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Statistical Inference

• Econometric model: collection of probability distributions p(Y |θ) indexed by parameter
θ ∈ Θ. Examples: VAR, DSGE model, ...

• The “easy” part: pick values for parameter vector θ =⇒ determine properties of
model-simulated data Y sim(θ).

• Statistical inference: observed data Y obs =⇒ determine suitable values for parameter
vector θ.

• Basic Idea: choose θ such that Y sim(θ) look like Y obs .

• Goals: estimates θ̂ as well as measures of uncertainty associated with these estimates.
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Good Measures of Uncertainty are Important

NK Phillips Curve

π̃t = γbπ̃t−1 + γf Et [π̃t+1] + κM̃C t
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Model Misspecification is a Concern
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Identification

• We want to determine the effect of a policy change.

• Policy effect depends on model parameters.

• Can we learn the model parameters from the observed data?

• Thought experiment: suppose model is “true” and we observe an infinite amount of data
from the model. What can we learn?
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Identification

• Econometric model generates a family of probability distributions p(Y |θ), θ ∈ Θ.

• Thought experiment: data are generated from the econometric model conditional on some
“true” parameter θ0.

• The parameter vector θ is globally identifiable at θ0 if

p(Y |θ) = p(Y |θ0) implies θ = θ0.

• Treatment of Y :
• Pre-experimental perspective: the sample is not yet observed and condition needs to hold

with probability one under the distribution p(Y |θ0).
• Post-experimental perspective: sample has been observed, parameter θ may be identifiable

for some trajectories Y , but not for others.

• Example:

y1,t |(θ, y2,t) ∼ iidN
(
θy2,t , 1

)
, y2,t =

{
0 w.p. 1/2
∼ iidN(0, 1) w.p. 1/2

With probability (w.p.) 1/2, one observes a trajectory along which θ is not identifiable
because y2,t = 0 for all t.
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Statistical Inference

• Frequentist:
• pre-experimental perspective;
• condition on “true” but unknown θ0;
• treat data Y as random;
• study behavior of estimators and decision rules under repeated sampling.

• Bayesian:
• post-experimental perspective;
• condition on observed sample Y ;
• treat parameter θ as unknown and random;
• derive estimators and decision rules that minimize expected loss (averaging over θ)

conditional on observed Y .
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Pre- vs. Post-Experimental Inference

• Suppose Y1 and Y2 are independently and identically distributed and

PYi

θ {Yi = θ − 1} =
1

2
, PYi

θ {Yi = θ + 1} =
1

2

• Consider the following coverage set

C (Y1,Y2) =

{
1
2 (Y1 + Y2) if Y1 6= Y2

Y1 − 1 if Y1 = Y2

• Pre-experimental perspective: C (Y1,Y2) is a 75% confidence interval. The probability
(under repeated sampling, conditional on θ) that the confidence interval 75%.

• Post-experimental perspective: we are “100% confident” that C (Y1,Y2) contains the
“true” θ if Y1 6= Y2, whereas we are only “50% percent” confident if Y1 = Y2.
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Frequentist Inference

Model of interest (M1) is assumed to be correctly specified, i.e. we believe the
probabilistic structure is rich enough to assign high probability to the salient features of
macroeconomic time series.

• Desirable to let the model-implied probability distribution p(Y |θ0,M1) determine the
choice of the objective function for estimators and test statistics to obtain a statistical
procedure that is efficient (meaning that the estimator is close to θ0 with high probability
in repeated sampling).

• Maximum likelihood (ML) estimator

θ̂ml = argmaxθ∈Θ log p(Y |θ,M1).

• Minimize discrepancy between sample statistics m̂T (Y ) and model-implied population
statistics E[m̂T (Y )|θ,M1]:

θ̂md = argminθ∈Θ QT (θ|Y ) =
∥∥m̂T (Y )− E[m̂T (Y )|θ,M1]

∥∥
WT
,
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Frequentist Inference

Model of interest (M1) is assumed to be misspecified or incompletely specified.

• Example: suppose a DSGE model only has a monetary policy shock. Then,

1

κp(1 + ν)xεR/β + σR
R̂t −

1

κp(1 + ν)xεR
π̂t = 0,

which is clearly violated in the data.

• Need reference model M0, e.g., VAR, under which to evaluate sampling distribution of Y .

