DSGE Model Applications

Frank Schorfheide
University of Pennsylvania
Econ 722 – Part 1

February 13, 2019
1. What is the optimal target inflation rate?

2. Was high inflation and output volatility in the 1970s due to loose monetary policy?

3. Effects of the zero lower bound on nominal interest rates on monetary policy.

4. How large are government spending multipliers?

5. Fiscal policy rules and the effect of a change in the labor tax rate.
What Is The Optimal Target Inflation Rate?

New Keynesian distortion: nominal price adjustments are costly \Rightarrow firms economize on price-adjustments \Rightarrow non-zero inflation leads to a loss of output.

Monetary distortion: nominal interest rates determine the cost of holding money \Rightarrow if cost of holding money is positive, households economize on transactions that require money as medium of exchange \Rightarrow welfare loss.

What is the relative magnitude of these distortions?

References: Aruoba and Schorfheide (2011, American Economic Journal: Macroeconomics)
• The households maximize

$$E_{\tau} \left\{ \beta^{(t-\tau)} \left\{ U(C_t) - \phi L_t + \frac{\chi_t}{1-\nu} \left(\frac{M_t}{P_t} \right)^{1-\nu} \right\} \right\}$$

• Households also hold capital stock and rent it out to firms:

$$K_{t+1} = (1 - \delta)K_t + \left[1 - S \left(\frac{l_t}{l_{t-1}} \right) \right] l_t$$

• Budget constraint:

$$P_t C_t + P_t l_t + B_{t+1} + M_{t+1} \leq P_t W_t L_t + P_t R^k K_t + \Pi_t + R_{t-1} B_t + M_t - T_t + \Omega_t$$

• Real money balance term in utility function allows us to derive money demand function.
Intermediate Goods Production

• Production:

\[Y_t(i) = \max \left\{ Z_t K_t(i)^\alpha H_t(i)^{1-\alpha} - F, 0 \right\}. \]

(1)

• Firms can re-optimize prices with probability \(1 - \zeta\).

• A random fraction \(\iota\) of the firms that are not allowed to re-optimize update their price \(P_{t-1}(i)\) according to last period’s inflation rate \(\pi_{t-1}\).

• Remaining \(1 - \iota\) firms keep their price constant.

• Price stickiness generates inefficiency:

\[Y_t = \frac{1}{D_t} Z_t K_t^\alpha H_t^{1-\alpha}, \quad D_t = \int \left(\frac{P_t(i)}{P_t} \right)^{-\frac{1+\lambda}{\lambda}} di \geq 1 \]
• Monetary Policy Rule:

\[
R_t = R_{*\ t}^{1 - \rho^R} R_{t-1}^{\rho^R} \exp\{\sigma_R \epsilon_{R,t}\}, \quad R_{*\ t} = \left(r_{*\ \pi_{\ t}} \right) \left(\frac{\pi_{t}}{\pi_{*\ t}} \right)^{\psi_1} \left(\frac{Y_{t}}{\gamma Y_{t-1}} \right)^{\psi_2}
\]

• Agents forecast target inflation according to:

\[
\pi_{*\ t} = \pi_{*\ t-1} + \epsilon_{\pi, t}.
\]
Construction of Target Inflation Series

- Bandpass-Filtered Inflation
- Survey Expectations (1 year)
- Survey Expectations (10 years)
Bayesian Inference

- **Data:**
 - output (log per capita GDP, detrended)
 - inflation (log differences of GDP deflator)
 - interest rates (federal funds rate)
 - inverse velocity (based on M1)
 - target inflation (see previous slide)

- **Use random-walk Metropolis Hastings algorithm to generate draws from posterior \(\{\theta^i\}_{i=1}^N \). Store these draws on hard drive.

- **Subsequent analysis:** for each draw \(\theta^i, i = 1, 2, \ldots, N \) or for a subsequence of draws \(i = 1, 11, 21, \ldots, N \)
 - compute impulse response to target inflation rate shock;
 - compute welfare losses/gain of counterfactual target inflation rate.
Parameter Estimates

