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Likelihood Function

• Likelihood function plays a key role in frequentist and Bayesian inference.

• We will spend some time on how to evaluate this function.
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Recall: State-Space Representation of DSGE Model

State-space representation:

yt = Ψ0(θ) + Ψ1(θ)st

st = Φ1(θ)st−1 + Φε(θ)εt

System matrices:

Ψ0(θ) = M′y


log γ

log(lsh)
log π∗

log(π∗γ/β)

 , xφ = −
κpψp/β

1 − ψpρφ

, xλ = −
κpψp/β

1 − ψpρλ

, xz =
ρzψp

1 − ψpρz
, xεR

= −ψpσR

Ψ1(θ) = M′y



xφ xλ xz + 1 xεR
−1

1 + (1 + ν)xφ (1 + ν)xλ (1 + ν)xz (1 + ν)xεR
0

κp
1−βρφ

(1 + (1 + ν)xφ)
κp

1−βρλ
(1 + (1 + ν)xλ)

κp
1−βρz

(1 + ν)xz +κp (1 + ν)xεR
0

κp/β
1−βρφ

(1 + (1 + ν)xφ)
κp/β

1−βρλ
(1 + (1 + ν)xλ)

κp/β
1−βρz

(1 + ν)xz (κp (1 + ν)xεR
/β + σR ) 0



Φ1(θ) =


ρφ 0 0 0 0

0 ρλ 0 0 0
0 0 ρz 0 0
0 0 0 0 0
xφ xλ xz xεR

0

 , Φε(θ) =


σφ 0 0 0

0 σλ 0 0
0 0 σz 0
0 0 0 1
0 0 0 0



M′y is an ny × 4 selection matrix that selects rows of Ψ0 and Ψ1.
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State-Space Representation and Likelihood

• Measurement:

yt = Ψ0(θ) + Ψ1(θ)t + Ψ2(θ)st +ut︸︷︷︸
optional

• State transition:

st = Φ1(θ)st−1 + Φε(θ)εt

• Joint density for the observations and latent states:

p(Y1:T ,S1:T |θ) =
T∏
t=1

p(yt , st |Y1:t−1,S1:t−1, θ)

=
T∏
t=1

p(yt |st , θ)p(st |st−1, θ).

• Problem: we need the marginal p(Y1:T |θ).
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Filtering - General Idea

• State-space representation of linearized DSGE model

yt = Ψ0(θ) + Ψ1(θ)t + Ψ2(θ)st(+ut) measurement

st = Φ1(θ)st−1 + Φε(θ)εt state transition

• Likelihood function:

p(Y1:T |θ) =
T∏
t=1

p(yt |Y1:t−1, θ)

• A filter generates a sequence of conditional distributions st |Y1:t .
• Iterations:

• Initialization at time t − 1: p(st−1|Y1:t−1, θ)
• Forecasting t given t − 1:

1 Transition equation: p(st |Y1:t−1, θ) =
∫
p(st |st−1,Y1:t−1, θ)p(st−1|Y1:t−1, θ)dst−1

2 Measurement equation: p(yt |Y1:t−1, θ) =
∫
p(yt |st ,Y1:t−1, θ)p(st |Y1:t−1, θ)dst

• Updating with Bayes theorem. Once yt becomes available:

p(st |Y1:t , θ) = p(st |yt ,Y1:t−1, θ) =
p(yt |st ,Y1:t−1, θ)p(st |Y1:t−1, θ)

p(yt |Y1:t−1, θ)
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Kalman Filter (Linear+Gaussian) and
Particle Filter (Fully Nonlinear)

• If the DSGE model is log-linearized and the errors are Gaussian, then the Kalman filter can
be used to construct the likelihood function (see summary below).

• Alternatively, one can compute the likelihood by sequential numerical integration which is
done for DSGE models that have been solved nonlinearly. The algorithm is called particle
or sequential Monte Carlo filter (See Chapter 8 of Herbst and Schorfheide (2015) for
details).
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Kalman Filter

• We consider the state-space model

yt = Ψst + ut

st = Φst−1 + εt

where εt ∼ iidN(0,Σ) and ut ∼ iidN(0,H).

• Initialization: if

1 st is stationary we can initialize the filter with the unconditional distribution of st .
Covariance matrix:

E[sts
′
t ] = ΦE[sts

′
t ]Φ
′ + Σ;

2 otherwise, could assume that st = 0 for t = −τ or treat s0 as parameter.

• In linear Gaussian state-space model all distributions are Gaussian. Thus, Kalman filter
only tracks means and covariance matrices.