• Concept of “true” value is no longer sensible =⇒ pseudo-optimal parameter value:

θ0(Q,W ) = argminθ∈Θ Q(θ|M0),

where

Q(θ|M0) =
∥∥E[m̂T (Y )|M0]− E[m̂(Y )|θ,M1]

∥∥
W
.
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Bayesian Inference

Model of interest (M1) is assumed to be correctly specified, i.e. we believe the
probabilistic structure is rich enough to assign high probability to the salient features of
macroeconomic time series.

• Initial state of knowledge summarized in prior distribution p(θ).

• Update in view of data Y to obtain posterior distribution p(θ|Y ):

p(θ|Y ,M1) =
p(Y |θ,M1)p(θ|M1)

p(Y |M1)
, p(Y |M1) =

∫
p(Y |θ,M1)p(θ|M1)dθ.

• Make decisions that minimize posterior expected loss:

δ∗ = argminδ∈D

∫
L
(
h(θ), δ

)
p(θ|Y ,M1)dθ.

• Place probabilities on competing models and update:

π1,T

π2,T
=
π1,0

π2,0

p(Y |M1)

p(Y |M2)
.
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Bayesian Inference

Model of interest (M1) is assumed to be misspecified or incompletely specified.

• Derive posterior distributions under a more flexible reference model M0, e.g., VAR. Then
choose θ to minimize discrepancy between implications of M0 and DSGE model M1.

• Use DSGE model M1 to generate a prior distribution for a more flexible reference model
M0. (see next slide)

• Rather than using posterior probabilities to select among or average across two DSGE
models, one can form a prediction pool, which is essentially a linear combination of two
predictive densities:

λp(yt |Y1:t−1,M1) + (1− λ)p(yt |Y1:t−1,M2).

The weight λ ∈ [0, 1] can be determined based on

T∏
t=1

[λp(yt |Y1:t−1,M1) + (1− λ)p(yt |Y1:t−1,M2)] .
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Using a DSGE Model as Prior for a VAR
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Using a DSGE Model as Prior for a VAR - Weight on Model Restrictions

0.33  0.5 0.75    1 1.25  1.5    2    5  Inf DSGE

−1240

−1220

−1200

−1180

−1160

−1140

−1120

−1100

−1080

−1060

−1040

Baseline
−1118

−1123

−1049

λ

No Indexation
−1139

−1128

−1058

No Habit
−1230

−1155

−1101

Frank Schorfheide Introduction to (Bayesian) Inference



Using a DSGE Model as Prior for a VAR - Weight on Model Restrictions
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Pooling “New” and “Old” Models

• Macroeconomists/econometricians have been criticized for relying on models that abstract
from financial intermediation / frictions.

• With hindsight it turned out that financial frictions were important to understand the
Great Recession. But are they also important in normal times?

• We need tools that tell us in real-time when to switch models...

• Linear prediction pool:

Density Forecastt
= λt · Forecast from “Normal” Modelt

+(1− λt) · Forecast from “Fin Frictions” Modelt

• Determine weight λt in real time based on historical forecast performance.
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Pooling “New” and “Old” Models

Relative forecasting performance changes over time

“Old” Smets-Wouters Model vs. “New” DSGE with Financial Frictions

It’s easy to see with hindsight which model we should have used.
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Pooling “New” and “Old” Models

Time-Varying Weight λt (Posterior Distribution) on “New” DSGE with Financial Frictions

It’s more difficult to determine the best model in real time...
Frank Schorfheide Introduction to (Bayesian) Inference



Pooling “New” and “Old” Models

“Old” Smets-Wouters Model vs. “New” DSGE with Financial Frictions

vs. Dynamic Prediction Pool with Real-Time Weights

Techniques for determining the best model in real time are available.
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Bayesian Inference

• Ingredients of Bayesian Analysis:

• Likelihood function p(Y |θ)

• Prior density p(θ)

• Marginal data density p(Y ) =
∫
p(Y |θ)p(θ)dφ

• Bayes Theorem:

p(θ|Y ) =
p(Y |θ)p(θ)

p(Y )
∝ p(Y |θ)p(θ)

• Implementation: usually by generating a sequence of draws (not necessarily iid) from
posterior

θi ∼ p(θ|Y ), i = 1, . . . ,N

• Algorithms: direct sampling, accept/reject sampling, importance sampling, Markov chain
Monte Carlo sampling, sequential Monte Carlo sampling...
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Linear Regression / AR Models

• Consider AR(1) model:

yt = yt−1φ+ ut , ut ∼ iidN(0, 1).