<table>
<thead>
<tr>
<th>Name</th>
<th>Mean</th>
<th>90% Intv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Households</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ν</td>
<td>31.754</td>
<td>[24.76, 38.08]</td>
</tr>
<tr>
<td>Firms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ζ</td>
<td>0.756</td>
<td>[0.728, 0.784]</td>
</tr>
<tr>
<td>ι</td>
<td>0.036</td>
<td>[0.000, 0.073]</td>
</tr>
<tr>
<td>Central Bank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ψ_2</td>
<td>1.027</td>
<td>[0.846, 1.224]</td>
</tr>
<tr>
<td>ρ_R</td>
<td>0.669</td>
<td>[0.622, 0.719]</td>
</tr>
<tr>
<td>σ_R</td>
<td>0.338</td>
<td>[0.284, 0.389]</td>
</tr>
<tr>
<td>$\sigma_{R,2}$</td>
<td>0.810</td>
<td>[0.572, 1.020]</td>
</tr>
<tr>
<td>$\bar{\pi}^*_0,A$</td>
<td>-0.058</td>
<td>[-3.439, 3.126]</td>
</tr>
<tr>
<td>σ_{π}</td>
<td>0.049</td>
<td>[0.044, 0.053]</td>
</tr>
<tr>
<td>Shocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_g</td>
<td>0.896</td>
<td>[0.865, 0.931]</td>
</tr>
<tr>
<td>σ_g</td>
<td>1.140</td>
<td>[0.989, 1.299]</td>
</tr>
<tr>
<td>ρ_X</td>
<td>0.982</td>
<td>[0.974, 0.991]</td>
</tr>
<tr>
<td>σ_X</td>
<td>1.298</td>
<td>[1.170, 1.415]</td>
</tr>
<tr>
<td>ρ_z</td>
<td>0.799</td>
<td>[0.719, 0.887]</td>
</tr>
<tr>
<td>σ_Z</td>
<td>2.082</td>
<td>[1.451, 2.696]</td>
</tr>
</tbody>
</table>
Some Parameter Transformations of Interest

- New Keynesian Phillips curve (NKPC):

\[\tilde{\pi}_t = \gamma b \tilde{\pi}_{t-1} + \gamma_f \mathbb{E}_t[\tilde{\pi}_{t+1}] + \kappa \tilde{M}C_t, \]

- Percentage loss 100\(1/D_* - 1\) in output due to NK friction, where

\[D_* = \frac{(1 - \zeta)(p_*)^{-\frac{1 + \lambda}{\lambda}}}{1 - \zeta \left(\frac{1}{\pi_*}\right)^{-\frac{(1 + \lambda)(1 - \nu)}{\lambda}}}, \quad p_*^o = \left[\frac{1}{1 - \zeta} - \frac{\zeta}{1 - \zeta} \left(\frac{1}{\pi_*}\right)^{-\frac{1 - \nu}{\lambda}}\right]^{-\lambda}. \]

- Money demand function

\[\tilde{M}_{t+1} = -\frac{1}{\nu(R_* - 1)} \tilde{R}_t + \frac{\gamma}{\nu} \tilde{X}_t - \frac{1 - \nu}{\nu} \mathbb{E}[\tilde{\pi}_{t+1}] + \tilde{X}_t \]
Posterior (Green) and Prior (Red) Densities

NKPC Marg. Cost Coeff

NKPC Lagged Infl. Coeff

NK Distortion

Money Demand Elasticity
Response to Target Inflation Shock

Real GDP

Inflation

Nom. Interest

Real Money
We focus on steady state welfare comparison.

1. Fix benchmark target inflation at π_\ast. Compute steady state consumption, hours, real money balances and let

$$V_0 = \frac{1}{1 - \beta} U(C) - \phi L + \frac{\chi}{1 - \nu} \left(\frac{M}{P} \right)^{1 - \nu}$$

2. Recompute steady state under counterfactual target inflation rate $\tilde{\pi}$:

$$V_1 = \frac{1}{1 - \beta} U(\tilde{C}) - \phi \tilde{L} + \frac{\chi}{1 - \nu} \left(\frac{\tilde{M}}{\tilde{P}} \right)^{1 - \nu}.$$

3. Scale consumption by a factor κ under the benchmark inflation rate π_\ast and define

$$\tilde{V}_0(\kappa) = \frac{1}{1 - \beta} U((1 + \kappa)C) - \phi L + \frac{\chi}{1 - \nu} \left(\frac{M}{P} \right)^{1 - \nu}.$$

4. Welfare loss/gain: determine $\tilde{\kappa}$ such that $\tilde{V}_0(\kappa) = V_1$.
Welfare Implications

[Graphs showing the relationship between inflation target and welfare costs.]

Frank Schorfheide
DSGE Model Applications
Application 2: Was High Inflation Volatility in the 1970s Due to Loose Monetary Policy?

