Consider AR(1) model:

\[y_t = y_{t-1} \phi + u_t, \quad u_t \sim iidN(0,1). \]

Let \(x_t = y_{t-1} \). Write as

\[y_t = x_t' \phi + u_t, \quad u_t \sim iidN(0,1), \]

or

\[Y = X\phi + U. \]

We can easily allow for multiple regressors. Assume \(\phi \) is \(k \times 1 \).

Notice: we treat the variance of the errors as know. The generalization to unknown variance is straightforward but tedious.

Likelihood function:

\[p(Y|\phi) = (2\pi)^{-T/2} \exp \left\{ -\frac{1}{2} (Y - X\phi)'(Y - X\phi) \right\}. \]
A Convenient Prior

- Prior:
 \[\phi \sim N\left(0_{k \times 1}, \tau^2 I_{k \times k}\right), \quad p(\phi) = (2\pi \tau^2)^{-k/2} \exp\left\{-\frac{1}{2\tau^2} \phi' \phi\right\} \]

- Large \(\tau \) means diffuse prior.
- Small \(\tau \) means tight prior.
Posterior Distribution

• Recall: posterior distribution of ϕ is a multivariate normal distribution

$$\phi|Y \sim N(\bar{\phi}_T, \bar{V}_T)$$

with

$$\bar{\phi}_T = (X'X + \tau^{-2}I)^{-1}X'Y$$
$$\bar{V}_T = (X'X + \tau^{-2}I)^{-1}.$$

• Suppose that

$$\frac{1}{T} \sum_{t=1}^{T} x_t x'_t \xrightarrow{p} E[x_t x'_t].$$

• Let $\hat{\phi} = (X'X)^{-1}X'Y$. Then,

$$\sqrt{T}(\phi - \hat{\phi})|Y \xrightarrow{} N\left(0, (E[x_t x'_t])^{-1}\right)$$
Let’s Take a Look at the Frequentist Calculations

- Consider model $Y = X\phi + U$.

- OLS estimator: $\hat{\phi} = (X'X)^{-1}X'Y$.

- If model is correct, then

$$\hat{\phi} = \phi + (X'X)^{-1}X'U = \phi + \left(\frac{1}{T} \sum_{t=1}^{T} x_t x_t'\right)^{-1} \left(\frac{1}{T} \sum_{t=1}^{T} x_t u_t\right).$$

- In the “regular” case (recall that $\nabla[u_1] = 1$):

$$\frac{1}{T} \sum_{t=1}^{T} x_t x_t' \xrightarrow{\rho} \mathbb{E}[x_t x_t'], \quad \sqrt{T} \frac{1}{T} \sum_{t=1}^{T} x_t u_t \xrightarrow{d} N(0, \mathbb{E}[x_t x_t']).$$

- Thus,

$$\sqrt{T}(\hat{\phi} - \phi) \mid \phi \xrightarrow{d} N\left(0, \left(\mathbb{E}[x_t x_t]\right)^{-1}\right).$$
What Do We Need for the Convergence?

- Suppose that we have a **stationary** AR(1) model:
 \[y_t = \phi_0 y_{t-1} + u_t, \quad |\phi| < 1. \]

- Then,
 \[
 \frac{1}{T} \sum_{t=1}^{T} y_{t-1}^2 \overset{p}{\rightarrow} \mathbb{E}[y_{t-1}^2] = \frac{1}{1 - \phi_0^2}, \quad \sqrt{T} \frac{1}{T} \sum_{t=1}^{T} y_{t-1} u_t \overset{d}{\rightarrow} N \left(0, \frac{1}{1 - \phi_0^2} \right).
 \]

- **Frequentist result:**
 \[
 \sqrt{T} (\hat{\phi} - \phi_0) \mid \phi \overset{d}{\rightarrow} N \left(0, 1 - \phi_0^2 \right).
 \]

- **Bayesian result:**
 \[
 \sqrt{T} (\phi - \hat{\phi}) \mid Y \overset{d}{\rightarrow} N \left(0, 1 - \phi_0^2 \right).
 \]

- Properly re-scaled sampling and posterior distributions are asymptotically the same.
- This result holds in many settings that asymptotically look like Gaussian location shift experiments.
Set Identification

- Suppose that y_t is determined by the AR(1) model but object of interest is θ, which can be bounded based on ϕ:

 $$\phi \leq \theta \quad \text{and} \quad \theta \leq \phi + 1.$$

- Parameter θ is set-identified.

