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State-space Representation of DSGE Model

• ny × 1 vector of observables:

yt = M ′y [log(Xt/Xt−1), log lsht , log πt , logRt ]
′.

• ns × 1 vector of econometric state variables st

st = [φt , λt , zt , εR,t , x̂t−1]′

• DSGE model parameters:

θ = [β, γ, λ, π∗, ζp, ν, ρφ, ρλ, ρz , σφ, σλ, σz , σR ]′.

• Measurement equation:

yt = Ψ0(θ) + Ψ1(θ)st .

• State-transition equation:

st = Φ1(θ)st−1 + Φε(θ)εt , εt = [εφ,t , ελ,t , εz,t , εR,t ]
′
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State-Space Representation of DSGE Model

State-space representation:

yt = Ψ0(θ) + Ψ1(θ)st

st = Φ1(θ)st−1 + Φε(θ)εt

System matrices:

Ψ0(θ) = M′y


log γ

log(lsh)
log π∗

log(π∗γ/β)

 , xφ = −
κpψp/β

1 − ψpρφ

, xλ = −
κpψp/β

1 − ψpρλ

, xz =
ρzψp

1 − ψpρz
, xεR

= −ψpσR

Ψ1(θ) = M′y



xφ xλ xz + 1 xεR
−1

1 + (1 + ν)xφ (1 + ν)xλ (1 + ν)xz (1 + ν)xεR
0

κp
1−βρφ

(1 + (1 + ν)xφ)
κp

1−βρλ
(1 + (1 + ν)xλ)

κp
1−βρz

(1 + ν)xz +κp (1 + ν)xεR
0

κp/β
1−βρφ

(1 + (1 + ν)xφ)
κp/β

1−βρλ
(1 + (1 + ν)xλ)

κp/β
1−βρz

(1 + ν)xz (κp (1 + ν)xεR
/β + σR ) 0



Φ1(θ) =


ρφ 0 0 0 0

0 ρλ 0 0 0
0 0 ρz 0 0
0 0 0 0 0
xφ xλ xz xεR

0

 , Φε(θ) =


σφ 0 0 0

0 σλ 0 0
0 0 σz 0
0 0 0 1
0 0 0 0



M′y is an ny × 4 selection matrix that selects rows of Ψ0 and Ψ1.
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DSGE Model Implications

• We want to understand the implications of the DSGE model.

• We could simulate data from the state-space representation

yt = Ψ0(θ) + Ψ1(θ)st

st = Φ1(θ)st−1 + Φε(θ)εt

• using:

εt ∼ iidN(0, I ).

• But some calculations are better done analytically.
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DSGE Model Implications: Questions

• What is the correlation between consumption growth this quarter and four quarters ago?

• What is the correlation between inflation and interest rates?

• Does the labor share predict consumption growth one-year ahead?
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Example: AR(1) Model

• Model:

yt = φyt−1 + ut , ut ∼ N(0, σ2
u)

• Mean:

E[yt ] = φE[yt−1] + E[ut ] =⇒ E[yt ] = 0.

• Variance:

V[yt ] = E[yt ] = E
[
(φyt−1 + ut)

2] = φ2E[y2
t−1] + 2φE[yt−1ut ] + E[u2

t ]

leads to

γ(0) = V[yt ] =
σ2
u

1− φ2
.
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Example: AR(1) Model

• First-order autocovariance:

γ(1) = E[ytyt−1] = E[(φyt−1 + ut)yt−1] = φγ(0).

• h-th order autocovariance:

γ(h) = E[ytyt−h] = φhγ(0)

• Autocorrelation

ρ(h) =
γ(h)

γ(0)
.
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DSGE Model Implications: Autocovariances

• State-space representation:

yt = Ψ0(θ) + Ψ1(θ)st

st = Φ1(θ)st−1 + Φε(θ)εt
• Notation:

Γyy (h) = E[ytyt−h], Γss(h) = E[stst−h], and Γys(h) = E[yts
′
t−h]

• Covariance matrix of st is solution to Lyapunov equation:

Γss(0) = Φ1Γss(0)Φ′1 + ΦεΦ
′
ε.