Monetary Policy

- Log-linearized Monetary Policy Rule:

\[
\hat{R}_t = \psi_1 \hat{\pi}_t + \psi_2 (\hat{y}_t - \hat{y}_{t-1} + z_t) + \sigma_R \epsilon_{R,t}
\]

- If \(\psi < 1 \), the equilibrium in the NK model becomes indeterminate, meaning that expectations could become self-fulfilling and aggregate outcomes might be affected by “sunspots” (non-fundamental shocks).
Simple model:

\[y_t = \frac{1}{\theta} \mathbb{E}_t[y_{t+1}] + \epsilon_t, \quad \epsilon_t \sim iid(0, 1), \quad \theta \in \Theta = [0, 2]. \]

Let \(\xi_t = \mathbb{E}_t[y_{t+1}] \) and \(\eta_t = y_t - \xi_{t-1} \). Write:

\[\xi_t = \theta \xi_{t-1} - \theta \epsilon_t + \theta \eta_t. \]

Nonexplosive solutions:

- **Determinacy**: \(\theta > 1 \). The only stable solution:

 \[\xi_t = 0, \quad \eta_t = \epsilon_t \implies y_t = \epsilon_t \]

- **Indeterminacy**: \(\theta \leq 1 \) the stability requirement imposes no restrictions on forecast error:

 \[\eta_t = \tilde{M} \epsilon_t + \zeta_t \implies y_t = \theta y_{t-1} + \tilde{M} \epsilon_t + \zeta_t - \theta \epsilon_{t-1} \]
• In the small-scale New Keynesian model, the policy rule coefficient ψ_1 affects the determinacy of the RE solution.

• In our simple linearized model:
 • no capital;
 • passive fiscal policy;
 • indexation to trend inflation $\bar{\pi} = \pi^*$;

 the RE equilibrium becomes indeterminate if $\psi_1 < 1$.

• Empirical question: historically, was $\psi_1 < 1$?

• Normative question: how should CB set ψ_1? \Rightarrow keep $\psi_1 > 1$ “Taylor” principle.

• Lubik and Schorfheide (2004): estimate model on pre-1980 and post-1980 samples and compute posterior probabilities of determinacy vs. indeterminacy.
Because agents can always hold cash, there is a lower limit to the nominal interest rate on bonds.

ZLB has been binding in U.S., Japan, and Euro Area.

ZLB constrains monetary policy responses to adverse shocks.

ZLB in our model:

\[R_t = \max \left\{ 1, \ R_{t-1}^{1-\rho R} \exp\{\sigma_R \epsilon_{R,t}\} \right\}, \quad R_{*,t} = (r_{*,t} \pi_{*,t}) \left(\frac{\pi_t}{\pi_{*,t}} \right)^{\psi_1} \left(\frac{Y_t}{\gamma Y_{t-1}} \right)^{\psi_2} \]
Top Panels: interest rates (black), GDP deflator inflation (blue), CPI inflation (red)
Bottom Panels: interest rates (black), 1-year inflation expectations (blue), 10-year inflation expectations (red)
Ex Ante Real Rates (See Below for $E_t[\pi_{t+1}]$)

U.S.

Japan

Euro Area
The U.S. is closer to a Japanese-style outcome today than at any time in recent history.

Promising to remain at zero for long time is a double-edged sword. The policy is consistent with the idea that inflation and inflation expectations should rise in response to the promise and that this will eventually lead the economy back toward the targeted equilibrium.

But the policy is also consistent with the idea that inflation and inflation expectations will instead fall and that the economy will settle in the neighborhood of the unintended steady state, as Japan has in recent years.
• ... is much more complicated because of the nonlinearity.

• Requires a more elaborate solution technique;

• and a nonlinear filter, e.g. particle filter, to compute the likelihood function.

• Reference: FVRRS on solution and filtering; also HS on Bayesian computations.

• We will just look at some results.

Assume that agents can coordinate beliefs on exogenous sunspot shock $s_t \in \{0, 1\}$ that follows Markov switching process.

Model also contains fundamental shocks to: technology growth, government spending, monetary policy, and discount factor.

We consider an equilibrium with two regimes: targeted-inflation regime and deflation regime.

Nonlinear model is solved using projection methods; in particular, accounting for ZLB.

We estimate NK DSGE model based on pre-ZLB output growth, consumption, inflation, and interest rate data assuming that the economies are in the targeted-inflation regime.

Then conduct nonlinear analysis on ZLB data.
Data and Ergodic Distribution – Japan

Targeted-Inflation Regime

Nominal Rate (%)

Deflation Regime

Inflation (%)

Nominal Rate (%)

U.S.

