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Inferences about spatial, temporal, and other relations are ubiquitous. This article presents a novel
model-based theory of such reasoning. The theory depends on 5 principles. (a) The structure of mental
models is iconic as far as possible. (b) The logical consequences of relations emerge from models
constructed from the meanings of the relations and from knowledge. (c) Individuals tend to construct only
a single, typical model. (d) They spontaneously develop their own strategies for relational reasoning. (e)
Regardless of strategy, the difficulty of an inference depends on the process of integration of the
information from separate premises, the number of entities that have to be integrated to form a model,
and the depth of the relation. The article describes computer implementations of the theory and presents
experimental results corroborating its main principles.

Consider the following problem:

Pat stood in the last borough elections.

The borough is in the state of New Jersey.

New Jersey had its last borough elections on Thursday.

When did Pat stand in the borough elections?

You should have no difficulty in inferring that the answer is
Thursday. You infer from the first two assertions that Pat stood in
the last borough elections in New Jersey. You infer from this
intermediate conclusion and the third premise that Pat stood in the
borough elections on Thursday. Your inference is an example of
reasoning from relations—both spatial relations (the borough is in
New Jersey) and temporal relations (its last local elections were on
Thursday). Your reasoning is often about relations, and they un-
derlie many of your inferences in daily life. Psychologists have
studied reasoning about relations for many years, but they disagree
about the process (see Evans, Newstead, & Byrne, 1993, chap. 6,
for a comprehensive review). Logicians, however, have analyzed
the logical implications of relations and have shown how they can
be captured in the predicate calculus (see, e.g., Jeffrey, 1981).

In this article, we present a general theory of relational reason-
ing. It aims to answer three questions. First, how are relations and
their logical properties mentally represented? Second, what are
individuals computing when they reason about relations? Third,
what are the mental processes that carry out this reasoning? The
first part of the article outlines the nature of relations and their

logical properties. The second part reviews previous accounts of
relational reasoning. The third part presents a model-based theory
of what individuals do when they reason about relations and of
how they carry out the process. The fourth part assesses this theory
and other alternative accounts in the light of empirical evidence,
including three new experiments from our laboratory. Finally, the
article draws some general conclusions about relational reasoning.

What Are Relations?

Relations and Functions

The declarative sentence, “The boy is taller than the dog,”
asserts a relation, taller than, between two arguments, the boy and
the dog, respectively. Hence, the sentence can be used to express
a proposition that is either true or false. A relation is satisfied by
those arguments that yield a true proposition. In logical terminol-
ogy, the extension of a relation is the set of ordered entities that
satisfy it, such as the ordered pair, the boy and the dog, which
satisfy the relation taller than if the sentence above is true. In
contrast, the intension of a relation is what it means, for example,
what taller than means.

Relations can have any finite number of arguments. In an
extensional analysis, an n-place relation is nothing more than a
subset of the set of all possible orders of n entities from the n
relevant sets. Hence, if the n relevant sets are

S1 S2 S3 . . . Sn,

then an n-place relation is a subset of the set of all possible orders
in which the first member comes from S1, the second member
comes from S2, . . . and the nth member comes from Sn (i.e., the
Cartesian product of the sets). The sets, of course, need not be
distinct: A relation such as x loves y, for example, can take both its
arguments from the set of human beings. Two relations have the
same extension if they both are satisfied by the same set of ordered
entities. Yet they could have different intensions, for example, in
a particular domain, taller than and heavier than could have the
same extension, yet they have different intensions.

Predicates that have just a single argument, such as happy (as in
“Pat is happy”), can denote properties, though some predicates
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with a single argument denote relations, such as heavy (as in “The
book is heavy,” which really means that it is heavy for a book). A
logic of properties (monadic predicates) was first formulated in
Aristotle’s account of syllogisms, but this logic does not include
inferences that hinge on relations. Likewise, a semantics of rela-
tions that is based solely on properties is not feasible. Such an
account tries to treat, say, father of as a set of properties, such as
human, adult, male, having-children. But it is unworkable because
the composition of relations is not necessarily commutative; for
example, your father’s mother is not the same as your mother’s
father (see, e.g., Winkelmann, 1980). There is no way to capture
the distinction if the underlying semantics is based solely on sets
of properties, because operations on sets, such as union, comple-
ment, and intersection, cannot capture relations. Relations are
irreducibly relational. When their arguments are quantified, as in
“All the women are taller than some of the men,” their logical
analysis calls for the full power of the predicate calculus (see, e.g.,
Jeffrey, 1981).

A particular event can enter into many relations (see Davidson,
1967):

I did it for my spouse in the bathroom at midnight on Christmas eve
with a piece of buttered toast and a knife and fork for half an hour in
a vigorous way . . .

Hence, relations are normally taken to hold between two or more
arguments. But, in daily life, they seldom take more than three
arguments, for example, Pat gave Viv a book. And most of our
discussion focuses on binary relations, that is, relations between
two entities.

A function, which is a special case of a relation, takes a finite
number of arguments and relates them to a unique result. For
example, addition takes a certain number of arguments and relates
them to their sum, which is a unique result. In daily life, the
expression father of can be interpreted as a function. (To refer
properly to relations and functions calls for a technical language,
such as the lambda calculus, but for simplicity we use informal
usage.) If, say, the argument of father of is George W. Bush, then
the function yields George H. W. Bush as its unique value. The
values of functions can be anything, including truth values. For
example, given a relation, we can construct a characteristic func-
tion that returns the result true or false depending on whether its
arguments belong to the relation. In general, a function yields a
unique result for a given argument, though it may not yield any
value in certain cases, for example, father of God. In such cases,
the function is partial. Functions may also be total, that is, they
may return a result for all possible arguments in the domain. A
relation that is not a function does not yield a unique result, for
example, many pairs of individuals satisfy the relation taller than.

This account of relations may strike psychologists as peculiar.
They are likely to think that the key feature of a relation is, not its
extension, but its intension, that is, what the relation means. We
are sympathetic to this view, and we return to it below, but first we
must outline the logical properties of relations.

The Logical Properties of Relations

Logicians have studied relations since classical times, but the
logic of relations came to fruition in the 19th century as a result of
the work of De Morgan, Schröder, and especially the American

logician C. S. Peirce (see, e.g., Kneale & Kneale, 1962). Peirce
was concerned with the composition of relations, that is, the way
in which they can be combined to form a single new relation, as in
x is the father of the mother of y, and, conversely, with the
reduction of complex relations into simpler components (see, e.g.,
1.66,1 Peirce, 1931–1958). He devised diagrams of relations that
anticipated modern semantic networks (see Sowa, 1984), and he
argued that an n-place relation can always be reduced to a set of
relations in which no relation has more than three arguments.

Relations have various logical properties, which give rise to
valid inferences, that is, inferences for which the conclusion
must be true if the premises are true. We outline three sets of
properties of binary relations that are pertinent to psychological
investigations.

The first set of properties of binary relations concerns transitiv-
ity. A relation such as in the same place as is transitive, because
the following sort of inference is valid:

a is in the same place as b

b is in the same place as c

therefore, a is in the same place as c.

In the above inference, a, b, and c denote entities. A relation such
as next in line to is intransitive, because the following sort of
inference with a negative conclusion is valid:

a is next in line to b

b is next in line to c

therefore, a is not next in line to c.

And a relation such as next to is neither transitive nor intransitive.
It is nontransitive, because given premises of the form

a is next to b

b is next to c

no definite conclusion about the relation between a and c follows
validly from the premises. They may or may not be next to one
another depending on their spatial arrangement.

The second set of properties concerns symmetry. A relation such
as next to is symmetric, because the following sort of inference is
valid:

a is next to b

therefore, b is next to a.

A relation such as taller than is asymmetric, because the following
sort of inference with a negative conclusion is valid:

a is taller than b

therefore, b is not taller than a.

And a relation such as nearest to is neither symmetric nor asym-
metric. It is nonsymmetric.

1 This is the standard notation for citing articles in Peirce’s (1931–1958)
Collected Works. For example, 1.66 refers to Vol. 1, paragraph 66, which
is the first paragraph of an article, “The Logic of Relatives,” originally
published in 1883.
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The third set of properties of binary relations concerns reflex-
ivity. A relation such as in the same place as is reflexive, because
it follows validly for any entity, a, that

a is in the same place as a.

A relation such as next to is irreflexive, because it follows validly
that

a is not next to a.

And a relation such as loves is nonreflexive. There are other logical
properties of relations, but the preceding ones are the most impor-
tant. Transitivity and symmetry are independent properties of
relations, and Table 1 presents a set of spatial relations to illustrate
each of their combinations.

If you sample a dictionary at random for words that can express
binary relations, then the most frequent instances are transitive
verbs, where “transitive” refers, not to the logical property, but to
verbs that take a subject and a direct object. Some of these verbs
can take two arguments from the same set, for example, the subject
and object of consults can both be human beings. Other verbs,
however, normally take their arguments from distinct sets, for
example, the relation poured. In this latter case, linguists say that
there are different “selection restrictions” on the subject and object
of the verb. From The Longman Dictionary of Contemporary
English (Proctor, 1978), we took a random sample of 25 verbs that
in certain meanings can select subject and object from the same
set. The set included, for example: consult, tell, synthesize, honor,
ingest, popularize, delouse, hose, and confuse. Most of the verbs
have relational meanings that are nontransitive, nonsymmetric, and
nonreflexive. The one exception in our sample is ingest, which
appears to be transitive, asymmetric, and irreflexive. For example,
if the fish ingests the minnow, and the shark ingests the fish, then
the shark ingests the minnow; if the fish ingests the minnow, then
the minnow does not ingest the fish; and nothing—we hope—
ingests itself.

A lack of these general logical properties does not imply that a
relation yields no inferences. Consider the following examples of
valid inferences:

Abe forced Beth to stop smoking.

� Beth stopped smoking.

� Beth smoked at one time and then no longer smoked.

Cath managed to prevent Dean from pretending to be a priest.

� Cath prevented Dean from pretending to be a priest.

� Dean did not pretend to be a priest.

The verbs force and prevent are each nontransitive, nonsymmetric,
and nonreflexive, yet the inferences are valid. Their validity
plainly depends on the meaning of the particular verbs in the
context of the sentences (Miller & Johnson-Laird, 1976). We argue
in due course that the same analysis applies to general logical
properties. This latter claim, however, is controversial, and before
we defend it, we need to consider how general logical properties
can be used to make inferences.

In logic, the standard treatment of the logical properties of
relations is to capture them in axioms, that is, propositions that are
assumed to be universally true. Because these axioms concern the
meanings of terms, they are often referred to as meaning postulates
(Bar-Hillel, 1967). As an example, consider the treatment of the
inference

a is in the same place as b

b is in the same place as c

therefore, a is in the same place as c.

In logic, this inference is an enthymeme because it lacks a premise,
and the missing premise is a meaning postulate capturing the
transitivity of the relation:

For any x, y, and z, if x is in the same place as y, and y is in the same
place as z, then x is in the same place as z.

In the statement above, x, y, and z are variables ranging over the
entities in the domain of discourse. The proof of the inference now
proceeds as follows. The first step is to instantiate each of the
quantified variables in the axiom with the relevant name from the
premises. This process calls for three such instantiations, which
eliminate the quantifiers and yield the following sentence:

If a is in the same place as b, and b is in the same place as c, then a
is in the same place as c.

The conjunction of the two premises can be made using a formal
rule of inference (X, Y; therefore, X and Y):

a is in the same place as b and b is in the same place as c.

This proposition corresponds to the antecedent of the conditional
above, and so the formal rule of modus ponens (If X then Y; X;
therefore, Y) yields the required conclusion:

a is in the same place as c.

Analogous axioms can capture intransitivity, symmetry and asym-
metry, and various other properties, including the implication from
a relation to its converse, for example,

For any x and y, if x is above y then y is below x.

Tense is important in all of these examples; for example, no
transitive conclusion follows from the premises

a was in the same place as b.

b is in the same place as c.

Table 1
Spatial Relations Showing That the Transitivity and Symmetry of
Relations Are Independent Logical Properties

Relation Transitivity Symmetry

In the same place as Transitive Symmetric
Beyond Transitive Asymmetric
Not beyond Transitive Nonsymmetric
Next in line to Intransitive Symmetric
Directly on top of Intransitive Asymmetric
Nearest to Intransitive Nonsymmetric
Next to Nontransitive Symmetric
On the right of Nontransitive Asymmetric
At Nontransitive Nonsymmetric
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Theories of Relational Reasoning

Psychological studies of relations have mainly concerned tran-
sitive inferences. These inferences are based on pairs of premises,
such as

Ann is taller than Beth.

Cath is shorter than Beth.

The participants’ task is to draw a conclusion of their own, to
evaluate a given conclusion, or to answer a question such as, Who
is the shortest? The problems are sometimes known as linear
syllogisms, but we refer to them as three-term series problems.
Störring seems to have been the first to study such inferences in the
laboratory (see Woodworth, 1938), and Piaget (1928) also carried
out some early studies of them. Accounts of transitive reasoning
are accordingly of long standing, and we outline the six main
theories.