- The interval $\Theta(\phi) = [\phi, \phi + 1]$ is called the identified set.

- Prior for θ conditional on ϕ of the form

 $$\theta|\phi \sim U[\phi, \phi + 1].$$
• Joint posterior of θ and ϕ:

$$p(\theta, \phi | Y) = p(\phi | Y)p(\theta | \phi, Y) \propto p(Y | \phi)p(\theta | \phi)p(\phi).$$

• Since θ does not enter the likelihood function, we deduce that

$$p(\phi | Y) = \frac{p(Y | \phi)p(\phi)}{\int p(Y | \phi)p(\phi)d\phi}$$

$$p(\theta | \phi, Y) = p(\theta | \phi).$$

• In our example the marginal posterior distribution of θ is given by

$$\pi(\theta) = \int_{\theta-1}^{\theta} p(\phi | Y)p(\theta | \phi)d\phi$$

$$= \Phi_N \left(\frac{\theta - \bar{\phi}}{\sqrt{V}} \right) - \Phi_N \left(\frac{\theta - 1 - \bar{\phi}}{\sqrt{V}} \right),$$

where $\Phi_N(x)$ is the cumulative density function of a $N(0, 1)$.
Posterior distribution $\pi(\theta)$ for $\bar{\phi} = -0.5$ and \bar{V}_ϕ equal to $1/4$ (dotted), $1/20$ (dashed), and $1/100$ (solid).
For $i = 1$ to N, draw $\theta^i \overset{iid}{\sim} g(\theta)$ and compute the unnormalized importance weights

$$w^i = w(\theta^i) = \frac{f(\theta^i)}{g(\theta^i)}.$$

Compute the normalized importance weights

$$W^i = \frac{w^i}{\frac{1}{N} \sum_{i=1}^{N} w^i}.$$

An approximation of $\mathbb{E}_\pi[h(\theta)]$ is given by

$$\bar{h}_N = \frac{1}{N} \sum_{i=1}^{N} W^i h(\theta^i).$$
Posterior density $\pi(\theta)$ (solid) as well as two importance sampling densities ("concentrated" (dashed) and "diffuse" (dotted)) $g(\theta)$.
Accuracy

• Since we are generating iid draws from $g(\theta)$, it’s fairly straightforward to derive a CLT:

• It can be shown that

$$\sqrt{N}(\bar{h}_N - \mathbb{E}_\pi[h]) \implies N(0, \Omega(h)), \quad \text{where} \quad \Omega(h) = \nabla_g[(\pi/g)(h - \mathbb{E}_\pi[h])].$$

• Using a crude approximation (see, e.g., Liu (2008)), we can factorize $\Omega(h)$ as follows:

$$\Omega(h) \approx \nabla_\pi[h]\left[\nabla_g[\pi/g] + 1\right].$$

The approximation highlights that the larger the variance of the importance weights, the less accurate the Monte Carlo approximation relative to the accuracy that could be achieved with an iid sample from the posterior.