Euro Area

Japan

Frank Schorfheide

DSGE Model Applications
Data and Ergodic Distribution - Euro Area

Targeted-Inflation Regime

Deflation Regime
Findings

• Under targeted inflation regime reaching ZLB is unlikely.

• But, overlap in regime conditional distributions for low interest and inflation rates.

• Japan: observations appear more likely under deflation regime.

• U.S.: ambiguous

• Euro Area: too soon to tell.

• Contour plots ignore dynamic aspects and other observables.

Papers proceed by using a filter to formally assess the probability that countries enter deflation regime.
Policy Question: Should Inflation Target Be Increased?

- How bad is deflation?
 - Adverse shocks that generate deflation are bad.
 - Welfare costs due to “New Keynesian” distortion.
 - Could be amplified by downward nominal wage rigidity.

- Experiment: change inflation target (in our model it is about 2.5%).
What If... the U.S. Had Targeted 4% Inflation?

Frank Schorfheide
DSGE Model Applications
What is Behind the Plot?

- We have estimated parameter of the DSGE model. Here we fix θ at posterior mean.

- Recall:
 - In our model, fluctuations are generated by exogenous shocks: technology growth z_t, government spending g_t, ...
 - Given θ, we can “invert” the model, and compute values for the exogenous shocks that explain the data.

- Back out historical series of shocks.

- Counterfactual:
 - Resolve the model with new policy parameters (here target inflation rate).
 - Feed in the historical shocks and compute counterfactual path for output, inflation, interest rates...
 - In one of the counterfactuals we adjust the monetary policy shocks to keep economy at the ZLB.
Review: Filtering

- State-space representation of linearized DSGE model
 \[y_t = \Psi_0(\theta) + \Psi_1(\theta)t + \Psi_2(\theta)s_t(u_t) \]
 measurement
 \[s_t = \Phi_1(\theta)s_{t-1} + \Phi_\epsilon(\theta)\epsilon_t \]
 state transition

- Likelihood function:
 \[p(Y_{1:T}|\theta) = \prod_{t=1}^{T} p(y_t|Y_{1:t-1}, \theta) \]

- A filter generates a sequence of conditional distributions \(s_t|Y_{1:t} \).

- Iterations:
 - Initialization at time \(t-1 \):
 \(p(s_{t-1}|Y_{1:t-1}, \theta) \)
 - Forecasting \(t \) given \(t-1 \):
 1. Transition equation:
 \[p(s_t|Y_{1:t-1}, \theta) = \int p(s_t|s_{t-1}, Y_{1:t-1}, \theta)p(s_{t-1}|Y_{1:t-1}, \theta)ds_{t-1} \]
 2. Measurement equation:
 \[p(y_t|Y_{1:t-1}, \theta) = \int p(y_t|s_t, Y_{1:t-1}, \theta)p(s_t|Y_{1:t-1}, \theta)ds_t \]
 - Updating with Bayes theorem. Once \(y_t \) becomes available:
 \[p(s_t|Y_{1:t}, \theta) = p(s_t|y_t, Y_{1:t-1}, \theta) = \frac{p(y_t|s_t, Y_{1:t-1}, \theta)p(s_t|Y_{1:t-1}, \theta)}{p(y_t|Y_{1:t-1}, \theta)} \]
What If... the U.S. Had Targeted 4% Inflation?

Interest Rate

Inflation

GDP (% change relative to 2009:Q2)

Change in Consumption (%)

Frank Schorfheide DSGE Model Applications
What If... the U.S. Had Targeted 4% Inflation?

• **Benefit:** Higher target inflation rate \rightarrow ability to conduct conventional expansionary monetary policy.

• **Costs:**
 - Increased price adjustment costs may lead to welfare loss.
 - Other costs, e.g., holding cash balances.

• **Japan:** spending long time at ZLB may be unrelated to inflation target.

• From *ex ante* perspective, costs and benefits have to be weighted by prob of reaching ZLB.

• From *ex ante* perspective, the case for a higher inflation target is not particularly strong.
What If... the U.S. Switches to a 4% Target?

Interest Rate

Inflation

GDP (% change relative to 2013Q4)
What is Behind the Plot?

- We have estimated parameter of the DSGE model. Here we fix θ at posterior mean.
- Back out historical series of shocks up until the end of 2014.
- **Counterfactual:**
 - Resolve the model with new policy parameters (here target inflation rate).
 - Starting from the historical shocks and observations at the end of 2013, simulate model forward by drawing innovations for the exogenous shock processes. Do this multiple times to generate multiple trajectories.
What If... the U.S. Switches to a 4% Target?