The Theory of Mental Operations

The first brief conjecture about transitive inferences is due to
William James, and he referred to it as the fundamental principle
of inference. Given a linear series of the form a � b � c � . . . �
z, as James (1890) wrote: “any number of intermediaries may be
expunged without obliging us to alter anything in what remains
written” (p. 646). This idea lies at the heart of Hunter’s (1957)
theory. He proposed that transitive reasoning depends on two
mental operations designed to transform the premises so that they
describe a linear order. One operation converts a premise; for
example, a is shorter than b becomes b is taller than a. The other
operation switches the order of the two premises, for example,

b is better than a

c is better than b

becomes

c is better than b

b is better than a.

Once the premises are in a linear order, then the term common to
both of them can be expunged to leave the appropriate relation
between the two remaining terms.

Some inferences require neither operation, some require one
operation, and some require both operations. Hunter (1957) re-
ported that the response times to answer questions such as, “Who
is shortest?” provided some corroboration for his theory. The
theory deals solely with transitive inferences, but it provides no
account of how individuals know which relations the operations
can be applied to. Their application to intransitive relations would
yield invalid conclusions.

Imagery Theories

De Soto, London, and Handel (1965) proposed that individuals
carry out transitive inferences by constructing a unitary mental
representation of the situation described in the premises. This
representation takes the form of a visual image of the three terms
on a horizontal or vertical axis. The nature of the relation matters.
For example, the relation a is better than b refers to items toward

the “good” end of the scale, whereas b is worse than a refers to
entities toward the “bad” end of the scale. These evaluations are
represented on a vertical scale with the “good” items at the top.
The construction of the unitary representation is based on two
principles. First, individuals prefer to construct vertical arrays
working from the top downward, and to construct horizontal arrays
working from left to right. Second, it is easier to represent a
premise if its first term is an end-anchor, that is, a term that is at
an end of the final array rather than in the middle. De Soto and his
colleagues obtained some evidence that corroborated their account
rather than the operational theory. For example, premises of the
form

a is better than b

b is better than c

yielded easier inferences than premises of the form

a is worse than b

b is worse than c.

Huttenlocher (1968) proposed an important variant of the im-
agery theory. She argued that there was no obvious reason why a
premise should be easier to deal with because its subject term was
an end-anchor. What mattered was instead that individuals find it
easier to move an item that is referred to in the subject of a
sentence rather than in its object. This claim held for children who
had to move real blocks and, she argued, for adults who had to
move an object into an imaginary array.

The Linguistic Theory

Clark (1969) argued that deductive reasoning is almost identical
to the process of comprehension, and that the difficulties in making
transitive inferences can be explained by three psycholinguistic
principles. First, certain relational terms are lexically marked and
harder to understand and to remember. According to linguistic
theory, unmarked comparatives, such as taller than, can be used in
a neutral way to convey the relative degrees of two items on a
scale. In contrast, marked comparatives, such as shorter than, can
be used to refer only to items toward the shorter end of the scale.
Unmarked terms likewise give their names to the scale, for exam-
ple, the dimension is called length rather than shortness. Some
dimensions yield marked terms at both ends, for example, fatter
and thinner, but many have an unmarked relational term and a
converse marked relational term. Clark proposed that transitive
inferences should be easier with unmarked relational terms than
with marked relational terms. This principle provides an alterna-
tive explanation for De Soto’s notion of a preferred direction for
constructing an array. But, their respective predictions diverge for
premises such as a is not as good as b, which uses an unmarked
term but calls for the construction of an array working upward. The
evidence supported Clark’s principle.

The second principle in the theory is the primacy of functional
relations. It postulates that given a premise, such as

a is worse than b

individuals understand that both a and b are bad faster than
they understand their relative degrees of badness. Clark pro-
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posed that the sentence has an underlying representation of the
form

(a is bad) more than (b is bad)

and that individuals grasp the two parenthesized clauses faster than
the relation between them.

The third principle is that individuals search for information
congruent with the question posed after the premises. Hence, if the
premises both concern the relation better than, but the question
asks, “Who is worst?”, there is an incongruity and individuals
should take longer to respond than to the question, “Who is best?”.

The image and linguistic theories often run in parallel, but where
they diverge, the evidence tended to support the linguistic theory.
For example, the image theory predicts that shallower than should
be easier to work with than deeper than, because shallower than
calls for individuals to construct the array by working downward,
whereas deeper than calls for them to construct the array by
working upward. In contrast, the linguistic theory predicts the
opposite difficulty because shallower than is the marked term and
deeper than is unmarked. The experimental results supported the
linguistic theory (Clark, 1969). Yet, it is not easy to refute the
image theory. On the one hand, the linguistic theory concerns the
causes of difficulty rather than the mental processes necessary to
make transitive inferences. On the other hand, evidence shows that
individuals do construct arrays (e.g., Barclay, 1973; Breslow,
1981; Newstead, Pollard, & Griggs, 1986; Potts, 1978; Potts &
Scholtz, 1975; Riley & Trabasso, 1974). In fact, it is feasible to
reconcile the two theories. Some authors have argued that individ-
uals use both linguistic principles and arrays at different times
during the process (Johnson-Laird, 1972; Sternberg & Weil, 1980),
as result of different experimental procedures (Ormrod, 1979;
Verweij, Sijtsma, & Koops, 1999), or as alternative strategies
(Egan & Grimes-Farrow, 1982; Ohlsson, 1984; Roberts, 2000).

A Connectionist Implementation

Hummel and Holyoak (2001, 2003) have implemented a con-
nectionist system that makes three-term series inferences and that
seeks to combine the linguistic theory with the spatial array theory
(see above). The program carries out a mapping of entities to
locations in an array, relying on principles from an earlier model
of analogical reasoning (Hummel & Holyoak, 1997), and then
interprets the array in order to draw a conclusion. Entities that
occur in a lexically marked relation are mapped to one end of the
array and are treated as more similar than those in a lexically
unmarked relation. Throughout an inference, the array accumu-
lates information across multiple iterations concerning the greatest
and least positions until these positions stabilize. The number of
such iterations correlated with human reaction times (from Stern-
berg, 1980), and the model made other correct predictions. Its
principal importance is as a working demonstration of how to
implement a high-level symbolic account in a lower level connec-
tionist system. The system does not handle negative relations, and
it remains an open question whether any connectionist system can
cope with the composition of noncommutative relations, or with
relations between relations, which we discuss below.

Formal Rule Theories

One of the drawbacks of the theories that we have discussed so
far is that they concern solely transitive inferences. But, psychol-
ogists have proposed general theories of reasoning, and a major
class of such theories is based on formal rules of inference (e.g.,
Braine & O’Brien, 1998; Rips, 1994). These theories can incor-
porate axioms for transitivity, that is, meaning postulates, and
account for transitive inferences in a similar way to formal proofs
for these inferences—a procedure that we illustrated in the What
Are Relations? section above. The great advantage of these theo-
ries is that they can deal with any aspect of relational reasoning
that can be captured in meaning postulates. And, at first sight, it is
not obvious whether any aspects of relational reasoning lie outside
the purview of meaning postulates. But the disadvantage of these
theories is that they need to posit an implausibly large number of
meaning postulates to handle quite straightforward inferences. We
return to this point later.

The Theory of Relational Complexity

An inference that depends on a relation with two arguments
seems likely to be easier than one that depends on a relation with
three arguments. This intuition underlies Halford’s (1993) seminal
account of relational complexity. He adopted a metric, which was
devised by Leeuwenberg (1969) for the complexity of patterns, in
order to analyze the complexity of concepts and relations. The
metric is based on the number of arguments that a relation takes.
Each argument can have many possible values, and so it is a
dimension of the relation. Halford, Wilson, and Phillips (1998b)
proposed to represent binary relations as a tensor product of three
vectors within a system of parallel distributed processing, in which
one vector represents the relation and the other two represent its
arguments. Transitivity, they argued, is a ternary relation: R(a, b,
c), because the smallest structure that can instantiate transitivity is
an ordered set of three elements.

The difficulty of transitive inferences according to complexity
theory depends on the difficulty of forming an integrated repre-
sentation of the premises. For example, if a person is given a series
of premises of the following sort

a � b

c � d

d � a

it takes time and effort to use the third premise to integrate the
previous premises (see, e.g., Ehrlich & Johnson-Laird, 1982; Foos,
Smith, Sabol, & Mynatt, 1976; Halford, 1984). It is necessary to
hold in mind representations of the first two premises in order to
integrate them according to the third premise. Hence, a major
determinant of the processing difficulty of any task is its relational
complexity, which is “the number of interacting variables (i.e.,
dimensions or arguments) that must be represented in parallel to
perform the most complex process in the task” (Halford et al.,
1998b, p. 805).

Like a chunk (Miller, 1956), such as a number, letter, or word,
dimensions can represent different amounts of information. Hu-
mans are limited in the number of dimensions that they can process
in parallel, and Halford estimates the boundary of competence to
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be four dimensions (see Halford et al., 1998b; Halford, Baker,
McCredden, & Bain, 2005). However, individuals can recode
representations into fewer dimensions—in a process of conceptual
chunking—with concomitant gains in efficiency. An example is
the concept of velocity. Its full representation is three-dimensional
(the function itself, and its arguments: distance and time), but
when we assess it in terms of a needle’s position on a speedometer,
we reduce it to a one-dimensional concept. The cost of such
chunking is that the components of a relation are no longer
accessible for independent processing. An alternative strategy to
reduce the peak demands of a task is to segment the task into a
different sequence of steps that reduce the maximum number of
dimensions that have to be processed simultaneously.

Chunking and segmentation can reduce the number of argu-
ments that have to be processed, and so effective complexity
depends on the minimal number of dimensions, or arguments, to
which a relation can be reduced without the loss of any infor-
mation necessary to solve the current problem (Birney & Hal-
ford, 2002; Halford et al., 1998b). Hence, determining rela-
tional complexity is not simply a matter of the number of
arguments in a relation, but also depends on whether the rela-
tion can be decomposed without loss of critical information.
Transitive inferences for ordering a series of n entities can be
carried out in a series of steps, the most complex of which call
for integrating three entities into an ordered triple (Halford,
Wilson, & Phillips, 1998a). On Halford’s account, the peak
difficulty should be the integration of two premises into a
unitary representation. The latency of response to a probe tone
in a secondary task corroborated this prediction (Maybery,
Bain, & Halford, 1986). Likewise, the retention of the premises
in memory is independent from the process of integrating them
(see Brainerd & Kingma, 1984).

Halford and his colleagues have devised a method for repre-
senting relational structure within a connectionist framework (see,
e.g., Halford et al., 1994, 1998b). They represent relations with an
explicit symbol for the relation. The representation of a relation is
composed of the outer product of vectors representing relation
symbols and each of the arguments. Any relational instance is
represented by a binding of the relation symbol to the fillers for
each argument role.

We have described the main theories of relational reasoning.
Most of these theories offer accounts of what the mind com-
putes rather than of how it carries out the computations. For
example, many of the theories do not explain how individuals
represent the transitivity of a relation (but cf. Halford et al.,
1995), or how they use it to construct a representation of the
premises. Despite intense debate, no one knows which of the
competing theories is best, though only the formal rule theory
and relational complexity theory go beyond three-term series
problems to offer a general account of reasoning with relations.
The fundamental difference between the theories is whether
conclusions derive from an integrated representation of the
premises (the mental operation, imagery, connectionist, and
complexity theories) or from representations of separate pre-
mises in some linguistic format (the linguistic theory and the
formal rule theory). Our goal in what follows is to formulate a
theory that resolves these issues.

The Model Theory of Relational Reasoning

The precursor of the present account is the general theory of
mental models (see, e.g., Johnson-Laird & Byrne, 1991) and a
pioneering treatment of this theory combined with relational com-
plexity (English, 1998). The general theory postulates that reason-
ers use the meaning of assertions (their intensions) and general
knowledge to construct models of the possibilities compatible with
the assertions (their extensions). The model or models representing
the extension of each premise are integrated into a single set of
models. This set is used either to formulate a conclusion or to
evaluate a given conclusion. Reasoners infer that a conclusion is
necessary if it holds in all the models of the premises, that it is
probable if it holds in most of the models granted that they are
equipossible, and that it is possible if it holds in at least one of the
models. Individuals can likewise refute a conclusion as invalid if
they can construct a counterexample to it, that is, a model that
satisfies the premises but that is not consistent with the conclusion.