Frank Schorfheide Likelihood Function and Frequentist Inference



Kalman Filter – Initialization

yt = Ψst + ut , st = Φst−1 + εt where εt ∼ N(0,Σ) and ut ∼ N(0,H).

• Write E[s0] = ŝ0|0 and V[s0] = P0|0.

• Prior distribution for initial state s0: s0 ∼ N (s̄0|0,P0|0).
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Kalman Filter – Forecasting

yt = Ψst + ut , st = Φst−1 + εt where εt ∼ N(0,Σ) and ut ∼ N(0,H).

• At (t − 1)+, that is, after observing yt−1, the belief about the state vector has the form
st−1|Y1:t−1 ∼ N (s̄t−1|t−1,Pt−1|t−1).

• “Posterior” from period t − 1 turns into a prior for (t − 1)+.

• Since st−1 and εt are independent multivariate normal random variables, it follows that

st |Y1:t−1 ∼ N (s̄t|t−1,Pt|t−1)

where

s̄t|t−1 = Φs̄t−1|t−1

Pt|t−1 = ΦPt−1|t−1Φ′ + Σ
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Kalman Filter – Forecasting and Likelihood Function

yt = Ψst + ut , st = Φst−1 + εt where εt ∼ N(0,Σ) and ut ∼ N(0,H).

• The conditional distribution of yt |st ,Y1:t−1 is of the form

yt |st ,Y1:t−1 ∼ N (Ψst ,H)

• Since st |Y1:t−1 ∼ N (s̄t|t−1,Pt|t−1), we can deduce that the marginal distribution of yt
conditional on Y1:t−1 is of the form

yt |Y1:t−1 ∼ N (ȳt|t−1,Ft|t−1)

where ȳt|t−1 = Ψs̄t|t−1 and Ft|t−1 = ΨPt|t−1Ψ′ + H.

• Likelihood Function:

p(Y1:T |Ψ,Φ,Σ,H)

= (2π)−nT/2

(
T∏
t=1

|Ft|t−1|

)−1/2

exp

{
−1

2

T∑
t=1

(yt − ȳt|t−1)′F−1
t|t−1(yt − ȳt|t−1)

}
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Kalman Filter – Updating

yt = Ψst + ut , st = Φst−1 + εt where εt ∼ N(0,Σ) and ut ∼ N(0,H).

• To obtain the posterior distribution of st |yt ,Y1:t−1 note that

st = s̄t|t−1 + (st − s̄t|t−1)

yt = ȳt|t−1 + Ψ(st − s̄t|t−1) + ut

• and the joint distribution of st and yt is given by[
st
yt

] ∣∣∣Y t−1 ∼ N
([

s̄t|t−1

ȳt|t−1

]
,

[
Pt|t−1 Pt|t−1Ψ′

ΨP ′t|t−1 Ft|t−1

])
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Kalman Filter – Updating

yt = Ψst + ut , st = Φst−1 + εt where εt ∼ N(0,Σ) and ut ∼ N(0,H).

• Applying Bayes theorem, i.e., calculating a conditional distribution based on a joint...

st |yt ,Y1:t−1 ∼ N (s̄t|t ,Pt|t)

where

s̄t|t = s̄t|t−1 + Pt|t−1Ψ′F−1
t|t−1(yt − ȳt|t−1)

Pt|t = Pt|t−1 − Pt|t−1Ψ′F−1
t|t−1ΨPt|t−1

• The conditional mean and variance ȳt|t−1 and Ft|t−1 were given above.

• This completes one iteration of the algorithm. The posterior st |Y1:t is the prior for the
next iteration.
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Summary: Conditional Distributions for Kalman Filter

Distribution Mean and Variance
st−1|(Y1:t−1, θ) N

(
s̄t−1|t−1,Pt−1|t−1

)
Given from Iteration t − 1

st |(Y1:t−1, θ) N
(
s̄t|t−1,Pt|t−1

)
s̄t|t−1 = Φ1s̄t−1|t−1

Pt|t−1 = Φ1Pt−1|t−1Φ′1 + ΦεΣεΦ
′
ε

yt |(Y1:t−1, θ) N
(
ȳt|t−1,Ft|t−1

)
ȳt|t−1 = Ψ0 + Ψ1t + Ψ2s̄t|t−1

Ft|t−1 = Ψ2Pt|t−1Ψ′2 + Σu

st |(Y1:t , θ) N
(
s̄t|t ,Pt|t

)
s̄t|t = s̄t|t−1 + Pt|t−1Ψ′2F

−1
t|t−1(yt − ȳt|t−1)

Pt|t = Pt|t−1 − Pt|t−1Ψ′2F
−1
t|t−1Ψ2Pt|t−1

• A DSGE model may or may not have measurement errors.