• Autocovariance matrices for h 6= 0:

Γss(h) = Φh
1Γss(0).

• Using the measurement equation, we deduce that

Γyy (h) = Ψ1Γss(h)Ψ′1, Γys(h) = Ψ1Γss(h).
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DSGE Model Implications: Autocovariances

1 Fix a set of DSGE model parameters.

2 Solve model and compute matrices Ψ0(θ), Ψ1(θ), Φ1(θ), Φε(θ) in state-space
representation:

yt = Ψ0(θ) + Ψ1(θ)st

st = Φ1(θ)st−1 + Φε(θ)εt

3 Compute autocovariances based on Ψ0(θ), Ψ1(θ), Φ1(θ), Φε(θ).
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DSGE Model Implications: Fix Parameters

Parameter Value Parameter Value
β 1/1.01 γ exp(0.005)
λ 0.15 π∗ exp(0.005)
ζp 0.65 ν 0
ρφ 0.94 ρλ 0.88
ρz 0.13
σφ 0.01 σλ 0.01
σz 0.01 σR 0.01
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DSGE Model Implications: Evaluate System Matrices

Ψ0(θ) = M′y


log γ

log(lsh)
log π∗

log(π∗γ/β)

 , xφ = −
κpψp/β

1 − ψpρφ

, xλ = −
κpψp/β

1 − ψpρλ

, xz =
ρzψp

1 − ψpρz
, xεR

= −ψpσR

Ψ1(θ) = M′y



xφ xλ xz + 1 xεR
−1

1 + (1 + ν)xφ (1 + ν)xλ (1 + ν)xz (1 + ν)xεR
0

κp
1−βρφ

(1 + (1 + ν)xφ)
κp

1−βρλ
(1 + (1 + ν)xλ)

κp
1−βρz

(1 + ν)xz +κp (1 + ν)xεR
0

κp/β
1−βρφ

(1 + (1 + ν)xφ)
κp/β

1−βρλ
(1 + (1 + ν)xλ)

κp/β
1−βρz

(1 + ν)xz (κp (1 + ν)xεR
/β + σR ) 0



Φ1(θ) =


ρφ 0 0 0 0

0 ρλ 0 0 0
0 0 ρz 0 0
0 0 0 0 0
xφ xλ xz xεR

0

 , Φε(θ) =


σφ 0 0 0

0 σλ 0 0
0 0 σz 0
0 0 0 1
0 0 0 0



M′y is an ny × 4 selection matrix that selects rows of Ψ0 and Ψ1.
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Compute Autocovariances and Plot

Corr
(

log(Xt/Xt−1), log(Xt−h/Xt−h−1)
)

Corr
(

log(Xt/Xt−1), logZt−h
)

Notes: Right panel: correlations of output growth with labor share (solid), inflation (dotted), and interest rates

(dashed).
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DSGE Model Implications: Forecast Error Variance Decomposition

• Fluctuations in the model are driven by shocks:
• technology growth zt ;
• mark-up λt ;
• preference φt ;
• monetary policy εR,t ;
• government spending ĝt .

• Shocks generate uncertainty about future macroeconomic outcomes

• Question: what is the contribution of monetary policy shocks to forecast errors in inflation
rates?
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DSGE Model Implications: Forecast Error Variance Decomposition

• The law of motion for st can be expressed as the infinite-order vector moving average
(MA)

yt = Ψ0 + Ψ1

∞∑
s=0

Φs
1Φεεt−s .

• h-step-ahead forecast error is

et|t−h = yt − Et−h[yt ] = Ψ1

h−1∑
s=0

Φs
1Φεεt−s .

• h-step-ahead forecast error covariance matrix is

E[et|t−he
′
t|t−h] = Ψ1

(
h−1∑
s=0

Φs
1ΦεΦ

′
εΦ

s′

1

)
Ψ′1 with lim

h−→∞
E[et|t−he

′
t|t−h] = Γss(0).
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DSGE Model Implications: Forecast Error Variance Decomposition

• Recall E[εtε
′
t ] = I . Let I (j) be defined by setting all but the j-th diagonal element of the

identity matrix I to zero:

I =
nε∑
j=1

I (j).