This theory applies to reasoning with sentential connectives,
such as if, or, and and, and reasoning with quantifiers, such as any
and some (Johnson-Laird & Byrne, 1991, 2002). It also applies to
probabilistic reasoning (Johnson-Laird, Legrenzi, Girotto, Leg-
renzi, & Caverni, 1999), to modal reasoning (Bell & Johnson-
Laird, 1998), to causal reasoning (Goldvarg & Johnson-Laird,
2001), to deontic reasoning (Bucciarelli & Johnson-Laird, in
press), and to the detection and resolution of inconsistencies
(Johnson-Laird, Girotto, & Legrenzi, 2004; Johnson-Laird, Leg-
renzi, Girotto, & Legrenzi, 2000). Experiments have revealed a
number of tell-tale phenomena that reflect the use of mental
models. First, reasoners cope much better with inferences that
depend on only a single mental model than those that depend on
multiple models: they appear to focus on one model at a time (e.g.,
Bauer & Johnson-Laird, 1993; Evans, Handley, Harper, &
Johnson-Laird, 1999). Second, individuals can use counterex-
amples to refute invalid inferences, both those that depend on
sentential connectives (Johnson-Laird & Hasson, 2003) and those
that depend on quantifiers (Bucciarelli & Johnson-Laird, 1999).
Third, erroneous conclusions correspond to some of the models of
the premises, again typically just a single model (e.g., Bara,
Bucciarelli, & Johnson-Laird, 1995).

In the past, the expansion of the model theory to new domains
has called for additional assumptions, especially about the mean-
ings of expressions in the domain. In order to explain reasoning
with relations, we also need to make some additional assumptions.
The remainder of this part of the article describes the five principal
assumptions of the new theory.

The Iconic Structure of Models

Peirce (1931–1958) analyzed the properties of diagrams, repre-
sentations, and thoughts, which he referred to collectively as signs.
He distinguished three properties of signs (e.g., 4.447). First, they
could be iconic, such as visual images, representing entities in
virtue of structural similarity. Second, they could be indexical,
such as an act of pointing, representing entities by a direct physical
connection. Third, they could be symbolic, such as a verbal de-
scription, representing entities by way of a conventional rule or
habit. These properties can coexist, and so a photograph with
verbal labels has all three properties. Peirce argued that diagrams
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should be as iconic as possible (4.433), that is, there should be a
structural analogy between a diagram and what it represents: The
parts of the diagram should be interrelated in the same way that the
entities that it represents are interrelated (3.362, 4.418, 5.73). He
developed two diagrammatic systems for logic (see, e.g., Shin,
1994; Johnson-Laird, 2002), which exploited their iconic structure.
Iconicity is also central to the theory of mental models: “A natural
model of discourse has a structure that corresponds directly to the
structure of the state of affairs that the discourse describes”
(Johnson-Laird, 1983, p. 125). A model is essentially an analog of
the situation it represents. Other formulations of iconicity include
Maxwell’s (1910) analysis of diagrams and Wittgenstein’s (1922)
picture theory of meaning, with its key proposition 2.15: “That the
elements of the picture are combined with one another in a definite
way, represents that the things [in the world] are so combined with
one another.” Peirce, of course, anticipated all these accounts, and
his concept of an iconic representation contrasts, as he recognized,
with the syntactical symbols of language.

A major advantage of iconic representations is that they can
yield novel conclusions that do not correspond to any of the
propositions used in their construction. When individuals make
relational inferences, they seek such a novel relation in a model
and formulate a conclusion about it. This advantage of iconicity
may explain why the human inferential system relies on models
rather than the syntax of sentences or their intensional represen-
tations. Consider, for example, the following assertion about a
temporal relation:

The last bomb struck the ground before the siren had begun sounding.

One sort of model of this sequence could itself unfold in time
kinematically, though not necessarily at the same speed as the
original events themselves. This sort of representation uses time
itself to represent time (Johnson-Laird, 1983, p. 10). Another sort
of model represents temporal relations statically as a sequence of
events akin to a spatial model, except that the main axis represents
time. The system using such a model needs to keep track of how
to interpret the axes; for example, a program can use one array to
represent time, and cells in this array can contain pointers to
three-dimensional arrays representing spatial relations among en-
tities (see below). The various sorts of temporal relation—at least
as expressed in English (see, e.g., Allen, 1983)—can all be rep-
resented spatially. Thus, according to this account, temporal rea-
soning depends on mapping expressions into static models such as

b s - - - - - - -

in which the time axis runs from left to right, b denotes a model of
the bomb striking the ground, and s - - - - - - - denotes a model of the
interval for which the siren sounded. Events can be described as
momentary or as having durations, definite or indefinite (see, e.g.,
Miller & Johnson-Laird, 1976; Steedman, 1982). Hence, the fur-
ther assertion

Viv realized that there was an air-raid while the siren was sounding

means that Viv’s realization, r, occurred at some time between the
start and end of the siren sounding:

b s - - - - - - -

r

This model represents indefinitely many different situations that
have in common only the truth of the two premises. For example,
the model contains no explicit representation of the duration for
which the siren sounded, or of the precise point at which Viv’s
realization occurred. Yet, the conclusion

Viv realized that there was an air-raid after the last bomb struck the
ground

is true in this model, and no model of the premises falsifies this
conclusion. Hence, the iconicity of the model with respect to
temporal relations yields a novel but valid conclusion.

There is an important caveat: Diagrams or mental representa-
tions in themselves do not have a specific meaning. You cannot
answer the question of what they mean unless you know how the
system interprets them. We can illustrate this point with Peirce’s
(1931–1958) own diagrammatic systems for reasoning (see, e.g.,
Johnson-Laird, 2002). In his first system, the so-called entitative
graphs, separate assertions written in the same diagram are inter-
preted as disjunctive alternatives. For example, the following
diagram

Ann is here Beth is here

represents the inclusive disjunction: Ann is here or Beth is here, or
both. To represent a conjunction in this system it is necessary to
use circles that function as negations. We use parentheses instead
as a typographical convenience:

( ( Ann is here ) ( Beth is here ) )

This diagram represents It is not the case that Ann is not here or
that Beth is not here, that is, Ann is here and Beth is here. In
Peirce’s (1931–1958) second system, the so-called existential
graphs, separate assertions written in the same diagram are treated
as a conjunction of the two. And to represent a disjunction, it is
necessary to use negating circles. Hence, the preceding diagram
represents: It is not the case both that Ann is not here and that Beth
is not here, that is, Ann is here or Beth is here, or both. More
recent attempts at formalizing graphical reasoning illustrate the
same point. Stenning and Oberlander’s (1995; Stenning, 1996)
system for syllogistic reasoning with Euler circles does not invest
all the inferential power in the graphical displays—there are quite
specific procedures of interpretation that need to be followed in
order for a conclusion to be reached. Mere inspection of a diagram
does not tell you how to interpret it. You cannot perceive which
system of graphs you are looking at. Peirce was aware of this fact:
When he addressed the question of how diagrams are capable of
any form of representation, he remarked: “Such a figure [a diagram
or diagrammatoidal figure] cannot, however, show what it is to
which it is intended to be applied” (Peirce, 3.419, cited in Shin,
2002, p. 180).

We draw the same moral for mental models. What a mental
model represents depends on the model and on the system for
interpreting it. The same model can have different interpretations
depending on the system of interpretation. This principle applies to
data structures in computer programs too. Hence, models or any
other sort of representation cannot themselves be charged with the
entire burden of inference. This idea was similarly (and more
generally) expressed by Anderson (1978), who argued that to
understand any system of representation, one needs to know not
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only the format of the representations, but also the processes of
operation on such representations. Consider a mental model that
we represent in the following diagram:

� �

What does it mean? The answer, of course, depends on the system
of interpretation. It could mean, for example, that the circle is to
the left of the triangle, or that the circle and triangle are both
present. The model theory postulates that a key component in the
interpretation of models that derive from linguistic descriptions is
a separate representation of the intension, or meaning, of the
assertion (see Johnson-Laird & Byrne, 1991, chap. 9). The inten-
sional representation is linguistic in form, and it is used together
with general knowledge to construct the model or models, which
represent the extension of the assertion. Each model represents a
distinct set of possibilities compatible with the assertion. Hence,
the model above can represent the extension of the following
assertion about a spatial relation, such as

The triangle is to the right of the circle

where the left-to-right axis of the model represents the left-to-right
axis in the situation.

Models, which represent extensions, do not normally allow
individuals to recover the meaning, let alone the precise wording,
of the assertions from which they derive. They capture at best the
gist of assertions (for evidence, see, e.g., Barclay, 1973; Garnham
& Oakhill, 1996). Hence, when individuals modify a model, say,
in a search for a counterexample, they need access to an indepen-
dent representation of the intension of the assertion (Johnson-Laird
& Byrne, 1991, chap. 9). Without such a representation, the system
would have no way of determining whether a modification to the
model was consistent with the meaning of the assertion, nor of
determining what the model is supposed to mean in the first place.

As Peirce (1931–1958) argued, a diagram differs from the
objects that it represents in being stripped of accidents. Likewise,
as the logician Jon Barwise (1993) pointed out, a mental model
captures what is common to all the different ways in which a
possibility might occur. Hence, the model in the diagram above,
together with the intension of the sentence, represents what is
common to any situation in which a triangle is on the right of a
circle, or any other equivalent proposition, such as the circle is on
the left of the triangle. However, nothing is represented about the
size, color, and distance apart of the shapes, or any other such
accidents. Indeed, the model can be updated to take into account
any further information about properties and relations. But, no
matter how many details are added to a description, it is always
consistent with indefinitely many different situations.

In sum, a model of a relation contains a corresponding relation.
In this sense, the model is iconic: Its parts and the relations among
them are interpreted in the system to correspond to the parts and
the relations in the situation that it represents. To ensure that this
account is viable, and that models do not merely mean what we,
the authors, stipulate that they mean, we have developed computer
programs that implement the theory. Of course, the programs do
not use line drawings as models, but instead use arrays, which we
describe in detail later along with the main principles of the
program.

Iconicity is based on the concept of resemblance: “A sign that is
an icon represents a certain object or a certain state of affairs by its
likeness to its object or state of affairs” (Shin, 2002, p. 24). But,
resemblance is not the whole story of iconicity. It is a symmetrical
relation, whereas representation is not. A portrait of Einstein, say,
resembles him; it represents him, but he does not represent his
portrait (Dipert, 1996; Goodman, 1976; Shin, 2002). According to
Peirce (1931–1958), resemblance can occur in at least two distinct
ways: resemblance in terms of appearance, and resemblance in
terms of structure (Shin, 2002). And it is this second sort of
resemblance that underlies the iconicity of mental models.

The two sorts of resemblance may explain the common miscon-
ception that mental models are images. In fact, the two sorts of
representation should not be confused with one another. Visual
images represent how something looks from a particular point of
view. They are akin to Marr’s (1982) two-and-a-half dimensional
sketches, and operations on images are visual. In contrast, mental
models are abstract structures akin, for instance, to spatial arrays in
a programming language. Just as such an array can be used to
construct a two-dimensional image in, say, a graphics program, so
too can the brain use an underlying three-dimensional mental
model of an object to construct a two-dimensional image of the
appearance of the object from a particular point of view. Likewise,
when individuals carry out a mental rotation of a depicted object
(e.g., Shepard & Metzler, 1971), it is not an image that they rotate
but an underlying model. The evidence for this claim is that
rotations in depth produce the same pattern of results as rotations
in the picture plane. As Metzler and Shepard (1982) remarked,

These results seem to be consistent with the notion that . . . subjects
were performing their mental operations upon internal representations
that were more analogous to three-dimensional objects portrayed in
the two-dimensional pictures than to the two-dimensional pictures
actually presented. (p. 45)

A matter of current controversy is whether there are any amodal
mental representations, that is, representations that are not in any
sensory modality. Markman and Dietrich (2000) wrote, “Theoret-
ical arguments and experimental evidence suggest that cognitive
science should eschew amodal representations” (p. 472). This
hypothesis has much to recommend it. Earlier theorists had under-
estimated the power of perceptual representations (see Barsalou,
1999, for a similar argument). But, as we will argue, models are
spatial rather than visual, and some aspects of models are amodal.
Certainly, you can have a visual (and auditory) image of the bomb
striking the ground followed by the siren sounding. The visual
images, however, are projections from an underlying three-
dimensional model. Moreover, models can represent abstract re-
lations of a sort that are not entirely visualizable, such as

Viv realized that there was an air-raid.

Similarly, no visual image alone can capture the content of a
negative assertion, such as

The bomb did not strike the ground while the siren was sounding.

You might form a visual image, say, of a large red cross super-
imposed on your image of the bomb striking the ground while the
siren was sounding. But, in this case, you would need to know that
the red cross symbolizes negation (cf. Wittgenstein, 1953). Alter-
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natively, you might form several visual images to represent the
contrast class of affirmative relations given the truth of the nega-
tion, that is, the bomb striking the ground before the siren sounded,
and the bomb striking the ground after the siren sounded (Oaks-
ford, 2002; Oaksford & Chater, 1994; Schroyens, Schaeken, &
d’Ydewalle, 2001). In this case, you would have to know that the
different images represent alternative possibilities as opposed to
some other relation between them (e.g., that the two images
represent distinct events happening in different places). And in
cases where negative assertions allow indefinitely many alterna-
tives, you would have to intend that the alternative images exhaust
the appropriate set of relations. A set of representations in itself
does not convey this information. Hence, negation cannot be
captured in an image alone. It calls for what Peirce called a
symbolic element that refers in turn to the meaning of negation: If
an assertion is true then its negation is false, and if an assertion is
false then its negation is true.