• Let xt = yt−1. Write as

yt = x ′tφ+ ut , ut ∼ iidN(0, 1),

or

Y = Xφ+ U.

We can easily allow for multiple regressors. Assume φ is k × 1.

• Notice: we treat the variance of the errors as know. The generalization to unknown
variance is straightforward but tedious.

• Likelihood function:

p(Y |φ) = (2π)−T/2 exp

{
−1

2
(Y − Xφ)′(Y − Xφ)

}
.
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A Convenient Prior

• Prior:

φ ∼ N

(
0k×1, τ

2Ik×k
)
, p(φ) = (2πτ 2)−k/2 exp

{
− 1

2τ 2
φ′φ

}
• Large τ means diffuse prior.

• Small τ means tight prior.
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Deriving the Posterior

• Bayes Theorem:
p(φ|Y ) ∝ p(Y |φ)p(φ)

∝ exp

{
−1

2
[(Y − Xφ)′(Y − Xφ) + τ−2φ′φ]

}
.

• Guess: what if φ|Y ∼ N(φ̄T , V̄T ). Then

p(θ|Y ) ∝ exp

{
−1

2
(φ− φ̄T )′V̄−1

T (φ− φ̄T )

}
.

• Rewrite exponential term
Y ′Y − φ′X ′Y − Y ′Xφ+ φ′X ′Xφ+ τ−2φ′φ

= Y ′Y − φ′X ′Y − Y ′Xφ+ φ′(X ′X + τ−2I)φ

=

(
φ− (X ′X + τ−2I)−1X ′Y

)′(
X ′X + τ−2I

)
×
(
φ− (X ′X + τ−2I)−1X ′Y

)
+Y ′Y − Y ′X (X ′X + τ−2I)−1X ′Y .
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Deriving the Posterior

• Exponential term is a quadratic function of φ.

• Deduce: posterior distribution of φ must be a multivariate normal distribution

φ|Y ∼ N(φ̄T , V̄T )

with

φ̄T = (X ′X + τ−2I)−1X ′Y

V̄T = (X ′X + τ−2I)−1.

• τ −→∞:

φ|Y approx∼ N

(
φ̂mle , (X

′X )−1

)
.

• τ −→ 0:

φ|Y approx∼ Pointmass at 0
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Marginal Data Density

• Plays an important role in Bayesian model selection and averaging.

• Write

p(Y ) =
p(Y |θ)p(θ)

p(θ|Y )

= exp

{
−1

2
[Y ′Y − Y ′X (X ′X + τ−2I)−1X ′Y ]

}
×(2π)−T/2|I + τ 2X ′X |−1/2.

• The exponential term measures the goodness-of-fit.

• |I + τ 2X ′X | is a penalty for model complexity.
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Posterior

• We will often abbreviate posterior distributions p(φ|Y ) by π(φ) and posterior expectations
of h(φ) by

Eπ[h] = Eπ[h(φ)] =

∫
h(φ)π(φ)dφ =

∫
h(φ)p(φ|Y )dφ.

• We will focus on algorithms that generate draws {φi}Ni=1 from posterior distributions of
parameters in time series models.

• These draws can then be transformed into objects of interest, h(φi ), and under suitable
conditions a Monte Carlo average of the form

h̄N =
1

N

N∑
i=1

h(φi ) ≈ Eπ[h].

• Strong law of large numbers (SLLN), central limit theorem (CLT)...
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Direct Sampling

• In the simple linear regression model with Gaussian posterior it is possible to sample
directly.

• For i = 1 to N, draw φi from N
(
φ̄, V̄φ

)
.

• Provided that Vπ[h(φ)] <∞ we can deduce from Kolmogorov’s SLLN and the
Lindeberg-Levy CLT that

h̄N
a.s.−→ Eπ[h]

√
N
(
h̄N − Eπ[h]

)
=⇒ N

(
0,Vπ[h(φ)]

)
.
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Decision Making

• The posterior expected loss associated with a decision δ(·) is given by

ρ
(
δ(·)|Y

)
=

∫
Θ

L
(
θ, δ(Y )

)
p(θ|Y )dθ.

• A Bayes decision is a decision that minimizes the posterior expected loss:

δ∗(Y ) = argmind ρ
(
δ(·)|Y

)
.

• Since in most applications it is not feasible to derive the posterior expected risk
analytically, we replace ρ

(
δ(·)|Y

)
by a Monte Carlo approximation of the form

ρ̄N
(
δ(·)|Y

)
=

1

N

N∑
i=1

L
(
θi , δ(·)

)
.

