistic behaviors by observing the frequencies of 
verb phrases in natural language. We extracted hundreds of 
thousands of such phrases from the Google Books dataset, 
and then, through part-of-speech tagging, human coding, 
and manual editing, distilled this dataset into a subset of 
3938 verb phrases that describe common human behaviors. 

We also trained a machine learning model—reported in 
detail in supplemental materials—that is capable of accu-
rately predicting whether a given phrase describes a com-
mon behavior, automating this process for future research.

Predicting Behavior

The main test in this paper involved using our dataset of 
behavior phrases to predict people’s propensities in engag-
ing in these behaviors. For this, we collected a large dataset 
of individual-level behavior propensity ratings, as well as 
associated psychographic data (e.g., responses to personal-
ity surveys) and demographic data. We then used both the 
vector representations of behavior as well as psychographic 
and demographic variables for our participants as inputs in 
machine learning models trained to predict the individu-
al’s propensity rating. We found that our models achieved 
reasonable accuracy rates when predicting out-of-sample 
behavior propensities, including propensities for individu-
als not in the training data, and behaviors not in the training 
data, showing that transformer-based vector representations 
of behavior can be used to make behavioral predictions for 
truly out-of-sample individuals and behaviors. We consid-
ered both regularized linear regressions and multilayer per-
ceptrons and found that the best performing model turned 
out to be the multilayer perceptron that used the BERT vec-
tors as inputs. This is not surprising given the computational 
power of deep neural networks and recent successes of the 
BERT model in natural language understanding tasks.

However, we were somewhat surprised to see that 
phrase representations obtained by simply averaging word-
level Word2Vec representations were not that far behind 
BERT (e.g., out-of-sample correlations of 0.52 for BERT 
vs 0.37 for Word2Vec on the random train/test split with 
non-aggregated psychographic measures). We suspect that 
BERT (and USE) present only moderate advantages over 
Word2Vec because our behavior phrases are rather short 
(no more than five words), and hence, there is little word 
order and grammatical information that needs to be manipu-
lated. Instead, it may be adequate for a supervised model to 
predict behavioral propensity purely based on the topics or 
domains that the phrase represents, which Word2Vec easily 
represents through averaging. For example, for phrases like 
sew a dress or invest in stocks, vector averages would likely 
reflect feminine clothing actions/objects for the former, and 
financial behavior for the latter. Still, the superiority of the 
transformer-based representations suggests that Word2Vec 
is unable to represent at least some relevant information. 
Moreover, for behavior phrases and sentences longer than 
those tested here, i.e., those common to surveys measur-
ing psychological and behavioral individual differences, we 
suspect that transformer-based representations will present 
even greater advantage over bag-of-words representations.
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We were also surprised that our MLP did not grossly out-
perform a purely linear model (by no more than approxi-
mately r = 0.05), which is surprising to the extent that we 
think behavior propensity is an interactive and not merely 
additive function of the behavior and the individual (that is, 
we would expect extraverted individuals to endorse going 
to a party over reading a book, and introverted individuals 
to do the opposite). Similarly, we were surprised to see that 
the addition or removal of psychographic and demographic 
information from the inputs to the models did not have much 
impact on predictive accuracy (difference in r < 0.01). As 
mentioned in the “Results,” one explanation of these null 
effects is that psychographic and demographic variables sim-
ply carry no information relevant for predicting behavior. 
However, we found that differences among psychographic 
and demographic groups—men vs women, or high impul-
siveness vs low impulsiveness subjects—could be predicted 
with modest accuracy (r = 0.17) by building separate super-
vised models for each psychographic or demographic vari-
able. Some variable-based differences could even be pre-
dicted with moderate correlation (r = 0.3, as in Emotional 
Stability and Satisfaction with Life), and what seemed to 
hold back greater accuracy for all variables was not impov-
erished representations or predictive models, but low inter-
rater reliability of group differences.