These considerations lead to the following assumption about the
structure of mental models:

1. The principle of iconicity: Models are iconic insofar as
possible, that is, their parts and relations correspond to those
of the situations that they represent. They underlie visual
images, but they also represent abstractions, and so they can
represent the extensions of all sorts of relations. They can also
be supplemented by symbolic elements to represent, for ex-
ample, negation. Iconicity arises from a representational
system with access to the intensional representations of
assertions.

A consequence of this assumption is that relations that evoke vivid
images should not necessarily enhance reasoning, and may even
impede it. The literature on this topic yields seemingly conflicting
results, but, as we show later, the principle of iconicity appears to
resolve the conflict.

Emergent Logical Consequences

Earlier we raised a question that most previous accounts of
transitive reasoning have not answered: how do individuals repre-
sent the logical properties of relations? Formal rule theories have
axioms (meaning postulates) for this purpose (e.g., Rips, 1994).
The model theory, however, does not. Indeed, it postulates that
individuals do not represent logical properties at all. Instead, it
adopts the following assumption:

2. The principle of emergent consequences: Individuals use
the meanings of relational assertions in intensional represen-
tations to construct mental models of the extensions of asser-
tions, and the logical consequences of relations emerge from
these models.

The previous example of the bomb and siren illustrated this prin-
ciple—a novel conclusion was drawn from a model of the pre-
mises. We include a further illustration to demonstrate that emer-
gent consequences include not only novel conclusions, but also the
basic logical consequences of the relations themselves. Suppose
that someone asserts the following spatial relation:

Ann is in the same place as Beth.

The comprehension of this assertion yields a representation of its
meaning, which is used to construct a model of the situation:

(Ann Beth)

The parentheses represent a place, and the diagram denotes a
model of the two individuals in the same place. A computer
program for spatial reasoning inserts a list of the two individuals in
the same cell of a spatial array (see below). The symmetry of in the
same place as emerges at once from the model, because it supports
the symmetrical conclusion:

Beth is in the same place as Ann.

No model of the original assertion can falsify this conclusion, and
so it follows necessarily from the original assertion. The model
also yields the reflexivity of the relation, because both of the
following assertions are also true and have no counterexamples:

Ann is in the same place as Ann.

Beth is in the same place as Beth.

These conclusions are so obvious that individuals are unlikely to
draw them spontaneously. Yet, they are valid inferences.

A more interesting conclusion emerges given a further assertion
in the same discourse:

Cath is in the same place as Beth.

The previous model can now be updated with the new information
conveyed by this second assertion:

(Ann Beth Cath)

The transitive conclusion follows of necessity:

Ann is in the same place as Cath.

The same general approach yields transitivity, symmetry, and
reflexivity as emergent properties from the construction of models
based on the meanings of assertions containing certain relational
terms.

In general, logical properties depend on the meanings of rela-
tions and the constructions of models based on them. The theory
accordingly predicts that individuals do not normally represent
logical properties, and that inferences emerge from models. The
next section, An Assessment of the Theory, presents evidence that
corroborates this prediction.

An Algorithm for Relational Reasoning

The predictions of the relational theory derive from its five main
principles—of which we have so far described two. But, we have
also implemented the theory in programs for spatial and temporal
reasoning. The programs are intended to be working models of
how, in principle, conclusions can be emergent properties of
representations rather than derived from meaning postulates and
formal rules of inference. In this section, we illustrate this point in
a description of the program for spatial reasoning. The programs
have also allowed us to explore different strategies for reasoning
(see the next section).
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The first stage of the spatial program’s interpretative process
yields a representation of the meaning (or intension) of sentences.
Each word has a lexical entry specifying the word’s contribution to
the truth conditions of assertions. Each rule in the grammar has a
corresponding semantic rule so that the process of parsing imple-
ments a compositional semantics (Montague, 1974); that is, the
program’s parser uses the semantic rules to combine the meanings
of words and phrases according to the grammatical relations
among them. The particular proposition that a sentence expresses
also depends on knowledge, both of general affairs and of the
specific context. Indeed, knowledge can even prevent the construc-
tion of a model of a possibility (Johnson-Laird & Byrne, 2002). To
simplify matters, however, the program treats context as the in-
formation already represented in the models of the discourse so far.

Given an assertion that describes the spatial relation between
two entities, such as

The triangle is on the right of the circle

the first step in the program is to use the parser to construct an
intensional representation of the sentence. The program’s spatial
models are three-dimensional Cartesian arrays, and the meanings
of spatial relations are captured in terms of procedures for scan-
ning these arrays. The meaning of on the right of is ambiguous
between a deictic sense that depends on the speaker’s point of view
and a sense that may be elicited by the intrinsic right-hand side of
an object, such as a chair or automobile. For simplicity, we assume
a deictic sense so that, for example, the following arrangement in
a spatial array satisfies the relation that the triangle is on the right
of the circle:

� �

Figure 1 shows a three-dimensional array of cells in which the
origin of the array, cell 0 0 0, is in the top left-hand corner
(following the conventions for representing arrays in programming
languages such as LISP). The figure shows the location of the cell
containing the circle as specified by the following three coordinate
values:

value of the cell on the left–right axis: 1

value of the cell on the back–front axis: 0

value of the cell downward on the vertical axis: 2

Any location in the direction shown by the arrow satisfies the
relation on the right of the circle. In other words, if you scan the
array in that direction, you encounter all the cells in the array that
satisfy the relation. To scan in that direction, you need to start at
the circle’s location and to increment the left-to-right axis while
holding constant the values on the other two axes. A general way
in which to represent the meaning of on the right of is in terms of
these changes to the coordinate values of a reference object.
Hence, the lexical entry for the deictic meaning of right is as
follows:

right preposition (1 0 0)

The first item represents the word. The second item represents its
syntactic category. And the third item represents its semantics,
which specifies that the left–right axis should be incremented (i.e.,
keep adding 1 to its current value), whereas the other two axes
should be kept constant (i.e., keep adding 0 to their current values).
The human interpretative system is likely to rely on an analogous
system, except that objects themselves, together with the relations
among them, are represented within a Cartesian framework. Table
2 summarizes the semantics for a variety of spatial relations
relying on the same principles. The result of parsing the sentence,
“The triangle is on the right of the circle,” is an intensional
representation:

((1 0 0) � �)

The second stage of the interpretative process uses the inten-
sional representation of a sentence to build a new model of a
discourse, or to update an existing model, or to assess the truth or
falsity of the sentence in relation to the current model. There are,
in fact, seven principal functions that relate an intensional repre-
sentation to extensional models. A procedure determines which of
them to use. It checks on whether any of the referents in the
intensional representation already occur in a model of the
discourse.

If none of the referents in the intensional representation are
represented in a model of the discourse, then Function 1 is called
to start the construction of a new model. Given an intensional
representation of the assertion, “The triangle is on the right of the
circle,” that is, ((1 0 0) � �), it inserts the token representing the
circle into an array, and then calls Function 2 below. The program
works with the smallest possible three-dimensional array, which it
expands whenever necessary. At this point, the array consists of a
single cell containing the circle.

If at least one entity in the intensional representation is in a
current model, as it will be after the use of the preceding function,
then Function 2 is called to add a new token to the current model
according to the relation in the intensional representation. In the
example, the function adds the token representing the triangle to
the right of the location of the circle. The function uses the
representation of a relation, (1 0 0), to establish the direction in
which to expand the array to form a new cell for the location of the
new entity. As in the example, the result of this function may be
merely to update an existing model.

Granted the semantics for spatial relations, it should be straight-
forward to add the first argument of a spatial relation to a model
representing its second argument. It should be harder, however, to
add the second argument to a model representing the first argu-

Figure 1. The location of the circle in a three-dimensional array of cells.
The arrow shows the direction of the cells to the right of the circle.
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ment. There is accordingly an inherent directionality built into the
semantics of spatial relations, and in the way in which the program
builds up models from them (see Oberauer & Wilhelm, 2000 for
corroboratory evidence).

Consider the following description:

The triangle is on the right of the circle.

The cross is on the left of the line.

Functions 1 and 2 construct two separate models, because the two
assertions have no referent in common. If the next assertion is

The line is on the left of the circle.

then Function 3 is called to build an integrated model of the two
previous models:

✠ � � �

The initial separate models are therefore like two glimpses of the
same situation, but they cannot be integrated until an assertion
establishes a relation between referents in them.

Given the further assertion

the cross is on the left of the triangle

all the referents in the intensional representation are represented in
a single model of the discourse (as shown above). Hence, Function
4 is called to check whether or not the model satisfies the relation
in the intensional representation. It starts at the location of the
object of the intensional relation and scans in the direction spec-
ified by the relation in order to determine whether or not the
subject of the intensional representation is located in one of the
cells it scans. In the present case, the function accordingly returns
the value true. In principle, a model might not represent any
information about the relation in the intensional representation. For
example, the model might represent the spatial locations of the
referents, but not their relative heights asserted in the intensional
representation. Function 5 adds the new relation to the current
model.

When Function 4 yields the result true in the current model,
Function 6 tries to find a new model that satisfies the earlier
assertions in the discourse but that is a counterexample to the
intensional representation of the current assertion. If the function

finds such a model, then the current assertion is contingently true;
if it fails to find such a model, then the current assertion follows
necessarily from the previous discourse. Function 6 can work only
if it has access to the intensional representations of the previous
assertions in the discourse. As we remarked earlier, individuals
cannot modify models in a search for alternatives unless they have
access to an independent representation of the meaning of the
assertions in the discourse, or at least can reinterpret them. In the
present case, no alternative model of the premises is a counterex-
ample to the assertion that the cross is on the left of the triangle.
Its validity is an emergent property from the intensions of the
propositions and the model-building system. And the system has
no need for meaning postulates specifying the logical properties of
relations.

If Function 4 yields the result that the intensional representation
is false in the current model, then Function 7 tries to find a new
model that satisfies the earlier assertions in the discourse and the
intensional representation of the current assertion. If the function
finds such a model, then the current assertion can be true, and the
model is adjusted to satisfy its intensional representation; if the
function fails to find such a model, then the assertion is necessarily
false given the previous discourse. That is, the assertion is incon-
sistent with the previous discourse: Its negation follows from the
previous discourse.

The interpretative process captured in the previous functions
treats each sentence in a discourse as a putative conclusion, but the
theory allows that individuals can also formulate conclusions for
themselves. The theory postulates that conclusions are drawn by
scanning models for a parsimonious and novel relation between
entities, that is, a relation that was not asserted explicitly in the
original set of sentences. If such a relation is found, then Function
6 is called in order to check whether the relation is necessarily true.
Otherwise, no conclusion is forthcoming.

A major source of difficulty in reasoning is the need to represent
multiple possibilities. Individuals tend to work with just a single
model (see, e.g., Bauer & Johnson-Laird, 1993). Hence, the pro-
gram is based on the following assumption in the theory of models
of relations:

3. The principle of parsimony: Individuals tend to construct
only a single mental model of a set of relations, to construct
the simplest possible model, and to use their knowledge to
yield a typical model.

Other theorists have anticipated the same principle (e.g., Evans,
Over, & Handley, in press; Ormerod & Richardson, 2003;
Sloutsky & Goldvarg, 1999). It reflects the limited processing
capacity of working memory and its constraint on inference (e.g.,
Baddeley, 1986; Klauer, Stegmaier, & Meiser, 1997). Many rela-
tional problems, however, are consistent with multiple possibili-
ties. What individuals do in this case is an issue that we now
take up.

Strategies of Relational Reasoning

Some theories of reasoning postulate that individuals rely on a
single deterministic strategy (e.g., Rips, 1994). In contrast, the
model theory, like other theories (e.g., Roberts, 2000), assumes
that individuals use a variety of strategies. In particular, the theory
is based on the following assumption:

Table 2
The Lexical Semantics for a Set of Prepositions Expressing
Spatial Relations

Relation Left–right Back–front Top–down

In the same place as 0 0 0
On the right of 1 0 0
On the left of �1 0 0
In front of 0 1 0
In back of 0 �1 0
Behind 0 �1 0
Above 0 0 1
On top of 0 0 1
Below 0 0 �1

Note. 1 and �1 signify the directions in which to scan to meet the
semantics of the relations. 0 means hold a value constant.
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4. The principle of strategic assembly: Naive reasoners as-
semble reasoning strategies from an exploration of different
sequences of tactical steps. The exploration is not determin-
istic, and so individuals are likely to develop different strat-
egies and to switch from one strategy to another. These
strategies should be tuned to the exigencies of the problems
with which the reasoners are working.

Consider, for instance, these two premises:

The triangle is below the circle.

The cross is above the triangle.