• Without measurement errors it is important that there are at least as many structural
shocks εt as observables yt . If not, the forecast error covariance matrix Ft|t−1 is
non-invertible.

• In practice, measurement errors are a bit of a misnomer, as they tend to capture model
misspecification.
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Maximum Likelihood Estimation

• Recall definition of likelihood function: p(Y |θ) as function of θ given Y . It’s convenient
to take logs and work with `T (θ|Y ) = log p(Y |θ).

• Decomposition:

`T (θ|Y ) =
T∑
t=1

log p(yt |Y1:t−1, θ) =
T∑
t=1

log

∫
p(yt |st , θ)p(st |Y1:t−1)dst .

Frank Schorfheide Likelihood Function and Frequentist Inference



Parameters for Stylized DSGE Model

Parameter Value Parameter Value
β 1/1.01 γ exp(0.005)
λ 0.15 π∗ exp(0.005)
ζp 0.65 ν 0
ρφ 0.94 ρλ 0.88
ρz 0.13
σφ 0.01 σλ 0.01
σz 0.01 σR 0.01
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Maximum Likelihood Estimation: Experiment

• Treat values in Table as “true” parameters.

• Fix all parameters except for the Calvo parameter ζp at their “true” values and use the
ML approach to estimate ζp.

• Use Kalman filter to evaluate likelihood function.

• Data: output growth, labor share, inflation, and interest rate data.
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Log-Likelihood Function and Sampling Distribution of ζ̂p,ml

Log-Likelihood Function Sampling Distribution

Notes: Left panel: log-likelihood function `T (ζp |Y ) for a single data set of size T = 200. Right panel: We

simulate samples of size T = 80 (dotted) and T = 200 (dashed) and compute the ML estimator for the Calvo

parameter ζp . All other parameters are fixed at their “true” value. The plot depicts densities of the sampling

distribution of ζ̂p . The vertical lines in the two panels indicate the “true” value of ζp .
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Maximum Likelihood Estimation: Asymptotics

• Sampling distribution of MLE can be approximated based on a Central Limit Theorem
(CLT):

T−1/2∇θ`T (θ|Y ) =⇒ N(0, I(θ0)),

where I(θ0) is the Fisher information matrix.

• Standard error estimates for t-tests and confidence intervals for elements of the parameter
vector θ can be obtained from the diagonal elements of the inverse Hessian:

[−∇2
θ`T (θ|Y )]−1

of the log-likelihood function evaluated at the ML estimator.
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Maximum Likelihood Estimation: Stochastic Singularity

• Imagine removing all shocks except for the technology shock from the stylized DSGE
model, while maintaining that yt comprises output growth, the labor share, inflation, and
the interest rate.

• =⇒ one exogenous shock and four observables.

• DSGE model places probability one on

β logRt − log πt = β log(π∗γ/β)− log π∗.

=⇒ Not consistent with actual data!

• Remedies:
• “measurement error” approach;
• “more structural shocks” approach.
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Maximum Likelihood Estimation: Lack of Strong Identification

• In many applications it is quite difficult to maximize the likelihood function:

• local extrema and/or weak curvature in some directions of the parameter space;

• may be a manifestation of identification problems.

• Fix some parameters?

• Identification robust-inference, e.g.:

• φ is (identifiable) reduced-form parameter. Model implies φ = f (θ).

• H0 : θ = θ0 can be translated into H0 : φ = f (θ0). Likelihood ratio (LR) statistic is

LR(Y |θ0) = 2
[

log p(Y |φ̂,Mφ
1 )− log p(Y |f (θ0),Mφ

1 )
]

=⇒ χ2

dim(φ)
.

• Confidence interval:

CSθ(Y ) =
{
θ
∣∣ LR(Y |θ) ≤ χ2

crit

}
,
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Simulated Minimum Distance (MD) Estimation

• Minimize discrepancy between sample moments of the data m̂T (Y ) and model-implied
moments E[m̂T (Y )|θ,M1]:

θ̂md = argminθ∈Θ QT (θ|Y ) =
∥∥m̂T (Y )− E[m̂T (Y )|θ,M1]

∥∥
WT
,

• Example 1:
• m̂T (Y ) = 1

T

∑
yty
′
t−1.

• Derive E[m̂T (Y )|θ,M1] = 1
T

∑
E[yty

′
t−1|θ,M1] = E[y2y

′
1|θ,M1] from state-space

representation of DSGE.