Interest Rate

Inflation

GDP (% change relative to 2013Q4)
What If... the U.S. Switches to a 4% Target?

- Even if policy is credible, expected real effects of this policy change are essentially zero.
- Only positive effect would be the ability to execute unanticipated expansionary monetary policy actions in response to adverse shocks.
- Raising the target does not eliminate deflation regime.
- Potentially adverse effect on the credibility of the central bank.
• Managing expectations, e.g., through unconventional monetary policies.

• In ACS we argue that the aggressive unconventional monetary policies in the U.S., in contrast to the more measured and possibly contradictory responses of the Bank of Japan, may have prevented a switch to the deflation regime in the U.S.

• Eliminating the deflation steady state / regime: e.g., discontinuous monetary policy rule; active fiscal and passive monetary policy; fiscal authority that responds to level of nominal debt or directly to inflation, signaling that deflationary steady state is unsustainable.
Our model allows us to conduct basic fiscal policy experiments. We can examine the effects of an increase in government spending.

Recall:

\[\hat{y}_t = \hat{c}_t + \hat{g}_t, \quad \hat{g}_t = \rho_g \hat{g}_{t-1} + \sigma_g \epsilon_g,t \]

We can examine an impulse response to \(\epsilon_g,t \).

This analysis ignores potential distortions from raising tax revenues.
Gray shading indicates deflation regime in sunspot equilibrium.

Yellow shading indicates $0.65 < Pr(s_t = 1) < 1$.
Policy Experiments

• Standing at the beginning of 2009:Q1 and taking only the filtered states in 2009:Q1 as given, we consider
 1. a fiscal policy intervention calibrated to ARRA;
 2. a combination of the fiscal policy intervention with an expansionary monetary policy that lasts for one year.

• Mechanics: conditional on time T states we
 • generate draws for future shocks;
 • compute paths $Y_{T+1:T+H}$, $\pi_{T+1:T+H}$, $R_{T+1:T+H}$ without policy intervention;
 • compute paths $Y^I_{T+1:T+H}$, $\pi^I_{T+1:T+H}$, $R^I_{T+1:T+H}$ with policy intervention;
 • inspect the distribution of the intervention effects:
 • $100 \ln(Y^I_{T+h}/Y_{T+h})$;
 • $\pi^I_{T+h} - \pi_{T+h}$ (annualized rates);
 • $R^I_{T+h} - R_{T+h}$ (annualized rates).
Conditional on time T states we

- generate draws for future shocks;

- compute paths $Y_{T+1:T+H}$, $\pi_{T+1:T+H}$, $R_{T+1:T+H}$ without policy intervention;

- compute paths $Y^I_{T+1:T+H}$, $\pi^I_{T+1:T+H}$, $R^I_{T+1:T+H}$ with policy intervention;

- inspect the distribution of the intervention effects:
 - $100 \ln(Y^I_{T+h}/Y_{T+h})$;
 - $\pi^I_{T+h} - \pi_{T+h}$ (annualized rates);
 - $R^I_{T+h} - R_{T+h}$ (annualized rates).
Calibration of Intervention 1 (Pure Fiscal)

- Fiscal policy intervention is calibrated to portion of the American Recovery and Reinvestment Act (ARRA) of February 2009:
 - Tax cuts and benefits;
 - entitlement programs;
 - funding for federal contracts, grants, and loans;
- Convert expenditures into \hat{g}_t^{ARRA} and construct a demand shock that generates a path comparable to \hat{g}_t^{ARRA}.
Intervention 1: Pure Fiscal (Green Lines)

- Pointwise medians (solid); 20%-80% percentiles (shaded area) for pure fiscal intervention.
Intervention 1: Government Spending Multipliers

Multiplier: $\mu^c_t = \sum_{\tau=1}^{t}(Y^I_{\tau} - Y_{\tau}) \div \sum_{\tau=1}^{t}(G^I_{\tau} - G_{\tau})$.
At the beginning of 2009:Q1 the Fed contemplates to amplify the effect of the expansionary fiscal policy by an expansionary monetary policy that keeps interest rates at or near zero.