They are spatially indeterminate, because they are consistent with
at least three different possibilities, depending on the relation
between the circle and the cross:

(1) (2) (3)

✠ �

o ✠ � ✠

� � �

The spatial reasoning program outlined earlier constructs the first
of these possibilities, and, if necessary, searches for alternative
possibilities (using Functions 6 and 7); a temporal reasoning
program that we have also implemented (see below) constructs
models of all possibilities. But what do human reasoners do?

Reasoners could try to keep track of all the possibilities in
multiple models (Byrne & Johnson-Laird, 1989). They could try to
keep track of them in a single model but represent symbolically
that the relation between the cross and the circle is indeterminate
(Vandierendonck, De Vooght, Desimpelaere, & Dierckx, 1999).
Such models do not reduce the number of possibilities that rea-
soners need to bear in mind, but they do reduce the processing load
on working memory, because each entity is represented only once.
Another possibility is embodied in the spatial reasoning program:
Reasoners construct a single determinate model—a preferred
model—and, if necessary, they use intensional representations of
the premises to search for alternatives. Studies of diagrams based
on the 13 possible relations between two time intervals (Allen,
1983) showed that individuals have definite preferences in com-
bining them (Knauff, Rauh, & Schlieder, 1995). They tend to
maintain the same rank order of starting and end points or to
assume that the intervals are of approximately the same length
(Berendt, 1996). Likewise, Jahn, Johnson-Laird, and Knauff
(2004) have shown that individuals have preferred models of
spatial descriptions based on relations such as, between, next to,
and on the right of. Like the spatial program, they tended to use the
order in which entities are referred to in indeterminate descriptions
to construct their preferred models. They were also likely, where
possible, to envisage a layout in which entities referred to in the
same assertion were adjacent to one another in the layout. For
example, given a description of the following form

b is between a and d

c is on the right of a

the order of terms in the first premise, and the use of adjacency,
yield the following preferred model:

a c b d

Strategies are not merely ways to cope with multiple models.
They should be sensitive to the goals of reasoning or to what
reasoners envisage as relevant to conclude (Van der Henst, Sper-
ber, & Politzer, 2002). But strategies should also be geared to
efficient reasoning. For instance, when a problem is posed with a
question about a relation, a useful strategy is to ignore any pre-
mises that are not relevant to answering the question—a strategy
that can yield as a by-product a reduction in the number and
complexity of models. Consider, for example, the following prob-
lem concerning temporal relations:

a happens before e

b happens before e

c happens before e

d happens before e

What is the relation between a and d?

You readily infer that there is no definite relation between them.
There are only two relevant premises, the first and the last, and
they yield two possible temporal orders that show that there is no
definite relation between a and d:

(1) a d e

(2) d a e

Hence, if individuals have immediate access to all the premises
and the question about them, they can construct models from just
those premises that are relevant to its answer.

We have implemented this idea in a program that models
temporal reasoning. The program constructs multiple models of
indeterminacies, but only to a limited number (by analogy with a
limited-capacity working memory). When this number is ex-
ceeded, the program searches for a coreferential chain of premises
interrelating the two events in the question and constructs models
only from these premises. Hence, it ignores all premises that are
not part of the chain connecting one event in the question to the
other. As a corollary, it deals with the premises in a coreferential
order, in which each premise after the first refers to an event
already represented in the set of models. Experiments have shown
that people can also learn to ignore irrelevant premises when the
question to be answered is posed before the presentation of the
premises (Schaeken & Johnson-Laird, 2000). If there is no ques-
tion or given conclusion, then neither the program nor human
reasoners can use this strategy.

In general, as individuals reason about a series of problems, the
natural variation in their tactical steps usually leads to the devel-
opment of a strategy for coping with problems (Van der Henst,
Yang, & Johnson-Laird, 2002). The model theory therefore makes
two predictions: First, different individuals are likely to develop
different strategies; and, second, experimental manipulations—
especially of the sorts of problems that occur in an experiment—
should bias participants toward particular strategies.

Higher Order Relations: Relations Between Relations

Relations can occur between relations. The sources of these
higher order relations include sentential connectives. The follow-
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ing assertion, for instance, concerns a relation between a pair of
relations:

If Ann is taller than Beth, then Beth is taller than Cath.

There is a vast psychological literature on how individuals reason
with connectives such as if. The topic is beyond the scope of the
present article, but a model theory of sentential reasoning has been
presented elsewhere (see, e.g., Johnson-Laird & Byrne, 1991,
2002).

Functions are another source of relations between relations. For
example, the relation taller than depends on the function, height of,
and so the assertion

Abe is taller than Ben

can be paraphrased as

The height of Abe is greater than the height of Ben.

There can therefore be the following sort of relation between
relations:

Abe is taller than Ben to a greater extent than Cal is taller than Dan.

The individual clauses express relations, but the sentence also
asserts a difference between these relations. That is, it asserts that
the difference in height between one pair of individuals is greater
than the difference in height between another pair of individuals:

(height of Abe) � (height of Ben) and

(height of Cal) � (height of Dan) and

(height of Abe) – (height of Ben) � (height of Cal) – (height of Dan).

A statistical interaction is another example of a relation between
relations (Halford et al., 2005). In theory, there are no bounds on
the order of relations between relations. For example, there can be
a relation between relations between relations:

The degree to which Abe is taller than Ben to a greater extent than Cal
is taller than Dan is larger than the degree to which Eve is taller than
Faith to a greater extent than Gerd is taller than Hope.

This higher order relation is likely to be near to the boundary of
everyday competence. It is of a third order in depth, that is, it has
three levels in depth: At the highest level is one binary relation, at
the next level down are two binary relations, and below them are
four binary relations depending on the heights of eight individuals.
The assertion is difficult to understand, but not merely because it
refers to eight individuals. The following assertion also refers to
eight individuals, but it is easy to understand because it can be
decomposed into a set of binary relations that can be processed
separately:

Abe is taller than Ben, who is taller than Cal, who is taller than Dan,
who is taller than Eve, who is taller than Faith, who is taller than Gerd,
who is taller than Hope.

What adds to the complexity of understanding the first assertion is
indeed its depth—the fact that it concerns a relation between
relations between relations. Halford et al. (1998a, p. 855) have
argued that relational complexity depends primarily on the number
of arguments that have to be processed in parallel. But, depth does

appear to affect perceptual judgments (see Kroger, Holyoak, &
Hummel, 2004, e.g., correct comparisons between two binary
relations were faster than those between relations between two
binary relations).

The model theory accordingly postulates that both the number
of arguments and their depth should affect reasoning. The theory
is based on the following assumption:

5. The principle of integration: A major component in the
difficulty of relational reasoning is the need to integrate
information in models. The more complex the integration, the
harder the task should be. This complexity depends on the
number of entities that need to be integrated (what Halford et
al., 1998b, have termed processing load), and on the depth of
the relation over these entities. It also depends on the partic-
ular process of integration as we described in outlining the
algorithm for spatial reasoning.

We describe tests of this principle later.

An Assessment of the Theory

The previous part of the article presented a theory of the mental
processes and representations underlying reasoning with relations.
Earlier studies have provided some indirect evidence that individ-
uals rely on mental models to perform relational inferences. Tra-
basso, Riley, and Wilson (1975) demonstrated that transitive in-
ferences are performed by assembling elements into an ordered
array. Children (aged 6 and 9 years) and college students were
presented with a set of adjacent, binary premises concerning the
length of a set of items (e.g., A � B, B � C, C � D, D � E, E �
F). They were faster to verify the transitive inference that B � E
than to verify the inferences that B � D and that C � E. This
symbolic distance effect suggests that individuals rely on mental
models rather than formal rules of inference. The inference that
B � E requires more logical steps, but the items are more clearly
separable in a mental model. Similarly, participants were generally
faster to verify the inferences that B � D and that C � E than to
verify the binary pairs they had been trained on (those that did not
involve end elements, e.g., B � C, C � D, D � E), the latter being,
again, less discriminable in an ordered array or model. Riley
(1976) replicated and generalized these findings to transitive rela-
tions other than length (e.g., height, weight, happiness, niceness).

Other recent studies have directly corroborated the model the-
ory’s predictions (Byrne & Johnson-Laird, 1989; Carreiras &
Santamarı́a, 1997; Schaeken, Johnson-Laird, & d’Ydewalle, 1996;
Vandierendonck & De Vooght, 1996). They have established that
in general, individuals make more errors with multiple-model
problems than with one-model problems. In contrast, the formal
derivations of proofs predict the opposite difference in certain
cases. The rationale of these studies depends on problems of the
following sort:

a is on the right of b

c is on the left of b

d is in front of c

e is in front of b

What is the relation between d and e?
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The lower case letters denote entities, such as cups and forks. The
preceding premises are consistent with a single spatial layout. In
contrast, if instead the first two premises are

b is on the right of a

c is on the left of b

there are two distinct spatial layouts. Figure 2 presents these two
examples (and their layouts) and two other sorts of spatial prob-
lem. Theorists had proposed that individuals use formal rules to
prove conclusions (see, e.g., Hagert, 1984; Ohlsson, 1984), and
these theories postulated two-dimensional meaning postulates.
Hagert, for example, proposed meaning postulates of the following
sort:

For any x, y, and z, if x is on the left of y and z is in front of x, then
z is in front of x, which is on the left of y.

These rules imply that a one-model problem (such as the first
example above: Problem I) calls for the proof of a transitive
relation between a and c, which then yields the derived relation
between d and e. No such transitive inference has to be proved for
Problems Ii and IIi, because the analogous relation between b and
c is asserted in a premise, and the relation between d and e can be
inferred from it. Hence, if reasoners use formal rules and meaning
postulates, then Problem I should be harder than Problems Ii and
IIi. In contrast, if reasoners rely on mental models, then both sorts
of one-model problems, I and Ii, should be easier than the multiple-
model Problem IIi. The two sorts of theory both predict that
Problem II, which has no valid conclusion, should be hardest.
Overall, the experiments corroborated the model theory for spatial
relations (Byrne & Johnson-Laird, 1989). Analogous problems
were constructed in the temporal domain using the relations be-
fore, after, and while, and events, such as “Mary reads the news-

paper.” Experiments corroborated the model theory for temporal
relations (Schaeken et al., 1996), for studies combining both sorts
of relation (Vandierendonck & De Vooght, 1996), and for abstract
relations such as studying more than, and copying from (Carreiras
& Santamarı́a, 1997).

Defenders of formal rules have made three counterarguments.
First, spatial relations (and instructions, say, to imagine objects on
top of a table) may encourage participants to rely on visual images
(cf. Rips, 1994, p. 415). But, as more recent studies have shown
(e.g., Carreiras & Santamaria, 1997; Schaeken et al., 1996), the
results also apply to contents that are not readily visualized.
Second, as Figure 2 shows, Problems Ii and IIi have irrelevant
premises, which could lead participants astray as they search for
formal proofs (Rips, 1994, p. 415). Subsequent research, however,
has shown that one-model problems remain easier than multiple-
model problems even when all the premises are relevant
(Schaeken, Girotto, & Johnson-Laird, 1998). Third, Van der Henst
(2002) has argued that meaning postulates could be framed for
indeterminate relations, such as

For any x, y, and z, if x is on the left of y and z is on the left of y, then
x is on the left of z or z is on the left of x.

If such rules are added to Hagert’s (1994) set, then proofs for Ii,
that is, the one-model problems with irrelevant premises, are of the
same length as proofs for IIi, that is, the multiple-model problems.
Van der Henst (2002) argued that the IIi problem imposes a greater
memory load or that the accessibility or ease of use of its rules
yields its additional difficulty. There are still other possibilities to
save the formal rule theory (see Van der Henst, 2002, p. 199). The
moral, as philosophers of science have long argued, is that post hoc
auxiliary assumptions can save any theory. Whether they are
plausible, however, is another matter.

Figure 2. Examples of four sorts of relational problem. Lower case letters denote entities, and the final question
is of the following form: What is the relation between d and e?
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A major difficulty for Van der Henst’s (2002) proposal arises
from another way of describing temporal relations (see, e.g.,
McTaggart, 1927; Miller & Johnson-Laird, 1976, section 6.2).
Descriptions can locate events in the past, present, or future, using
tense and aspect, rather than relational terms such as before and
after, for example,

John has cleaned the house.

John is taking a shower.

John is going to read the paper.

Mary always does the dishes when John cleans the house.

Mary always drinks her coffee when John reads the paper.

What is the relation between Mary doing the dishes and drinking
coffee?

This way of establishing temporal relations poses a difficulty even
for indeterminate meaning postulates. Meaning postulates capture
the logical properties of relational terms. It is not easy to see how
to frame them for the example above, which relies only on tense
and aspect. Yet, even with these materials, one-model problems
are easier than multiple-model problems (Schaeken et al., 1996).
We now turn to some new predictions of the model theory.

Iconic Models Rather Than Images Underlie Reasoning

Does reasoning depend on visual images or mental models?
According to the principle of iconicity, models underlie images,
and reasoning depends on models. Hence, problems with contents
that elicit imagery should not necessarily enhance reasoning and
may even impede it. At first sight, this claim is discrepant with
those findings in the literature that appear to show that imagery
improves reasoning. In fact, the principle of iconicity resolves an
apparent conflict between two lines of evidence in the literature.