Taken together, these results suggest to us that phrase 
representations can combine with psychographic or demo-
graphic information to predict behavior propensity, but that 
our primary behavior modeling approach is limited in some 
fashion. Our MLP may be overly flexible, with too many 
hidden layers and neurons, relative to the amount of data 
we have (78,116 participant-behavior combinations), and/
or our input representations (phrase vectors and psycho-
graphic/demographic survey responses) may be too high-
dimensional. Whereas the models predicting individual-level 
propensities were tasked with learning how all psycho-
graphic/demographic variables influenced propensity, the 
group-level models needed to only learn the effect of one 
variable at a time. Or, it may be that our number of partici-
pants per phrase (~ 20) was simply inadequate for effectively 
learning how our individual-level characteristics impacted 
propensity ratings, especially given that, as stated above, we 
expected interactive and not additive effects, with the former 
generally being more difficult to learn and requiring more 
data. We certainly suspect that the inter-rater reliability of 
the group-based differences was hampered by the fact that, 
in the best case, each behavior phrase would be rated by 
only 10 subjects from one group (e.g., men) and only 10 
from the other group (e.g., women) of a particular variable 
split. Owing to random assignment of subjects to phrases, 
of course, a phrase will often be rated by (far) fewer than 10 
members of a group.

Finally, it may also just be inherently difficult to attain 
higher accuracy rates than those obtained in our analysis. 
Eisenberg et al. (2019), for example, present evidence that 
surveys predict self-reported real-world behavioral out-
comes only modestly, and with substantial heterogeneity. 
On the other hand, our behavioral propensity ratings and 
our psychographic and demographic measures are all self-
reported survey measures, and many of the psychographic 
measures contain items that are very similar to our behavior 
phrases. For example, one of the items on the DOSPERT 
asks participants to rate their likelihood of performing the 
behavior going camping in the wilderness. Furthermore, to 
the extent that our psychographic scales generally have inter-
nal consistency, responses on one item predict responses on 
other items from the same (sub)scale. It is perhaps therefore 
surprising that responses to the psychographic measures do 
not help predict responses to our behavior phrases. One pos-
sible explanation for this may be that the behavior phrases 
simply concern domains of behavior that are generally unre-
lated to, and therefore cannot be predicted from, the domains 
of behavior, personality, and demography reflected in our 
psychographic and demographic surveys.

In any case, we suspect that the implementation of our 
approach could be improved. Further refining our phrase 
representations (though, e.g., dimensionality reduction) 
or predictive models, increasing the number of participant 
ratings per phrase, restricting modeling of individual-level 
ratings to phrases with strong (a priori expectations of) 
individual-level variation, or collecting additional or differ-
ent psychographic and demographic information may all be 
directions for future research.

New Applications in the Study of Behavior

Our results show that transformer models of language can 
provide useful vector representations of behavior phrases. 
These representations may not capture the entirety of the 
meaning of the behavior phrase or all of the richness of the 
physical instantiation of the behavior, but they are a good 
first step towards modeling people’s behavior propensities. 
Importantly, transformer language models can be used to 
quantitatively represent a wide range of naturalistic human 
behaviors, allowing for novel applications of cognitive and 
behavioral research that taxonomize, predict, and explain 
naturalistic human behavior, using formal computational 
models.

One such application could involve a more detailed analy-
sis of BERT and USE vector representations of behavior. 
Our preliminary tests involving the k-means clustering of 
behavior phrases (shown in Fig. 5) reveal that our vector rep-
resentations capture some intuitive distinctions between dif-
ferent behavioral domains. Further work could examine the 
dimensions of the vector space of behaviors in more detail, 
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and thus better understand how vector representations of 
behavior obtained from natural language data represent the 
content of behavior and the meaning of verb phrases depict-
ing behavior. For example, it might be useful to conduct 
more systematic tests of the influence of different elements 
of a verb phrase on the BERT or USE vector, as we did in 
a preliminary fashion in the introduction with the phrases 
paint a house, decorate a room, and rent a room. That is, 
the verb, as the head of a verb phrase, ought to determine the 
location in vector space more than other parts of the phrase, 
except possibly in the case of light verbs in phrases like do a 
review, in which case do a review perhaps ought to be closer 
to revise a paper than it is to do the cleaning.