• Express the contribution of shock j to the forecast error for yt as

e
(j)
t|t−h = Ψ1

h−1∑
s=0

Φs
1ΦεI

(j)εt−s .

• The contribution of shock j to the forecast error variance of observation yi,t is

FEVD(i , j , h) =

[
Ψ1

(∑h−1
s=0 Φs

1ΦεI
(j)Φ′εΦ

s′

1

)
Ψ′1

]
ii[

Ψ1

(∑h−1
s=0 Φs

1ΦεΦ′εΦ
s′
1

)
Ψ′1

]
ii

,

where [A]ij denotes element (i , j) of a matrix A.
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DSGE Model Implications: Fix Parameters

Parameter Value Parameter Value
β 1/1.01 γ exp(0.005)
λ 0.15 π∗ exp(0.005)
ζp 0.65 ν 0
ρφ 0.94 ρλ 0.88
ρz 0.13
σφ 0.01 σλ 0.01
σz 0.01 σR 0.01
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DSGE Model Implications: Evaluate System Matrices

Ψ0(θ) = M′y


log γ

log(lsh)
log π∗

log(π∗γ/β)

 , xφ = −
κpψp/β

1 − ψpρφ

, xλ = −
κpψp/β

1 − ψpρλ

, xz =
ρzψp

1 − ψpρz
, xεR

= −ψpσR

Ψ1(θ) = M′y



xφ xλ xz + 1 xεR
−1

1 + (1 + ν)xφ (1 + ν)xλ (1 + ν)xz (1 + ν)xεR
0

κp
1−βρφ

(1 + (1 + ν)xφ)
κp

1−βρλ
(1 + (1 + ν)xλ)

κp
1−βρz

(1 + ν)xz +κp (1 + ν)xεR
0

κp/β
1−βρφ

(1 + (1 + ν)xφ)
κp/β

1−βρλ
(1 + (1 + ν)xλ)

κp/β
1−βρz

(1 + ν)xz (κp (1 + ν)xεR
/β + σR ) 0



Φ1(θ) =


ρφ 0 0 0 0

0 ρλ 0 0 0
0 0 ρz 0 0
0 0 0 0 0
xφ xλ xz xεR

0

 , Φε(θ) =


σφ 0 0 0

0 σλ 0 0
0 0 σz 0
0 0 0 1
0 0 0 0



M′y is an ny × 4 selection matrix that selects rows of Ψ0 and Ψ1.
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Compute Forecast Error Variance Decomposition and Plot

Output Growth log(Xt/Xt−1) Labor Share log lsht

Notes: The stacked bar plots represent the cumulative forecast error variance decomposition. The bars, from

darkest to lightest, represent the contributions of φt , λt , zt , and εR.t .
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DSGE Model Implications: Impulse Response Functions

• What is the dynamic effect of a 25 basis point unanticipated reduction in the interest
rate?

• What is the effect of an unanticipated increase in technology growth?
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DSGE Model Implications: Impulse Response Functions

• Definition:

IRF(i , j , h|st−1) = E
[
yi,t+h

∣∣ st−1, εj,t = 1
]
− E

[
yi,t+h

∣∣ st−1

]
.

• Both expectations are conditional on the initial state st−1 and integrate over current and
future realizations of the shocks εt .

• First term also conditions on εj,t = 1, whereas the second term averages of εj,t .