One line of evidence suggests that imagery enhances reasoning.
However, these studies have tended to use materials that differ in
the ease of constructing spatial representations. For example, as we
mentioned earlier, De Soto et al. (1965) examined the extent to
which different relations evoked a representation with a spatial
axis. Spatial relations such as above and below elicited such
representations, as did control relations such as better and worse,
whereas visual relations such as lighter and darker elicited no
directional preference. The spatial and control relations facilitated
reasoning in comparison with the visual relations. Shaver, Pierson,
and Lang (1976) investigated transitive inferences with the three
relations: above, better than, and has lighter hair than. The par-
ticipants made fewer errors with the spatial relation of above than
with the control relation better than, which in turn yielded fewer
errors than the visual relation lighter hair than. Hence, rather than
a general benefit being conferred by imagery (which was the
implication of these studies), it seems instead that visual relations
impede reasoning in comparison with other sorts of relation.

The second line of evidence is that imagery has no effect, or
indeed has an impeding effect, on reasoning. These studies, how-
ever, tended to use materials that evoked visual imagery rather
than spatial relations. For example, Sternberg (1980) found no
difference between the accuracy of solving problems that were
easy or hard to visualize, and he did not find any reliable corre-
lation between scores on the imageability items of IQ tests and

reasoning ability. Richardson (1987) found that manipulating the
imageability of faces had no effect on reasoning. Clement and
Falmagne (1986) studied conditional reasoning and varied the
imageability and availability of pertinent knowledge. Statements
that were easy to visualize included such conditionals as, “If a man
walks his golden retriever, then he gets upset about his insect bite.”
Statements that were hard to visualize included, “If the man takes
an economic perspective, then he uses the new memory tech-
nique.” These two sorts of contents had no reliable effect on
reasoning, perhaps because the materials may have confounded
imageability with other factors (Evans, 1980). Egan and Grimes-
Farraw (1982) gathered retrospective reports from participants
who had drawn three-term series inferences. Those who reported
using visual imagery performed worse than those who reported
using other, more abstract strategies. Knauff, Jola, and Strube
(2001) examined the disruption of three-term series inferences by
secondary tasks that were either visual or auditory, and either
spatial or nonspatial. Only the spatial tasks disrupted inference,
regardless of whether they were auditory or visual.

In collaboration with Knauff, P. N. Johnson-Laird carried out a
recent study to test the principle of iconicity (Knauff & Johnson-
Laird, 2002). The first step was to find materials that dissociated
ease of forming a visual image from ease of forming a spatial
representation. Relations that evoke spatial representations, such
as above and below, also tend to be easy to visualize. However, a
panel of judges did rate some relations, such as cleaner and dirtier,
as easier to visualize than to envisage spatially. The second step
was to determine the effect of these various relations on reasoning.
The visual relations slowed down transitive reasoning in compar-
ison with the other sorts of relation.

A subsequent study used functional magnetic resonance imag-
ing in the absence of any correlated visual input (problems were
presented acoustically via headphones). Reasoning with all sorts of
relations evoked activity in the left middle temporal gyrus, in the
right superior parietal cortex, and bilaterally in the precuneus
(Knauff, Fangmeier, Ruff, & Johnson-Laird, 2003). In the prefron-
tal cortex, increased activity was found in the middle and inferior
frontal gyri. However, only problems based on visual relations
activated area V2 in the visual cortex. Hence, cortical activity
during reasoning depends on whether the contents evoke spatial
representations or, in addition, visual images. These results support
the principle of iconicity: Reasoning depends on spatial models,
not visual images, which can be a distraction. This account ac-
cordingly differs both from those theories that postulate that im-
agery is central to higher cognitive processes and from those
theories that postulate that it is epiphenomenal (Pylyshyn, 1981,
2002). Imagery is not central, because reasoning does not depend
on it; it is not epiphenomenal, because it can impede thinking.

Logical Properties as Emergent From Models

The model theory makes the major claim that individuals do not
possess meaning postulates stipulating the logical properties of
relations, but that instead these properties emerge from the con-
struction of models. Our computer programs demonstrate how, in
principle, such a system could work. Transitive inferences are so
simple that it is hard to see how to test empirically the difference
between formal rules and mental models. But, the principle of

482 GOODWIN AND JOHNSON-LAIRD



parsimony together with the principle of emergent properties does
yield an unexpected and testable prediction.

Some relations have clear-cut logical consequences within the
family of transitive, intransitive, and nontransitive properties. For
instance, a relation such as in the same place is obviously transi-
tive, a relation such as father of is obviously intransitive, and a
relation such as loves is obviously nontransitive. If mental models
follow the principle of parsimony, however, then they should be
simple and typical of the domain, and individuals should tend to
overlook alternatives to them in any sort of reasoning. One con-
sequence is that individuals should infer certain transitive relations
when, in fact, the inference is unwarranted. On this account, there
should be a class of relations that are not obviously intransitive,
that are in fact nontransitive, but that elicit simple models yielding
transitive conclusions. We refer to relations of this sort as pseudo-
transitive. Here is an example of an inference based on a pseudo-
transitive relation:

Ann is a blood relative of Beth.

Beth is a blood relative of Chris.

Therefore, Ann is a blood relative of Chris.

According to the theory, individuals should tend to construct a
simple model of collateral relatives such as siblings or linear
descendants:

Ann
|
Beth
|
Chris

They should accordingly infer the transitive conclusion:

Ann is a blood relative of Chris.

A counterexample shows that the inference is invalid: Your mother
is related to you, and you are related to your father, but your
mother and father are not necessarily blood-relatives. Naive indi-
viduals abiding by the principle of parsimony should be likely to
overlook such counterexamples. Yet, a simple manipulation
should enhance the likelihood that they consider them. When
individuals are given a context that elicits alternatives to oversim-
plified models, they should be less likely to draw pseudotransitive
conclusions. For example, the previous fallacy should be reduced
by an instruction to consider the consequences of marriage on
kinship.

We have carried out two experiments on pseudotransitive infer-
ences (Goodwin & Johnson-Laird, 2004a). The first experiment
tested whether individuals spontaneously draw their own pseudo-
transitive conclusions from the premises of three-term series prob-
lems. It examined five pseudotransitive relations: blood relative of;
in front of and behind, which are nontransitive if they refer to the
intrinsic parts of objects; and went faster than and overtook, which
are nontransitive if they refer to events at different times, say, in a
race. The experiment also examined five relations that are obvi-
ously transitive, for example, taller than, and three relations that
are obviously not transitive, for example, loves. The problems
were presented in a different random order to each of 24 Princeton

University students, whose task was to state what must follow
given that the premises were true. The participants drew transitive
conclusions on 98% of the problems with transitive relations, on
72% of the problems with pseudotransitive relations, and on 8% of
the problems with relations that were not transitive. This predicted
trend was highly reliable.

The second experiment showed that when the context drew
attention to less typical models, there was a reliable decrease in the
frequency of pseudotransitive inferences. The participants stated
what followed from 20 sets of premises: 12 sets were pseudo-
transitive and included contents akin to those of the first experi-
ment, 4 sets were obviously transitive, and 4 sets were obviously
not transitive. Half of the problems were presented with a short
linguistic context, which in the case of the pseudotransitives was
designed to elicit alternative models, whereas the other half of the
problems were presented without a context. Likewise, half of the
problems were based on affirmative relations, whereas the other
half of the problems were based on negated relations (e.g., not
taller than). The problems were presented in a different random
order to each of 30 Princeton University students, whose task was
the same as in the previous experiment. They drew transitive
conclusions on 91% of the problems with transitive relations, on
52% of the problems with pseudotransitive relations, and on 3% of
the problems with relations that were not transitive. The trend was
again highly reliable. But, in addition, the contexts reliably re-
duced the tendency to draw pseudotransitive conclusions (only
41% of them in comparison with 62% conclusions without the
contexts). The contexts had no reliable effects on the inferences
from relations that were obviously transitive or obviously not
transitive. Negation is known to cause difficulties in reasoning,
and negative relations were less likely to yield transitive
conclusions.

The results of the study corroborate the model theory, but they
are difficult to reconcile with the view that logical properties are
represented in meaning postulates. You either have, or do not have,
a meaning postulate for the transitivity of a particular relation. If
you have the postulate, which is axiomatic, then you should draw
the transitive conclusion, barring momentary lapses in perfor-
mance. If you do not have the meaning postulate, then you should
not draw the transitive conclusion. Our results, however, put this
account on the horns of a dilemma. On the one hand, if individuals
draw a pseudotransitive conclusion, then they presumably have the
relevant postulate. But, in this case, why does the context reduce
this propensity to draw the transitive conclusion? On the other
hand, if they do not draw a pseudotransitive conclusion from
premises presented with the context, then they presumably do not
have the relevant postulate. But, in this case, why do they draw the
transitive conclusion in the absence of the context? Meaning
postulates are not entities that switch on and off like a light. They
are axioms that have universal application, because they capture
the logical properties of words (Bar-Hillel, 1967). And although
they may not be always accessible, a linguistic context priming
alternative models should not inhibit them.

One conjecture to save meaning postulates is that the pseudo-
transitive relations are ambiguous and have one sense that is
transitive and one sense that is not. This conjecture seems plausible
for in front of, behind, and their cognates. Their deictic sense is
transitive, but the sense referring to intrinsic parts is not. But, even
for these relations, there are difficulties for the conjecture. Our
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participants still drew pseudotransitive conclusions for relations
that refer to intrinsic parts, such as on X’s right. Likewise, the
conjecture cannot explain the pseudotransitive inferences with
unambiguous relations, such as blood relative of.

A particularly thorny problem for meaning postulates arises
from the vagaries in spatial relations based on intrinsic parts.
Given a set of individuals seated down one side of a table, a
relation such as on X’s right-hand side is treated as transitive.
When the individuals are seated round a small circular table,
however, it is intransitive. If the circular table were larger, then
transitivity would extend over a small number of individuals, but
gradually break down with a larger number as they get further
round the table. To capture these phenomena with meaning pos-
tulates seems to call for an indefinite number of postulates for the
same relation. At one end of the spectrum the relation is intransi-
tive (a small round table), then it is transitive over three individuals
but not four (a slightly larger round table), and so on, up to a
relation that is unboundedly transitive (a long rectangular table). In
fact, what matters in these examples is the actual seating arrange-
ment, and whether or not Y can be truly described as on X’s
right-hand side. A single meaning of on X’s right-hand side
captures all these vagaries given a mental model of the seating
arrangement. Transitivity is an emergent property from models.

Strategies in Relational Reasoning

The pioneering studies of strategies in reasoning were based on
series problems. When participants carried out five-term series
problems based on the same relation, such as taller than, they
rapidly developed a short-cut strategy (Wood, 1969; Wood, Shot-
ter & Godden, 1974). They looked for a noun phrase that occurred
solely on the left-hand side of a single premise. It denoted the
tallest entity. One result of this strategy was that the participants
could rapidly answer the question posed in the problem but were
unable to answer unexpected questions about other entities in the
series. Quinton and Fellows (1975) asked their participants to talk
about the strategies that they had developed. After repeated expe-
rience with problems sharing the same formal properties, the
participants tended to identify invariants (e.g., an extreme term is
mentioned only once, and the middle term is never the answer of
the question), and to use them to solve the problems with minimal
effort. These investigators described five different perceptual strat-
egies, such as one in which the participants try to answer a
question about a three-term series problem solely from the infor-
mation in the first premise, for example, Pat is taller than Viv. If
they obtain an answer, for example, Pat is the taller, and this term
does not occur in the second premise, then they do not need to
consider the second premise: The answer is correct. The strategy
works only for problems that yield a determinate order for the
three individuals.

According to the principle of strategic assembly, a strategy is
assembled from a sequence of tactical steps. Individuals try out
various tactics until they succeed in finding a sequence yielding an
answer to the problem. The principle predicts that different indi-
viduals should develop different strategies for relational reasoning,
and may switch from one strategy to another. We have tested these
predictions in a recent study of inferences based on relations
between relations (Goodwin & Johnson-Laird, 2004b). A typical
problem from the study was based on the following premises:

Abe is taller than Ben to a greater extent than Cal is taller than Dan.

Ben is taller than Dan to a greater extent than Cal is taller than Dan.

The task was to put the four individuals into their rank order in
height, or to state that the task was impossible because there was
no definite order. In the problem, the second premise yields a
model of the height of the three individuals to which it refers. Both
Ben and Cal are taller than Dan, but Ben is taller than Dan by a
greater amount than Cal is. The resulting model is accordingly

Ben

Cal

Dan

where the vertical axis represents relative height. The first binary
relation in the first premise is that Abe is taller than Ben, and so the
model can be updated to represent the complete order:

Abe

Ben

Cal

Dan

The first premise, of course, contains further information, but it is
not needed for this problem.