Recall monetary policy rule:

\[
R_t = \max \left\{ 1, \left[r \pi_* \left(\frac{\pi_t}{\pi_*} \right)^{\psi_1} \left(\frac{Y_t}{\gamma Y_{t-1}} \right)^{\psi_2} \right]^{1-\rho_R} R_{t-1}^{\rho_R} \right\}^{1-\sigma_R}.
\]

Un-intervened paths:

- all \(\epsilon_{g,T+h} \) and \(\epsilon_{z,T+h} \) are drawn from \(\mathcal{N}(0, 1) \);
- \(\epsilon_{R,T+h} = 0 \).

Intervened paths:

- \(\sigma_g \epsilon_{g,T+1} \sim \mathcal{N}(0.011, \sigma_g^2) \);
- all other \(\epsilon_{g,T+h} \) and \(\epsilon_{z,T+h} \) shocks are drawn from \(\mathcal{N}(0, 1) \);
- solve for the \(\tilde{\epsilon}_{R,T+1:T+4} \geq -2\sigma_r \) such that for \(h = 1, 2, 3, 4 \)
 \[
 R_{T+h}^I(\epsilon_{R,T+h} = 0) - R_{T+h}^I(\epsilon_{R,T+h} = \tilde{\epsilon}_{R,T+h}) \text{ is maximized while } \leq 1\% \text{ (annualized)}.
 \]
Intervention 2: Fiscal and Monetary Policy (Blue)

- Pointwise medians (solid); 20%-80% percentiles (shaded area) for both interventions.
Intervention 2: Government Spending Multipliers

Multiplier: \(\mu_t^c = \frac{\sum_{\tau=1}^{t} (Y^I_{\tau} - Y_{\tau})}{\sum_{\tau=1}^{t} (G^I_{\tau} - G_{\tau})} \).
• Instead of standing at the beginning of 2009Q1, do an ex-post analysis.

• Use the filtered shocks for 2000Q1-2010Q2.

• Two experiments:
 1. Fiscal intervention only, calibrated to ARRA: reduce \hat{g}_t by the amount of ARRA spending.
 2. Both fiscal and monetary intervention \implies try to keep interest rates low.

• Intervention dates: 2009Q1 (ZLB) and 2007Q1 (interest rate around 6% p.a.)
Cumulative Government Spending Multipliers

<table>
<thead>
<tr>
<th>Period</th>
<th>2009Q1 Both</th>
<th>2009Q1 Only Fiscal</th>
<th>2007Q1 Both</th>
<th>2007Q1 Only Fiscal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.74</td>
<td>1.42</td>
<td>1.44</td>
<td>0.59</td>
</tr>
<tr>
<td>2</td>
<td>1.69</td>
<td>1.54</td>
<td>1.85</td>
<td>0.66</td>
</tr>
<tr>
<td>3</td>
<td>1.65</td>
<td>1.54</td>
<td>2.21</td>
<td>0.73</td>
</tr>
<tr>
<td>4</td>
<td>1.76</td>
<td>1.64</td>
<td>2.46</td>
<td>0.78</td>
</tr>
<tr>
<td>5</td>
<td>1.79</td>
<td>1.67</td>
<td>2.56</td>
<td>0.83</td>
</tr>
<tr>
<td>6</td>
<td>1.79</td>
<td>1.68</td>
<td>2.62</td>
<td>0.88</td>
</tr>
</tbody>
</table>
• Based on Leeper, Plante, and Traum (2010, *Journal of Econometrics*). See also Herbst and Schorfheide (2015, Chapter 6).

• Authors study a model without nominal frictions and monetary policy – but the two components could be combined in a single model \rightarrow raises some questions about interaction of fiscal and monetary policy.
\[(1 + \tau^c_t) c_t + i_t + b_t = (1 - \tau^l_t) W_t l_t + (1 - \tau^k_t) R_t^k u_t k_{t-1} + R_{t-1} b_{t-1} + z_t.\]

- **Distortionary taxes:**
 - on consumption: τ^c_t
 - on labor income: τ^l_t
 - on capital income: τ^k_t

- z_t are transfers (not distortionary).
- Tax rates will vary over time.
Government Budget Constraint

\[B_t + \tau_t^k R_t^k u_t K_{t-1} + \tau_t^l w_t L_t + \tau_t^c C_t = R_{t-1} B_{t-1} + G_t + Z_t. \]

- Capital letters denote aggregate quantities.
- More sources of tax revenue than in our simple model.
Tax Rules

- Tax rates respond to state of the economy...