• Example 1:
• m̂T (Y ) is OLS estimator of a VAR(1).
• Not feasible to compute E[m̂T (Y )] directly.
• Replace by Ê[m̂T (Y )] = (E[yt−1y

′
t−1|θ,M1])

−1 E[yt−1y
′
t |θ,M1],

• or use simulation approximation.
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Simulated Minimum Distance Estimation: Illustration

• Treat values in Table as “true” parameters.

• Fix all parameters except for the Calvo parameter ζp at their “true” values and use the
ML approach to estimate ζp.

• Definition of m̂T (Y ):

• yt = [log(Xt/Xt−1), πt ]
′

• Use VAR(2) in output growth and inflation:

yt = Φ1yt−1 + Φ2yt−2 + Φ0 + ut .

• Let m̂T (Y ) = Φ̂ be the OLS estimate of [Φ1,Φ2,Φ0]′.
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Simulated Minimum Distance Estimation: Implementation

• Objective Function:

QT (θ|Y ) =
∥∥m̂T (Y )− Ê[m̂T (Y )|θ,M1]

∥∥
WT
.

• Given a θ, we simulate N = 100 trajectories of length T + T0, discard the first T0

observations, and define:

Ê[m̂T (Y )|θ,M1]
1

N

N∑
i=1

m̂T (Y (i)(θ)).

• (Optimal) weight matrix: WT = Σ̂−1 ⊗ X ′X , where X is the matrix of VAR (2) regressors
and Σ̂ estimates covariance matrix of the VAR innovations.

• Use same random number seed for simulation as minimization routine varies θ.

• Alternative: use population moments
(
E[xtx

′
t |θ,M1])

)−1E[xty
′
t |θ,M1] in objective

function.
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Sampling Distribution of ζ̂p,md

Simulated Moments Population Moments

Notes: We simulate samples of size T = 80 (dotted) and T = 200 (dashed) and compute two versions of an

MD estimator for the Calvo parameter ζp . All other parameters are fixed at their “true” value. The plots depict

densities of the sampling distribution of ζ̂p,md . The vertical line indicates the “true” value of ζp .
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Simulated Minimum Distance Estimation: Asymptotics

• Sampling distribution of MD estimator can be approximated based on a Central Limit
Theorem.

• Calculations are a bit more complicated because asymptotic variance has to reflect
simulation approximation.

• Will lead to standard errors that can be used for t-tests and confidence intervals.

• Sampling distribution can be derived under assumption that:

• DSGE model M1 is “true” or

• a reference model M0, e.g., VAR, is “true.”
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Impulse Response Function (IRF) Matching Estimator

• Special case of minimum distance estimator.

• Attractive if DSGE model is incomplete in the sense that not all structural shocks are
specified.

• Mismatch between IRFs can provide insights in misspecification of propagation
mechanism.

• However, there are some complications...
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Impulse Response Function (IRF) Matching Estimator

• IRFs are based on finite-order VARs.

• Linearized DSGEs are linear state-space models. Three cases – DSGE model solution can
be expressed as

1 finite-order VAR(p);

2 as VARMA with invertible MA polynomial and rewritten as VAR(∞) in terms of εt ;

3 as VARMA with non-invertible MA polynomial, cannot be written as VAR(∞) in terms of εt .
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Recall: State-Space Representation of DSGE Model

State-space representation:

yt = Ψ0(θ) + Ψ1(θ)st

st = Φ1(θ)st−1 + Φε(θ)εt

System matrices:

Ψ0(θ) = M′y


log γ

log(lsh)
log π∗

log(π∗γ/β)

 , xφ = −
κpψp/β

1 − ψpρφ

, xλ = −
κpψp/β

1 − ψpρλ

, xz =
ρzψp

1 − ψpρz
, xεR

= −ψpσR

Ψ1(θ) = M′y



xφ xλ xz + 1 xεR
−1

1 + (1 + ν)xφ (1 + ν)xλ (1 + ν)xz (1 + ν)xεR
0

κp
1−βρφ

(1 + (1 + ν)xφ)
κp

1−βρλ
(1 + (1 + ν)xλ)

κp
1−βρz

(1 + ν)xz +κp (1 + ν)xεR
0

κp/β
1−βρφ

(1 + (1 + ν)xφ)
κp/β

1−βρλ
(1 + (1 + ν)xλ)

κp/β
1−βρz

(1 + ν)xz (κp (1 + ν)xεR
/β + σR ) 0



Φ1(θ) =


ρφ 0 0 0 0

0 ρλ 0 0 0
0 0 ρz 0 0
0 0 0 0 0
xφ xλ xz xεR

0

 , Φε(θ) =


σφ 0 0 0

0 σλ 0 0
0 0 σz 0
0 0 0 1
0 0 0 0



M′y is an ny × 4 selection matrix that selects rows of Ψ0 and Ψ1.
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Impulse Response Function (IRF) Matching Estimator

Example:

• Two MA processes that represent the DSGE models:

M1 : yt = εt + θεt−1 = (1 + θL)εt , 0 < θ < 1, εt ∼ iidN(0, 1)

M2 : yt = θεt + εt−1 = (θ + L)εt ,

• M1 and M2 are observationally equivalent, because they are associated with the same
autocovariance sequence.