In contrast, a second sort of higher order problem is based on
premises, such as

Abe is taller than Cal to a greater extent than Ben is taller than Dan.

Ben is taller than Dan to a greater extent than Cal is taller than Dan.

Once again, the second premise yields the model

Ben

Cal

Dan

The first premise states that Abe is taller than Cal, but is Abe taller
than Ben? To answer this question, it is necessary to use all the
information in the first premise. Suppose that the model-building
system adds Abe in a preferred way:

Abe

Ben

Cal

Dan

The first premise holds for this model: Abe is taller than Cal, and
Ben is taller than Dan, and the model is consistent with the second
order relation. In contrast, suppose that the system adds Abe to the
model in the following way, that is, it assumes that he and Ben are
of the same height:

Ben Abe

Cal

Dan

It is still the case that Abe is taller than Cal and that Ben is taller
than Dan. But, it is impossible for the difference in heights be-
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tween Abe and Cal to be greater than the difference between Ben
and Dan. Hence, the first model is the correct one. Its construction,
however, should be harder than the construction of the model for
the first problem, because its construction for the right reasons
depends on all the information in the first premise.

Because a strategy is a sequence of tactical steps, the space of all
conceivable strategies depends on the set of possible tactical steps.
There are seven main tactical steps for dealing with binary rela-
tions: starting a model, updating it, integrating two models, veri-
fying a relation in a model, searching for an alternative model that
satisfies a relation, and searching for an alternative model that
refutes a relation (see the program described in The Model Theory
of Relational Reasoning section above). For the present problems,
versions of these tactics also use second-order premises to con-
struct and to verify ternary and quaternary orders. A separate
tactical step relevant to some strategies is to search for an end item
in the order. Given Problem 1 above, for example, the first premise
yields two candidates for the shortest individual: Ben and Dan. The
second premise reveals that Dan is unequivocally the shortest.

The participants in the experiment were allowed to use paper
and pencil, but to help us to elucidate their strategies, they had to
think aloud as they tackled the problems. We video-recorded what
they wrote, drew, and said. We were able to make sense of over
90% of the protocols, and all the main tactical steps outlined above
occurred in them. At first, the participants tended to flail around,
trying out various tactics, but they soon settled down and were able
to produce the correct answer on the vast majority of trials. In
some cases, they abandoned one strategy and took up another in
order to solve a problem. The possible strategies could have been
based on formal rules or on mental models, but the protocols show
that the participants relied on models. One participant made an
initial use of algebraic expressions, but he subsequently abandoned
this procedure. There are three main strategies based on models,
and we observed each of them:

1. The ternary strategy (49% of observed strategies): Rea-
soners used the second premise to construct a ternary
order, and then used the first premise to add the fourth
individual to the order.

2. The transitive strategy (24% of observed strategies): Rea-
soners mentally conjoined a diagram (or model) of one
binary relation with one of another binary relation to
yield an integrated transitive order of three individuals.
Each binary relation came from a separate premise. They
then imported the fourth individual into the order from a
premise.

3. The frame strategy (17% of observed strategies): Rea-
soners constructed an initial frame, typically by inferring,
or guessing, the tallest and shortest individuals. On oc-
casion, reasoners would instead use a model of one
clause in the premises as the frame. They would then
insert the remaining individuals within the frame by
using an educated guess and check the results against the
premises.

As the principle of strategic assembly predicted, individuals
differed in the strategies they developed, and almost all of them

tried more than one strategy. They used a mean of 2.27 out of the
three main strategies. Moreover, they shifted from one strategy to
another reliably more often than necessary. Regardless of strategy,
as the theory predicted, the participants solved the problems that
depended on a single relation from the first clause (M � 59.2 s)
faster than the problems that depended on all the information in the
first premise (M � 87.9 s).

The principle of strategic assembly postulates that individuals
experiment with various tactical steps and assemble strategies
“bottom up” from sequences of these steps. It follows that the
characteristics of problems should influence the particular strate-
gies that individuals develop. To test this prediction, we carried out
a further study in which we manipulated the order of premises.
When the premise yielding the ternary order occurred first, it
should have inculcated the ternary strategy. To inculcate the tran-
sitive strategy, we made the two relevant binary relations in the
separate premises more salient by presenting them in a different
color than the rest of the premises.

The results corroborated the predictions. The participants relied
on the same three strategies that we observed in the first study.
But, their use was reliably biased by the experimental manipula-
tions. The occurrence of the ternary premise first yielded the
ternary strategy on 54% of trials, whereas the color coding of the
binary relations yielded this strategy on only 26% of trials, and
instead the participants used either the transitive or the frame
strategy. Evidently, the emphasis on the two binary relations also
encouraged the participants to identify the end items in the order.
Once the participants had developed a strategy in the first block of
problems, they tended to continue to use it in the second block.
But, the ternary strategy transferred to a greater degree than the
other strategies. Notwithstanding the differences in strategies, the
complexity of integrating information predicts that problems call-
ing only for one binary relation from a premise should remain
easier than those calling for all the information from the premise.
As in the previous study, the results corroborated this prediction.

A special domain of relations concerns kinship. The particular
relationships that are lexicalized vary from one culture to another,
though they are based on a small number of relations such as
parent of, and properties such as female (Miller & Johnson-Laird,
1976). Studies of kinship inferences have focused on how partic-
ipants infer that two different descriptions, such as father’s brother
and uncle, can refer to the same relative (e.g., Wood & Shotter,
1973). Some equivalences, including the previous example, are
likely to be stored in long-term memory, but others can be grasped
only by using the intensions of the terms to construct models of
lineages. A major result is that individuals do develop strategies to
deal with such inferences; for example, they learn short cuts, such
as using a mismatch in the sex of the two relatives in a putative
equivalence (Cech & Shoben, 1980; Oden & Lopes, 1980). The
fundamental concepts are biological, and children appear to grasp
them by the age of 4 (see Springer, 1992, 1995), contrary to earlier
theories that children have a social theory of the family (Carey,
1985; Haviland & Clark, 1974).

The Integration of Information

According to the principle of integration, a major component of
the difficulty of relational reasoning is the need to integrate infor-
mation in models. This difficulty depends on the number of argu-
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ments that have to be integrated, as Halford and his colleagues
have argued, and on the process of integration (see the description
of the algorithm in The Model Theory of Relational Reasoning
section above). However, according to the principle of integration,
difficulty also depends on the depth of the relation holding over the
arguments. No previous studies had demonstrated a clear-cut effect
of either number of arguments or depth on reasoning, and so we
carried out three experiments to test the predictions of the principle
of integration.

Experiment 1: The Number of Unique Arguments

Does the number of unique arguments to be integrated in an
inference affect its difficulty? Halford and his colleagues have
examined this question indirectly. They analyzed the underlying
processes in various inferences and comprehension tasks, and
argued that such effects do occur (see, e.g., Andrews & Halford,
1994, 2002; Birney & Halford, 2002; Halford et al., 1998b). What
has yet to be shown, however, is that a simple manipulation of the
number of arguments affects the difficulty of inferring the same
conclusion (cf. Maybery et al., 1986, who kept the premises
constant, and investigated the difficulty of evaluating conclusions
of different complexities).

The first of our studies examined spatial inferences about the
relative starting positions of runners in a race. Each problem was
based on three premises, and the task was to answer a question
about the starting position of two of the four runners who were
allocated to five lanes (hence, there was one empty lane). In one
sort of problem, the third premise referred to three different run-
ners, for example,

a is left of c and b is left of a

b is left of c and d is left of b

a is further away from c than b is from a

Who is closer to the empty lane, b or a?

The third premise has two noun phrases referring to the same
runner. Coreference of this sort should improve reasoning, because
it reduces the complexity of the integration process (Walsh &
Johnson-Laird, 2004). The answer to the question depends on
inferring the allocation of the four runners to the five lanes. The
first premise yields the order

b a c

The second relation in the second premise updates the order

d b a c

The third premise yields the allocation to the lanes. Reasoners can
use it to represent that the distance from a to c is greater than the
distance from b to a:

� d � b � a � � c �

Hence, the answer to the question is that a is closer to the empty
lane than b is.

In a second sort of problem, the first two premises were the
same, but the third premise referred to four different runners:

b is further away from c than d is from a.

This premise yields the allocation to the lanes. But, in this case,
reasoners need to represent that the distance from b to c is greater
than the distance from d to a; that is, they need to integrate a
relation concerning four distinct individuals:

� d � b � a � � c �

As before, the answer to the question is that a is closer to the empty
lane than b is. The principle of integration predicts that the prob-
lem with three referents in the crucial premise should be easier
than the problem with four referents in the crucial premise.

Method

The participants acted as their own controls and carried out five prob-
lems of the two sorts in separate blocks of trials. There were two separate
groups of participants to counterbalance the order of the two blocks. Within
each block, each participant carried out the problems in a different random
order. To prevent the participants from learning the answers, the first two
premises were presented in two different linguistic versions, the premises
described two different spatial arrangements, there were five distinct ques-
tions concerning five pairs of individuals, and the order of each pair in a
question was also counterbalanced. As in the preceding examples, the
runners were denoted by single letters (in capitals). Ten different sets of
four letters were constructed and were allocated at random to the problems.

The 21 paid participants, who were students at Princeton University,
were tested individually and carried out the experiment on an IBM com-
puter running the SuperLab Pro (Cedrus Corporation, 1999) program. They
were not allowed to write anything down, although a diagram of five empty
lanes was presented at the bottom of the computer screen. The participants
had to make their responses by typing the letter corresponding to the
correct person. They followed a self-paced procedure in which the pre-
mises and the question were presented by a separate key press. The first
two premises were presented simultaneously: These pairs of premises were
identical in both sorts of problem. All the sentences in a problem, premises
and question, remained on the screen until the completion of the problem.

Results

The percentages of correct conclusions for the two sorts of
problem and the mean reading latencies for the third premise were
as follows:

three-argument problems: 90%, 15 s

four-argument problems: 77%, 23 s.

The three-argument problems yielded a greater proportion of cor-
rect responses and faster reading times of the third premise than
the four-argument problems (Wilcoxon’s tests, z � 2.45, p � .007,
one-tailed, and z � 3.22, p � .001, one-tailed, respectively; the
difference in latencies was also reliable in an analysis for the
correct responses only). No reliable difference occurred in the
times to respond to the question.

The experiment corroborated the principle of complexity and
Halford’s theory of relational complexity. Inferences based on a
relation between two binary relations are easier when a common
referent occurs in both binary relations than when there are four
distinct referents. They yield a greater percentage of correct re-
sponses, and the crucial premise takes less time to read. The
number of unique arguments in a relation does affect adult
reasoning.
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Experiment 2: The Effects of Depth

The principle of integration predicts that the depth of a relation
should increase the difficulty of reasoning. In order to test this
prediction, it is crucial to hold the number of arguments constant,
because otherwise it could explain the phenomenon. Indeed, Hal-
ford and his colleagues argued that number of variables is the
critical factor. They wrote, “. . . higher-order relations are impor-
tant, but dimensionality is the more general criterion of complex-
ity, and can be applied to structures of any depth” (Halford et al.,
1998a, p. 855). We therefore used two sorts of problem in which
the participants had to infer the rank order of four individuals in
terms of a property such as height. Both sorts of problem contained
the same number of arguments, but one sort was lower in depth
than the other.

The first sort of problem was based on premises, such as

Ann is taller than Beth to a greater extent than Beth is taller than Cath.

Dot is taller than Ann to a greater extent than Beth is taller than Cath.

The two clauses in the first premise regardless of the relation
between them yield a transitive inference about the ternary order:

Ann

Beth

Cath

All that is needed to complete the order is a single binary relation
in the second premise, Dot is taller than Ann:

Dot

Ann

Beth

Cath

We refer to problems of this sort as shallow, because they are only
of a first-order depth. Although the premises are of a second order,
the conclusion depends only on three binary relations.

The second sort of problem was based on premises, such as

Abe is taller than Ben to a greater extent than Cal is taller than Ben.

Dave is taller than Abe to a greater extent than Cal is taller than Ben.

All the information in the first premise, including the higher-order
relation between the relations, is needed to infer the ternary order:

Abe

Cal

Ben

But, as in the first problem, only a single binary relation from the
second premise is needed to put Dave at the top of the order. We
refer to problems of this sort as deep, because they depend on all
the information in a second-order premise. The principle of com-
plexity predicts that the shallow problems (first order) should be
easier than the deep problems (second order).

Method

The participants acted as their own controls and carried out 12 test
problems, which included 4 shallow problems, 4 deep problems, and 4

problems that did not yield a consistent order. The problems were pre-
sented in a different random order to each participant. They were based on
two different transitive relations: taller than and heavier than, and on six
sets of female names and six sets of male names. We made two different
assignments of the relations to the problems, and each participant was
tested with one of the resulting sets selected at random.