• In a linearized DSGE model we have E[εt+h|st−1] = 0 for h = 0, 1, . . . and deduce

IRF(., j , h) = Ψ1
∂

∂εj,t
st+h = Ψ1Φh

1[Φε].j ,

where [A].j is the j-th column of a matrix A. We dropped st−1 from the conditioning set
to simplify the notation.
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DSGE Model Implications: Fix Parameters

Parameter Value Parameter Value
β 1/1.01 γ exp(0.005)
λ 0.15 π∗ exp(0.005)
ζp 0.65 ν 0
ρφ 0.94 ρλ 0.88
ρz 0.13
σφ 0.01 σλ 0.01
σz 0.01 σR 0.01
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DSGE Model Implications: Evaluate System Matrices

Ψ0(θ) = M′y


log γ

log(lsh)
log π∗

log(π∗γ/β)

 , xφ = −
κpψp/β

1 − ψpρφ

, xλ = −
κpψp/β

1 − ψpρλ

, xz =
ρzψp

1 − ψpρz
, xεR

= −ψpσR

Ψ1(θ) = M′y



xφ xλ xz + 1 xεR
−1

1 + (1 + ν)xφ (1 + ν)xλ (1 + ν)xz (1 + ν)xεR
0

κp
1−βρφ
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κp

1−βρλ
(1 + (1 + ν)xλ)

κp
1−βρz

(1 + ν)xz +κp (1 + ν)xεR
0

κp/β
1−βρφ

(1 + (1 + ν)xφ)
κp/β

1−βρλ
(1 + (1 + ν)xλ)

κp/β
1−βρz
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

Φ1(θ) =


ρφ 0 0 0 0

0 ρλ 0 0 0
0 0 ρz 0 0
0 0 0 0 0
xφ xλ xz xεR

0

 , Φε(θ) =


σφ 0 0 0

0 σλ 0 0
0 0 σz 0
0 0 0 1
0 0 0 0



M′y is an ny × 4 selection matrix that selects rows of Ψ0 and Ψ1.
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Compute and Plot Impulse Responses of Log Output 100 log(Xt+h/Xt)

Preference Innov. εφ,t Mark-Up Innov ελ,t
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Compute and Plot Impulse Responses of Log Output 100 log(Xt+h/Xt)

Techn. Growth Innov. εz,t Monetary Policy Innov. εR,t
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DSGE Model Implications

• Formulas for autocovariance functions, spectra, and impulse response functions for a
linearized DSGE model can be derived analytically.

• Analytical expressions can then be numerically evaluated for different vectors of parameter
values θ.

• For general nonlinear general nonlinear DSGE model, the implied moments have to be
computed using Monte Carlo simulation.

• Let Y ∗1:T denote a sequence of observations simulated from the state-space representation
of the DSGE model by drawing an initial state vector s0 and innovations εt from their
model-implied distributions, then

1

T

T∑
t=1

y∗t
a.s.−→ E[yt ].

• The downside of Monte Carlo approximations is that they are associated with a simulation
error.
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Empirical Analogues

• Do implications of DSGE model match what we observe in the data?

• We can use the comparison of DSGE model implications and empirical analogues to

• determine the parameterization of DSGE model (so far we made up a θ);

• assess the fit of the model.
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Empirical Analogues: Data from FRED

• Real aggregate output: we use quarterly, seasonally adjusted GDP at the annual rate
that has been pegged to 2009 dollars (GDPC96). We turn GDP into growth rates by
taking logs and then differencing.

• Labor share: Compensation of Employees (COE) divided by nominal GDP (GDP). Both
series are quarterly and seasonally adjusted at the annual rate. We use the log labor share
as the observable.

• Inflation: computed from the implicit price deflator (GDPDEF) by taking log differences.

• Interest rates: we use the Effective Federal Funds Rate (FEDFUNDS), which is monthly,
and not seasonally adjusted. Quarterly interest rates are obtained by taking averages of
the monthly rates.

• Sample period: post-Great Moderation and pre-Great Recession – from 1984:Q1 to
2007:Q4.
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Empirical Analogues: Autocovariances

• The sample analog of the population autocovariance Γyy (h) is defined as

Γ̂yy (h) =
1

T

T∑
t=h

(yt − µ̂y )(yt−h − µ̂y )′, where µ̂y =
1

T

T∑
t=1

yt .