\[
\hat{\tau}^k_t = \varphi_k \hat{Y}_t + \gamma_k \hat{B}_{t-1} + \phi_{kl} \hat{u}^l_t + \phi_{kc} \hat{u}^c_t + \hat{u}^k_t, \\
\hat{\tau}^l_t = \varphi_l \hat{Y}_t + \gamma_l \hat{B}_{t-1} + \phi_{lk} \hat{u}^k_t + \phi_{lc} \hat{u}^c_t + \hat{u}^l_t, \\
\hat{\tau}^c_t = \phi_{ck} \hat{u}^k_t + \phi_{cl} \hat{u}^l_t + \hat{u}^c_t.
\]

- but they also have an exogenous component:

\[
\hat{u}^k_t = \rho_k \hat{u}^k_{t-1} + \sigma_k \epsilon^k_t, \quad \epsilon^k_t \sim N(0, 1), \\
\hat{u}^l_t = \rho_l \hat{u}^l_{t-1} + \sigma_l \epsilon^l_t, \quad \epsilon^l_t \sim N(0, 1), \\
\hat{u}^c_t = \rho_c \hat{u}^c_{t-1} + \sigma_c \epsilon^c_t, \quad \epsilon^c_t \sim N(0, 1).
\]
The government spending rule is given by

\[\hat{G}_t = -\varphi_g \hat{Y}_t - \gamma_g \hat{B}_{t-1} + \hat{u}_t^g, \quad \hat{u}_t^g = \rho_g \hat{u}_{t-1}^g + \sigma_g \varepsilon_t^g, \quad \varepsilon_t^g \sim N(0, 1). \]

The transfer rule is given by

\[\hat{Z}_t = -\varphi_z \hat{Y}_t - \gamma_z \hat{B}_{t-1} + \hat{u}_t^z, \quad \hat{u}_t^z = \rho_z \hat{u}_{t-1}^z + \sigma_z \varepsilon_t^z, \quad \varepsilon_t^z \sim N(0, 1). \]
• We can proceed as in our previous analysis...

• Estimate DSGE models, in particular the policy rule parameters.

• Study effects of tax and spending policies through:
 • impulse response functions – just as we did previously for government spending, we can now study tax cuts;
 • recompute equilibrium under alternative tax and spending rules – new steady state, different dynamics, transitions.
• **Problem** …

• Does the data have enough variation to identify all the parameters and policy trade-offs?

• Let us estimate the model and different priors and see what happens.
Prior Distributions for Fiscal Rule Parameters