• A numerical approximation to the Bayes decision δ∗(·) is then given by

δ∗N(Y ) = argmind ρ̄N
(
δ(·)|Y

)
.
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Inference

• Point estimation:

• Quadratic loss: posterior mean

• Absolute error loss: posterior median

• Interval/Set estimation Pπ{θ ∈ C (Y )} = 1− α:

• highest posterior density sets

• equal-tail-probability intervals
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Point Estimation

• Interpret point estimation as decision problem.

• Consider quadratic loss:

L(θ, δ) = (θ − δ)2

• Optimal decision rule is obtained by minimizing

min
δ∈D

Eπ[(θ − δ)2]

• Solution: δ = Eπ[θ], i.e., posterior mean.
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Consistency of Posterior Mean

• Consistency: Suppose data are generated from the model yt = x ′tθ0 + ut . Asymptotically
the Bayes estimator converges to the “true” parameter θ0.

• Consider

θ̄T = (X ′X + τ−2I)−1X ′Y

= θ0 +

[(
1

T

∑
xtx
′
t +

1

τ 2T
I
)−1

−
(

1

T

∑
xtx
′
t

)−1
]

×
(

1

T

∑
xtx
′
t

)
θ0

+

(
1

T

∑
xtx
′
t +

1

τ 2T
I
)−1(

1

T

∑
xtut

)
p−→ θ0

• Disagreement between two Bayesians who have different priors will asymptotically vanish.
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Testing

• H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1.

• Decision space is 0 (“reject”) and 1 (“accept”).

• Loss function

L(θ, δ) =

 0 δ = I{θ ∈ Θ0} correct decision
a0 δ = 0, θ ∈ Θ0 Type 1 error
a1 δ = 1, θ ∈ Θ1 Type 2 error

Note that the parameters a1 and a2 are part of the econometricians preferences.

• Optimal decision:

δ(Y ) =

{
1 Pπ{θ ∈ Θ0} ≥ a1

a0+a1

0 otherwise
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Testing

• Posterior odds:

Pπ{θ ∈ Θ0}
Pπ{θ ∈ Θ1}

• Often, hypotheses are evaluated according to Bayes factors:

B(Y ) =
Posterior Odds

Prior Odds
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Credible Sets

• Set estimation is a bit more difficult to cast into a decision problem...

• Bayesian credible set: CY ⊆ Θ is 1− α credible if

PθY { θ︸︷︷︸
r .v .

∈ CY } ≥ 1− α

• A highest posterior density region (HPD) is of the form

CY = {θ : p(θ|Y ) ≥ kα} where kα is chosen s.t. PθY {θ ∈ CY } = 1− α.

HPD regions have the smallest volume among all 1− α credible regions.

• HPD regions are often difficult to compute. Thus, Bayesians often report equal-tail
probability credible intervals.

• Recall definition of frequentist confidence set:

PY
θ {θ ∈ CY︸︷︷︸

r .v .

} ≥ 1− α for all θ ∈ Θ.
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Forecasting

• Example:

yT+h = θhyT +
h−1∑
s=0

θsuT+h−s

• h-step ahead conditional distribution:

yT+h|(Y1:T , θ) ∼ N

(
θhyT ,

1− θh

1− θ

)
.

• Posterior predictive distribution:

p(yT+h|Y1:T ) =

∫
p(yT+h|yT , θ)p(θ|Y1:T )dθ.

• For each draw θi from the posterior distribution p(θ|Y1:T ) sample a sequence of
innovations uiT+1, . . . , u

i
T+h and compute y i

T+h as a function of θi , uiT+1, . . . , u
i
T+h, and

Y1:T .
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Model Uncertainty

• Assign prior probabilities γj,0 to models Mj , j = 1, . . . , J.
• Posterior model probabilities are given by

γj,T =
γj,0p(Y |Mj)∑J
j=1 γj,0p(Y |Mj)

,

where

p(Y |Mj) =

∫
p(Y |θ(j),Mj)p(θ(j)|Mj)dθ(j)

• Log marginal data densities are one-step-ahead predictive scores:
ln p(Y |Mj)

=
T∑
t=1

ln

∫
p(yt |θ(j),Y1:t−1,Mj)p(θ(j)|Y1:t−1,Mj)dθ(j).

• Model averaging:

p(h|Y ) =
J∑

j=1

γj,Tp(hj(θ(j))|Y ,Mj).
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