• Could be directly calculated from data.
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Empirical Analogues: Autocovariances

• If the object of interest is a sequence of autocovariance matrices, then it might be more
efficient to:

1 estimate an auxiliary model;
2 convert parameter estimates of the auxiliary model into estimates of the autocovariance

sequence.

• E.g., estimate VAR(1):

yt = Φ1yt−1 + Φ0 + ut , ut ∼ iid(0,Σ).

• OLS Estimator

Φ̂1 ≈ Γ̂yy (1)Γ̂−1
yy (0), Σ̂ ≈ Γ̂yy (0)− Γ̂yy (1)Γ̂−1

yy (0)Γ̂′yy (1)
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Empirical Analogues: Autocovariances

• Now convert Φ̂1 and Σ̂ into autocovariances using the same formulas as for DSGE model

Γ̂V
yy (0) ≈ Γ̂yy (0), Γ̂V

yy (h) ≈
(

Γ̂yy (1)Γ̂−1
yy (0)

)h
Γ̂yy (0)

• For h = 0, 1 we obtain Γ̂V
yy (1) = Γ̂yy (1) + Op(T−1).

• For h > 1 the VAR(1) plug-in estimate of the autocovariance matrix differs from the
sample autocovariance matrix.

• If the actual time series are well approximated by a VAR(1), then the plug-in
autocovariance estimate tends to be more efficient than the sample autocovariance
estimate Γ̂yy (h).
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Empirical Analogues: Autocovariances

Extension to VAR(p):

yt = Φ1yt−1 + . . .+ Φpyt−p + Φ0 + ut , ut ∼ iid(0,Σ).

• Determine lag length with model selection criterion.

• Write in companion form and use VAR(1) formulas:

ỹt = Φ̃1ỹt−1 + Φ̃0 + ũt , ũt ∼ iid(0, Σ̃),

where

Φ̃1 =


Φ1 . . . Φp−1 Φp

In×n . . . 0n×n 0n×n
...

. . .
...

...
0n×n . . . In×n 0n×n

 , Φ̃0 =

[
Φ0

0n(p−1)×1

]
,

ε̃t =

[
εt

0n(p−1)×1

]
, Σ̃ =

[
Σ 0n×n(p−1)

0n(p−1)×n 0n(p−1)×n(p−1)

]
.
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Empirical Cross-Correlations Corr
(
log(Xt/Xt−1), log Zt−h

)
Sample Correlations VAR Implied Correlations

Notes: Each plot shows the correlation of output growth log(Xt/Xt−1) with interest rates (solid), inflation

(dashed), and the labor share (dotted), respectively. Left panel: correlation functions are computed from sample

autocovariance matrices Γ̂yy (h). Right panel: correlation functions are computed from estimated VAR(1).
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Empirical Analogues: Impulse Responses

• So far, we considered reduced-form VARs, say,

yt = Φ1yt−1 + ut , E[utu
′
t ] = Σ, yt =

∞∑
h=0

Chut−h =
∞∑
h=0

Φh
1ut−h.

• Error terms ut have the interpretation of one-step ahead forecast errors.

• According to our DSGE model, one-step ahead forecast errors are functions of innovations
to fundamental shocks.

• Need to link one-step ahead forecast errors ut to structural innovations εt .
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Empirical Analogues: Impulse Response Functions

• How are the two types of shocks related?

• We will assume that the one-step-ahead forecast errors are linear functions of the
structural shocks:

u1,t = φε,11ε1,t + φε,12ε2,t

u2,t = φε,21ε1,t + φε,22ε2,t

• Our, in more compact notation:

ut = Φεεt (1)

• How can we determine Φε coefficients?

• Let’s assume that the structural shocks are uncorrelated with each other and have unit
variance:[

ε1,t

ε2,t

]
∼ iidN

([
0
0

]
,

[
1 0
0 1

])
.
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Empirical Analogues: Impulse Response Functions

• Ultimately, the Φε matrix affects the variance of the one-step-ahead forecast errors ut .