The 27 participants from the same population as before were tested
individually and carried out the experiment on an IBM computer running
the E-Prime (Psychology Software Tools, 2002) program. They were told
to decide on a possible order of the four individuals referred to in each set
of premises, and to respond “inconsistent” if they thought no such order
was possible. They were not allowed to write anything down, and they
pressed the “Enter” key to receive each new premise. The instructions
emphasized that they were to read and to understand each premise fully
before proceeding to the next one.

Results

The problems were easy to solve: The shallow problems yielded
91% correct orders, the deep problems yielded 93% correct re-
sponses, and the difference was not reliable (Wilcoxon’s test, z �
0.88, p � .3, one-tailed). Table 3 presents the mean reading times
for the first premise and the mean times both to read the second
premise and to complete the problem. As the theory predicted, the
participants understood the shallow first premises faster than the
deep first premises (Wilcoxon’s test, z � 4.25, p � .001, one-
tailed). This result occurred both for the consistent problems
(Wilcoxon’s test, z � 2.76, p � .01, one-tailed) and for the
inconsistent problems (Wilcoxon’s test, z � 3.29, p � .001,
one-tailed). Once they had read these premises, the completion
times did not differ reliably (Wilcoxon’s test, z � 1.44, p � .15,
two-tailed). The principal difference between the two problems
was in the depth of the relation that established a ternary order
from the first premise. The results accordingly show that depth, not
just number of arguments, has a reliable effect on reasoning.

Experiment 3: Second-Order Versus Third-Order Depth

The previous experiment showed that depth contributed to the
difficulty of relational reasoning in a contrast between first-order
and second-order problems. The present experiment aimed to
extend these results to a comparison between second-order and
third-order problems. Both sorts of problem had a third-order
premise, that is, referring to a relation between relations between
relations. The third-order problems called for all of this informa-
tion to be taken into account, whereas the second-order problems
could be solved by taking into account only the second-order
information. Because both problems require the same number of

Table 3
Mean Latencies (in Seconds) and Standard Errors for Times to
Read the First Premise and to Complete the Problem in
Experiment 2

Type of
problem

Reading times:
First premise Completion times

M SE M SE

Shallow 7.68 1.01 44.09 3.66
Deep 10.60 1.16 39.97 3.07
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arguments to be considered in parallel, a difference in difficulty
would show that depth does make reasoning harder.

An example of a second-order problem is

Abe is taller than Ben to a greater extent than Cal is taller than Dave,
Cal is taller than Abe to a greater extent than Abe is taller than Dave,
and the first of these differences is larger than the second.

The second premise yields a ternary order from its two separate
clauses alone, that is, without taking into account the relation
between them:

Cal

Abe

Dave

The first premise as a whole then yields the complete order:

Cal

Abe

Dave

Ben

where the space in the order satisfies the first premise. Because the
problem does not require the relation between the two premises to
be taken into account, it is only second-order in depth.

An example of a third-order problem is

Abe is taller than Ben to a greater extent than Abe is taller than Cal.

Abe is taller than Ben to a greater extent than Dave is taller than Cal,
and the first of these differences is larger than the second.

The first premise yields a ternary order:

Abe

Cal

Ben

But, the correct order of the four individuals depends on the second
premise and the third-order relation (stated in the third line of the
problem):

Dave

Abe

Cal

Ben

Method

The participants acted as their own controls and carried out two in-
stances of the two sorts of problem, which were presented in a different
random order to each of them. The problems were based on three different
transitive relations: taller than, heavier than, and bigger than. We made
three different assignments of these relations to the four forms of problem.
The 16 Princeton University participants were tested with one of the
resulting sets selected at random. They were told that their task was to write
down an order of the four individuals that was consistent with the premises

in a box at the bottom of the page, and to write “none” if they thought no
such order existed.

Results

The second-order problems yielded 84% correct orders, whereas
the third-order problems yielded only 56% correct orders (Wil-
coxon’s test, z � 3.00, p � .005, one-tailed). As the model theory
predicted, an increase in depth makes a reasoning problem more
difficult. The phenomenon cannot be explained solely in terms of
the number of arguments that need to be taken into account. Both
sorts of problem call for the processing of quaternary relations.

General Discussion

Our goal has been to advance a comprehensive theory of rea-
soning about relations. The theory is based on mental models, and
on five principles:

1. Iconicity: The structure of models is iconic as far as
possible; that is, their parts and relations correspond to
those of the situations that they represent, but they should
be distinguished from images because they can represent
any sort of content. Iconicity results from models and a
system that accesses an independent representation of the
meanings of propositions.

2. Emergent consequences: The logical consequences of
relations emerge from models satisfying their premises.

3. Parsimony: Individuals tend to construct only a single,
simple, and typical model of a situation satisfying the
premises.

4. Strategic assembly: Individuals develop different strate-
gies for reasoning with relations, but these strategies
reflect the problems on which they are working.

5. Complexity of integration: The difficulty of relational
reasoning depends on the number of entities that have to
be integrated to form a model, on the process of integra-
tion, and on the depth of the relation holding over the
entities.

We have devised programs for spatial and temporal reasoning that
implement the main assumptions of the theory. The programs
demonstrate how, in principle, conclusions can be emergent prop-
erties of models. They also illustrate different strategies for
reasoning.

Experimental studies have corroborated each of the principles of
the theory. In particular, behavioral studies show that models
should not be confused with images: Materials that elicit vivid
imagery rather than a spatial representation impede reasoning
(Knauff & Johnson-Laird, 2002), presumably because the images
that they elicit are irrelevant to inference (Knauff et al., 2003).

Further experiments have shown that the logical consequences
of relations appear to emerge from mental models rather than to
depend on meaning postulates that represent them explicitly.
Hence, adult reasoners tend to succumb to pseudotransitive falla-
cies, such as
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Ann is a blood relative of Beth.

Beth is a blood relative of Chris.

Therefore, Ann is a blood relative of Chris.

In accordance with the principle of parsimony, they construct a
simple model of a typical case, such as siblings or linear descen-
dants, which yields the erroneous transitive conclusion. Yet, a
context that invites them to consider less typical models—relation-
ships that arise from marriage—reliably inhibits them from mak-
ing the fallacy (Goodwin & Johnson-Laird, 2004a). If logical
properties of relations were represented in axiomatic meaning
postulates, then they should apply regardless of context, because
they capture fundamental and universally true logical properties.
Hence, theories that rely on such postulates face some difficulty in
accounting for our results.

Various theorists, notably Evans and his colleagues, have pos-
ited two distinct reasoning systems (see, e.g., Evans, 2003; Slo-
man, 1996; Stanovich, 1999). System 1 is rapid, automatic, and
responsible for the influence of beliefs on reasoning. System 2 is
slow, voluntary, and responsible for deductive reasoning. Schroy-
ens, Schaeken, and Handley (2003) have argued that the model
theory is also a dual-process theory. System 1 is responsible for
constructing an initial model of the premises on the basis of
language and beliefs; System 2 is responsible for searching for
alternative models. The principle of parsimony concerns the initial
construction of models. Hence, the phenomena to which the prin-
ciple gives rise, such as pseudotransitivity, reflect the operation of
System 1 rather than System 2.

When individuals think aloud as they work their way through a
set of relational inferences, their protocols show that they develop
different strategies to cope with the problems, and that they switch
from one strategy to another (Goodwin & Johnson-Laird, 2004b).
The nature of the problems, however, can bias them reliably in
favor of one sort of strategy as opposed to another. These results
corroborate the principle of strategic assembly. That is, individuals
develop their strategies not by laying out some grand abstract
design for reasoning, but rather by trying out various inferential
tactics on problems, and in this way they discover a strategy for
coping with them.

The main components of the principle of complexity have been
corroborated empirically in the studies reported in the An Assess-
ment of the Theory section above. Experiment 1 showed that the
number of arguments that reasoners need to take into account
affects their reasoning. They accordingly find it easier to reason
from a relation holding over three different entities than from a
relation holding over four different entities. Further experiments
showed that the depth of a relation, even when it holds over the
same number of entities, also affects reasoning. Thus, Experiment
2 established that it is easier to reason from two binary relations (a
first-order problem) than from a relation between two binary
relations (a second-order problem). Likewise, Experiment 3 estab-
lished that it is easier to reason from a relation between relations
(a second-order problem) than from a relation between relations
between relations (a third-order problem). We have established
that increasing depth affects both accuracy and solution times. As
depth increases, we would also expect increasing disruptions on a
concurrent task (see, e.g., Halford, 1993; Hunt & Lansman, 1982;
Lansman & Hunt, 1982; Maybery et al., 1986) and increasing
activation of the prefrontal cortex (see, e.g., Waltz et al., 1999). In

a review of the present article, Halford has suggested that depth
can be translated into additional arguments. Suppose, he suggests,
an individual has to take into account all the information in a
second-order premise such as

A is taller than B to a greater extent than C is taller than B.

In this case, the difference between A and B, and the difference
between C and B, can themselves count as additional arguments.
The idea is ingenious, but it seems to be merely a notational variant
on depth. Hence, we leave as an open question whether there are
empirical differences between depth as a higher order relation and
depth as the introduction of new arguments.

Which principles of the theory are robust and unlikely to be
modified as a result of future research? In our view, iconicity,
emergent properties, and parsimony are secure, and the evidence
for them seems compelling. Likewise, there seems little doubt that
individuals do spontaneously develop different strategies for rea-
soning. What the principle does not specify, however, is how
tactical experience with inferential problems leads to the develop-
ment of strategies. We have yet to formulate an algorithm that can
develop strategies from elementary tactical steps in reasoning
about relations (cf. Dierckx, Vandierendonck, & Pandelaere,
2003). For this problem, the theory is far from comprehensive. It
is even conceivable that some gifted individuals develop strategies
not by working “bottom up” from the results of their tactical
explorations, but by devising high-level principles. Analogous
problems arise for the principle governing the complexity of
integration. Halford’s studies (see, e.g., Halford et al., 1998b) and
our own show that the number of arguments in a relation affects
the difficulty of an inference. The depth of a relation appears to
exert additional effects (see our Experiments 2 and 3). However,
other variables affect the complexity of integrating the information
in premises. When using a premise such as in front of, it is harder
to add the second referent to a model representing the first referent
than vice versa (Oberauer & Wilhelm, 2000). The difficulty prob-
ably derives from the representation of the meaning of the relation,
which scans from the second referent to the first. Another source
of difficulty is the need to use the same quantified premise more
than once in the same inference (Cherubini & Johnson-Laird,
2004). It does not seem possible to explain this phenomenon either
in terms of number of arguments or depth. If so, then the principle
of the complexity of integration also fails to be comprehensive.

For many years, psychologists have tried to explain reasoning in
terms of formal rules of inference akin to those of a logical
calculus. This approach attempts to deal with relations by positing
meaning postulates to capture their logical properties and a single
deterministic strategy (see, e.g., Rips, 1994). Our results suggest
that such an account does not correspond to the way in which
logically naive individuals make relational inferences. It fails to
predict pseudotransitive inferences, the difficulty of inferences
based on multiple models, or the development of different strate-
gies for relational inference. It would also be a gargantuan task to
formulate the set of meaning postulates needed to deal with quite
straightforward relations. As an example of this problem, consider
the effects of negation on a relation. The negation of a transitive
but asymmetric relation remains transitive. The following infer-
ence is valid, for instance:

Ann is not as tall as Beth.
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Beth is not as tall as Cath.

Therefore, Ann is not as tall as Cath.

Yet, the negation of a transitive but symmetric relation is nontran-
sitive. Hence, no definite conclusion about the spatial relation
between Ann and Cath follows validly from the following
premises:

Ann is not in the same place as Beth.

Beth is not in the same place as Cath.

In a system based on meaning postulates, it would be necessary to
specify the consequences of negation in separate meaning postu-
lates. But, according to the model theory, individuals merely
construct a model of the premises based on the meaning of the
premises. For the preceding premises, they can construct a model
in which Ann and Cath are in the same place, and a model in which
they are not in the same place. Nevertheless, mental models are not
necessarily incompatible with formal rules. As certain outstanding
reasoners develop, they may learn to construct formal rules for
themselves in certain domains. But, when we as psychologists
theorize about relations, we find it quite difficult to work out the
consequences of negation. The difficulty would be odd if our
reasoning were based on a system of meaning postulates, because
we should by now have acquired a complete and correct system of
postulates.

The moral is plain. Your mental lexicon represents the meaning
of relational terms, but not their logical properties. What you
compute when you reason about relations is a novel relation that is
not explicitly stated in the premises, but that follows from them.
You do so using a system that constructs iconic models of the
situation under description from independent representations of the
meanings of the premises. This process may yield an emergent
conclusion about, say, a transitive relation. Unless you have suc-
cumbed to a fallacy based on an oversimplified model, the infer-
ence will be easier than one that requires you to consider a set of
alternative possibilities. As you tackle more problems of the same
sort (especially in the psychological laboratory), you develop a
strategy for dealing with them. This strategy reflects the particular
nature of the problems. Yet, regardless of your strategy, the diffi-
culty of integrating the information in the premises—a matter in
part of the number of arguments and their depth—continues to
exert its effects on your ability to reason correctly.
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