• M1: MA polynomial is invertible. Thus,

AR(∞) for M1 : yt = −
∞∑
j=1

(−θ)jyt−j + εt .

and

∂yt
∂εt

= 1,
∂yt+1

∂εt
= θ,

∂yt+h

∂εt
= 0 for h > 1 =⇒ reproduces M1 IRFs
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Impulse Response Function (IRF) Matching Estimator

Example:

• Two MA processes that represent the DSGE models:

M1 : yt = εt + θεt−1 = (1 + θL)εt , 0 < θ < 1, εt ∼ iidN(0, 1)

M2 : yt = θεt + εt−1 = (θ + L)εt ,

• M1 and M2 are observationally equivalent, because they are associated with the same
autocovariance sequence.

• M2: MA polynomial is NOT invertible. Thus,

AR(∞) for M2 : yt = −
∞∑
j=1

(−θ)jyt−j + ut ,
θ + L

1 + θL
εt .

• AR does not reproduce IRFs of M2. IRF matching will be misleading.
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Impulse Response Function (IRF) Matching Estimator: Practical
Considerations

• Identification of structural shocks in VAR should be “consistent” with DSGE model.
Might require to adjust DSGE model.

• Computing IRFs

• directly from DSGE model

• versus from VAR approximation of DSGE model

• Weight matrix for the impulse response discrepancies.
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Impulse Response Function (IRF) Matching Estimator: Illustration

• Treat values in Table as “true” parameters.

• Fix all parameters except for the Calvo parameter ζp at their “true” values and use the
ML approach to estimate ζp.

• m̂T (Y ) contains IRFs from an estimated VAR(p) for

yt =
[
Rt − πt/β, log(Xt/Xt−1), πt

]′
.

• First equation in VAR corresponds to policy rule. Innovation to this equation is MP shock.

• VAR approximation of DSGE model:

Φ∗(θ) =
(
E[xtx

′
t |θ,M1]

)−1(E[xty
′
t |θ,M1]

)
,

Σ∗(θ) = E[yty
′
t |θ,M1]− E[ytx

′
t |θ,M1]

(
E[xtx

′
t |θ,M1]

)−1E[xty
′
t |θ,M1].
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DSGE Model and VAR Impulse Responses to a Monetary Policy Shock

Log Output Response Inflation Response

Notes: The figure depicts impulse responses to a monetary policy shock computed from the state-space

representation of the DSGE model (dashed) and the VAR(1) approximation of the DSGE model (solid).
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Sensitivity of IRF to ζp

Log Output Response Inflation Response

Notes: The solid lines indicate IRFs computed from the VAR approximation of the DSGE model. The other two

lines depict DSGE model-implied IRFs based on ζp = 0.65 (dashed) and ζp = 0.5 (dotted).
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Sampling Distribution of ζ̂p,irf

Match IRF of Match IRF of
State-Space Representation VAR Approximation

Notes: IRF matching estimators for ζp . Left panel: we use the IRFs from the state-space representation of the

DSGE model. Right panel: we use the IRF from the VAR approximation of the DSGE model. The plot depicts

densities of the sampling distribution of ζ̂p for T = 80 (dotted) and T = 200 (dashed). The vertical line

indicates the “true” value of ζp .
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Generalized Method of Moments (GMM) Estimation

• Derive moment conditions of the form

E[g(yt−p:t |θ,M1)] = 0

for θ = θ0 from the DSGE model equilibrium.

• Example:

g(yt−p:t |θ,M1) =

[ (
− log(Xt/Xt−1) + logRt−1 − log πt − log(1/β)

)
Zt−1(

logRt − log(γ/β)− ψ log πt − (1− ψ) log π∗)Zt−1

]
.

• Identifiability of θ requires that the moments be different from zero whenever θ 6= θ0.
• A GMM estimator is obtained by replacing population expectations by sample averages:

QT (θ|Y ) = GT (θ|Y )′WTGT (θ|Y ), GT (θ|Y ) =
1

T

T∑
t=1

g(yt−p:t |θ,M1).

• Model does not have to be solved during the estimation phase.
• It’s not straightforward to use equilibrium conditions that contain latent variables, e.g., λt

in the Phillips curve.
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