• Using the fact that the structural shocks ε1,t and ε2,t are iid standard normals, we obtain
the restrictions:

Σ11 = φ2
ε,11 + φ2

ε,12

Σ22 = φ2
ε,21 + φ2

ε,22

Σ12 = Σε,21 = φε,11φε,21 + φε,12φε,22

• Since we know already how to estimate Σu, we could simply try to solve for the b’s.

• There is a problem: we have four unknowns and only three equations!!!
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Empirical Analogues: Impulse Response Functions

• Φε has to satisfy the restriction

ΦεΦ
′
ε = Σ

Notice that Φε has n2 elements but Σ only n(n + 1)/2.

• Take a “square root,” e.g. Cholesky, decomposition of

Σ = ΣtrΣ
′
tr ,

Σtr is lower triangular. If Σ is non-singular the decomp. is unique.

• Let Ω be an orthogonal matrix, meaning that ΩΩ′ = Ω′Ω = I .

• Then

ut = Φεεt = ΣtrΩεt ,

where Σtr is identifiable and Ω is not, because:

E[utu
′
t ] = E[ΣtrΩεtε

′
tΩ
′Σ′tr ] = ΣtrΩE[εtε

′
t ]Ω
′Σ′tr

= ΣtrΩΩ′Σ′tr = ΣtrΣ
′
tr = Σ.
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Empirical Analogues: Impulse Response Functions

• Literature on structural VARs is about the mechanics and the economics of imposing
restrictions on Ω.

• Conditional on estimates Φ̂ and Σ̂ and an identification scheme for one or more columns
of Ω, IRFs are:

ÎRF
V

(., j , h) = Ch(Φ̂)Σ̂tr [Ω].j

• Ch(Φ̂) are moving average coefficient matrices. For VAR(1) Ch(Φ) = Φh.
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Empirical Analogues: Impulse Response Functions

• Problem: it is difficult to find restrictions consistent with DSGE model.

• We follow literature on VARs identified with sign restrictions.

• Restrict Ω to a set O(Φ,Σ) such that the implied impulse response functions satisfy
certain sign restrictions. =⇒ set identification.

• We assume: in response to a contractionary monetary policy shock
• interest rates increase
• inflation is negative for four quarters.

• Without loss of generality, assume that MP shock is ε1,t . Then first column of Ω, denoted
by q, captures the effect of MP shock.
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Impulse Responses to a Monetary Policy Shock

Log Output (Percent) Labor Share (Percent)

Notes: Impulse responses to a one-standard-deviation monetary policy shock. Inflation and interest rate

responses are not annualized. The bands indicate pointwise estimates of identified sets for the impulse responses

based on the assumption that a contractionary monetary policy shock raises interest rates and lowers inflation

for 4 quarters. The solid line represents a particular impulse response function contained in the identified set.
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Impulse Responses to a Monetary Policy Shock

Inflation (Percent) Interest Rates (Percent)

Notes: Impulse responses to a one-standard-deviation monetary policy shock. Inflation and interest rate

responses are not annualized. The bands indicate pointwise estimates of identified sets for the impulse responses

based on the assumption that a contractionary monetary policy shock raises interest rates and lowers inflation

for 4 quarters. The solid line represents a particular impulse response function contained in the identified set.
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Dealing with Trends in the Data

• Trends are a salient feature of macroeconomic time series.

• Our DSGE model features a stochastic trend generated by the productivity process logZt ,
which evolves according to a random walk with drift:

• common trend in consumption, output, and real wages;

• log consumption-output ratio and the log labor share are stationary.
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Consumption-Output Ratio and Labor Share (in Logs)

Consumption-Output Ratio Labor Share
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Dealing with Trends in the Data

• Remedies to address the mismatch between model and data.

(i) Detrend each time series separately and fit DSGE model to detrended data.
(ii) Apply an appropriate trend filter to both actual and model-implied data when confronting

the DSGE model with data.
(iii) Create a hybrid model: flexible nonstructural trend + DSGE for fluctuations around trend.
(iv) Incorporate realistic trend directly into DSGE model.

• From a modeling perspective, option (i) is the least desirable and option (iv) is the most
desirable choice.

Frank Schorfheide Model versus Data