<table>
<thead>
<tr>
<th>Type</th>
<th>Para (1)</th>
<th>Para (2)</th>
<th>Type</th>
<th>Para (1)</th>
<th>Para (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debt Response Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_g</td>
<td>G</td>
<td>0.4</td>
<td>0.2</td>
<td>U</td>
<td>0</td>
</tr>
<tr>
<td>γ_{tk}</td>
<td>G</td>
<td>0.4</td>
<td>0.2</td>
<td>U</td>
<td>0</td>
</tr>
<tr>
<td>γ_{tl}</td>
<td>G</td>
<td>0.4</td>
<td>0.2</td>
<td>U</td>
<td>0</td>
</tr>
<tr>
<td>γ_z</td>
<td>G</td>
<td>0.4</td>
<td>0.2</td>
<td>U</td>
<td>0</td>
</tr>
<tr>
<td>Output Response Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ_{tk}</td>
<td>G</td>
<td>1.0</td>
<td>0.3</td>
<td>N</td>
<td>1.0</td>
</tr>
<tr>
<td>ϕ_{tl}</td>
<td>G</td>
<td>0.5</td>
<td>0.25</td>
<td>N</td>
<td>0.5</td>
</tr>
<tr>
<td>ϕ_g</td>
<td>G</td>
<td>0.07</td>
<td>0.05</td>
<td>N</td>
<td>0.07</td>
</tr>
<tr>
<td>ϕ_z</td>
<td>G</td>
<td>0.2</td>
<td>0.1</td>
<td>N</td>
<td>0.2</td>
</tr>
<tr>
<td>Exogenous Tax Comovement Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ_{kl}</td>
<td>N</td>
<td>0.25</td>
<td>0.1</td>
<td>N</td>
<td>0.25</td>
</tr>
<tr>
<td>ϕ_{kc}</td>
<td>N</td>
<td>0.05</td>
<td>0.1</td>
<td>N</td>
<td>0.05</td>
</tr>
<tr>
<td>ϕ_{lc}</td>
<td>N</td>
<td>0.05</td>
<td>0.1</td>
<td>N</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Notes: Para (1) and Para (2) correspond to the mean and standard deviation of the Beta (B), Gamma (G), and Normal (N) distributions and to the upper, lower bounds of the support for Uniform (U) distribution.
<table>
<thead>
<tr>
<th></th>
<th>Based on LPT Prior</th>
<th>Based on Diff. Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean [5%, 95%] Int.</td>
<td>Mean [5%, 95%] Int.</td>
</tr>
<tr>
<td>Debt Response Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ_g</td>
<td>0.16 [0.07, 0.27]</td>
<td>0.10 [0.01, 0.23]</td>
</tr>
<tr>
<td>γ_{tk}</td>
<td>0.39 [0.22, 0.60]</td>
<td>0.38 [0.16, 0.62]</td>
</tr>
<tr>
<td>γ_{tl}</td>
<td>0.11 [0.04, 0.21]</td>
<td>0.04 [0.00, 0.11]</td>
</tr>
<tr>
<td>γ_z</td>
<td>0.32 [0.17, 0.47]</td>
<td>0.32 [0.14, 0.49]</td>
</tr>
<tr>
<td>Output Response Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>φ_{tk}</td>
<td>1.67 [1.18, 2.18]</td>
<td>2.06 [1.44, 2.69]</td>
</tr>
<tr>
<td>φ_{tl}</td>
<td>0.29 [0.11, 0.53]</td>
<td>0.11 [-0.34, 0.58]</td>
</tr>
<tr>
<td>φ_g</td>
<td>0.06 [0.01, 0.13]</td>
<td>-0.43 [-0.87, 0.02]</td>
</tr>
<tr>
<td>φ_z</td>
<td>0.17 [0.06, 0.33]</td>
<td>-0.07 [-0.56, 0.41]</td>
</tr>
<tr>
<td>Exogenous Tax Comovement Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ_{kl}</td>
<td>0.19 [0.14, 0.24]</td>
<td>1.57 [1.29, 1.87]</td>
</tr>
<tr>
<td>ϕ_{kc}</td>
<td>0.03 [-0.03, 0.08]</td>
<td>-0.33 [-2.84, 2.73]</td>
</tr>
<tr>
<td>ϕ_{lc}</td>
<td>-0.02 [-0.07, 0.04]</td>
<td>0.20 [-1.23, 1.40]</td>
</tr>
<tr>
<td>Innovations to Fiscal Rules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_g</td>
<td>3.03 [2.79, 3.30]</td>
<td>2.91 [2.66, 3.19]</td>
</tr>
<tr>
<td>σ_{tk}</td>
<td>4.36 [4.01, 4.75]</td>
<td>1.26 [1.08, 1.46]</td>
</tr>
<tr>
<td>σ_{tl}</td>
<td>2.95 [2.71, 3.22]</td>
<td>2.00 [1.71, 2.33]</td>
</tr>
<tr>
<td>σ_{tc}</td>
<td>3.99 [3.67, 4.33]</td>
<td>1.14 [0.96, 1.35]</td>
</tr>
<tr>
<td>σ_z</td>
<td>3.34 [3.07, 3.63]</td>
<td>3.34 [3.07, 3.63]</td>
</tr>
</tbody>
</table>
Notes: The figure depicts posterior densities under the LPT prior (solid) and the diffuse prior (dashed).
Notes: The plots on the diagonal depict posterior densities under the LPT prior (solid) and the diffuse prior (dashed). The plots on the off-diagonals depict draws from the posterior distribution under the LPT prior (circles) and the diffuse prior (triangles).
Notes: Figure depicts posterior mean impulse responses under LPT prior (solid); diffuse prior (dashed);
diffuse prior with $\phi_{lc} > 0$, $\phi_{kl} < 0$ (dotted); and diffuse prior with $\phi_{lc} < 0$, $\phi_{kl} > 0$ (dots and short
dashes). \hat{C}_t, \hat{I}_t and \hat{L}_t are consumption, investment, and hours worked in deviation from steady state.
• It is tempting to specify very rich DSGE models to answer complex policy questions…

• but in large models it is often difficult to identify key parameters and policy trade-offs,

• which may deliver misleading conclusions.
A small-scale DSGE model: specification, steady states, log-linearization, first-order approximation to equilibrium dynamics, state-space representation.

Given θ, compute autocovariance, impulse responses, etc. from DSGE model solution; compute the same objects from the data either directly or with VARs.

Statistical inference: frequentist versus Bayesian; use the Kalman filter to evaluate likelihood function.

Frequentist inference: maximum likelihood, simulated minimum distance approaches, GMM

Bayesian inference: priors, posteriors, Metropolis-Hastings algorithm, post-processing draws.

Applications to monetary and fiscal policy.