It may also be possible to use our approach to study 
sequences of behavior, specifically behaviors performed 
one after another over the course of the day (and perhaps 
observed using diary studies). Such sequences can be used 
to understand complex behavioral schemas and scripts that 
guide human action (e.g., Abelson, 1981). We can analyze 
these dynamics using transformer models calibrated for 
“sequence-to-sequence” prediction, as in the French–Eng-
lish translation example of Fig. 2. Such models use vector 
representations of sentences to learn dependencies between 
different sentences, and have been shown to be successful 
at next sentence prediction, machine translation, and other 
tasks in which an input sentence must be mapped onto an 
output sentence (Devlin et al., 2018). In our case, sequence-
to-sequence models can be used to learn how behaviors 
performed at one point in time determine behaviors in the 
subsequent point in time, providing analytical rigor in the 
study of behavioral dynamics and cognitive schemas.

Finally, as we have discussed earlier in this paper, the 
general paradigm introduced in this paper can be applied 
to other variables of interest to psychologists. For exam-
ple, instead of predicting people’s propensities for different 
behaviors, it may be possible to predict people’s judgments 
of behaviors. Such judgments are a key topic of study in 
domains such as risk perception and moral psychology, and 
our paradigm offers the promise of extending theories in 
these fields to the nearly unbounded set of behaviors that 
could be judged by individuals in the world.

Limitations

Our approach is of course not without limitations. Per-
haps chief among these are the biases in our set of verb 
phrases resulting from their generation from corpora. For 
one, we used the Google Books n-gram corpus to extract 
phrases, which is known to over-represent certain text gen-
res, like scientific publications (Pechenick et al., 2015). In 
turn, this may mean that certain scientific behaviors like 
generate a table are over-represented in our corpus, while 
more informal behaviors like take a selfie or have sex are 

under-represented. And of course, since we have used the 
English version of the Google Books n-gram corpus, our 
generated behavior phrases may under-represent behaviors 
important to non-English-speaking populations (which, of 
course, is most of the human population). Finally, we found 
that male words appeared in our behaviors almost three 
times as often as female words, despite the set of male words 
being smaller in our dictionary (LIWC), which may be a 
bias in not just the Google Books corpus, but many generic 
corpora (Johns & Dye, 2019). Therefore, obtaining more 
general and representative sets of human behavior phrases 
is a crucial goal for future research. Diary studies, in which 
participants write out the sets of behaviors they engaged in 
over the course of the day, may be one way to manually aug-
ment our automatically constructed set of behavior phrases. 
It may also be possible to use phrase structure grammars (or 
even probabilistic variants thereof), combined with a lexicon 
of common words with their grammatical class (and pos-
sibly semantic features, e.g., POSSIBLE-AGENT), to gen-
erate new verb phrases (which could then be filtered down 
into a set of valid human behaviors with the classifier we 
briefly reported in Building a Set of Common Behaviors 
and expand on in supplemental materials). As the number 
of possible phrases can be impractically vast with even (a) 
a relatively small lexicon and grammar and (b) limits on 
the length of the phrase or number of phrase structure rule 
applications, it would be important to intelligently sample 
from the possible productions such that the space of behav-
iors (e.g., as represented in USE or BERT space, or in terms 
of LIWC constructs) is efficiently covered with a relatively 
small number of phrases.

Conclusion

We have proposed a novel approach to studying naturalistic 
behavior. Our approach is not limited by artificial experi-
mental tasks or narrow aspects of cognition and behavior 
pre-selected by psychologists. Rather it embraces the com-
plexity of the real world, and attempts to study this com-
plexity using novel techniques taken from machine learning 
and natural language processing. When applied to a large 
dataset of behavioral propensity ratings, our approach is able 
to achieve reasonable predictions for how likely individuals 
are to engage in behaviors in an out-of-sample manner.

The reader may note that our approach is not grounded 
in an established theoretical paradigm. The reason for this 
is that there is no current psychological theory that can 
accommodate the richness and variety of everyday behav-
iors. By quantifying and predicting everyday behaviors, 
and by extracting insights regarding naturalistic behavior 
in a data-driven manner, this paper lays the groundwork for 
such a theory (see Yarkoni & Westfall, 2017; Hofman et al., 



	 Computational Brain & Behavior

1 3

2017 for discussions of the value of prediction in social 
and behavioral science). In doing so, it shows the power of 
computational models trained on large-scale digital data for 
analyzing and predicting behavioral phenomena (Griffiths, 
2015; Harlow & Oswald, 2016). We look forward to the use 
of such an approach in the development of a new scientific 
paradigm, one that is capable of quantitatively describing 
the naturally occurring and free-flowing behaviors humans 
engage in over the course of their everyday lives.
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