• Users often monitor

$$ESS = N\frac{\nabla_\pi[h]}{\Omega(h)} \approx \frac{N}{1 + \nabla_g[\pi/g]}.$$
Large sample inefficiency factors $\text{InEff}_\infty = \Omega(h)/\sqrt{\pi} [h]$ (dashed) and as their small sample approximations (solid) based on $N_{\text{run}} = 1,000$. We consider $h(\theta) = \theta$ (triangles) and $h(\theta) = \theta^2$ (circles). The solid line (no symbols) depicts the approximate inefficiency factor $1 + \sqrt{\gamma}\frac{\pi}{\gamma}$.
Large sample inefficiency factors $\text{lnEff}_\infty = \Omega(h)/\sqrt{\pi}[h]$ (dashed) and as their small sample approximations (solid) based on $N_{\text{run}} = 1,000$. We consider $h(\theta) = \theta$ (triangles) and $h(\theta) = \theta^2$ (circles). The solid line (no symbols) depicts the approximate inefficiency factor $1 + \sqrt{\pi}[\pi/g]$.
Toward Frequentist Analysis: Likelihood Function

- Define $\hat{V}^{-1} = X'X = \sum y_{t-1}^2$

- In terms of reduced form parameter (note that $\hat{\phi}$ is sufficient statistic):

 $$p(Y|\phi) \propto \exp \left\{ -\frac{1}{2} \hat{V}^{-1}(\phi - \hat{\phi})^2 \right\}$$

- Define auxiliary parameter $\alpha = \theta - \phi \in [0, 1]$.

- In terms of structural and auxiliary parameter:

 $$p(Y|\theta, \alpha) \propto \exp \left\{ -\frac{1}{2} \hat{V}^{-1}(\theta - \alpha - \hat{\phi})^2 \right\}$$

- α is a nuisance parameter with bounded domain.
Frequentist Analysis

• Problem: we have a non-identifiable nuisance parameter α in the objective function.

• Concentrate out nuisance parameter?

• Integrate out nuisance parameter?
Concentrate out nuisance parameter α.

$$
\alpha^*(\theta) = \arg\min_{\alpha \in A_\theta} \hat{V}^{-1}(\theta - \alpha - \hat{\phi})^2
$$

Profile likelihood function

$$
p(Y|\theta, \alpha^*(\theta)) \propto \exp \left\{-\frac{1}{2} Q(\theta|\hat{\phi}) \right\}
$$

where

$$
Q(\theta|\hat{\phi}) = \begin{cases}
\hat{V}^{-1}(\hat{\phi} - \theta)^2 & \text{if } \theta \leq \hat{\phi} \\
0 & \text{if } \theta \in \Theta(\hat{\phi}) \\
\hat{V}^{-1}(\hat{\phi} - \theta + \lambda)^2 & \text{if } \hat{\phi} + \lambda \leq \theta
\end{cases}
$$
• Approximate distribution of profile objective function

\[
Q(\theta|\hat{\phi}) \approx \begin{cases}
(Z - s)^2 & \text{if } Z \geq s \\
0 & \text{otherwise} \\
(Z - s + \hat{V}^{-1/2}\lambda)^2 & \text{if } Z \leq s - \hat{V}^{-1/2}\lambda
\end{cases}
\]

where \(Z \sim N(0, 1)\) and \(s = \hat{V}^{-1/2}(\theta - \phi)\).

• Approximation relies on a CLT that implies

\[
\hat{V}^{-1/2}(\hat{\phi} - \phi) \implies N(0, 1).
\]

• Note that \(\hat{V}^{-1} = (X'X)^{-1/2}\) and expands at rate \(T^{1/2}\)
A $1 - \tau$ frequentist confidence interval for θ in the identified set $\Theta(\phi)$ can be constructed as follows:

$$CS_\theta^\phi(\hat{\phi}) = \left\{ \theta \mid Q(\theta|\hat{\phi}) \leq c_T^2(\theta) \right\}.$$

The sequence of critical values or threshold levels c_T satisfies the constraint

$$\lim_{T \to \infty} \inf_{\phi \in \Phi} \inf_{\theta \in \Theta(\phi)} P_{\phi}^{\hat{\phi}_T} \{ Q_T(\theta|\hat{\phi}_T) \leq c_T^2(\theta) \} \geq 1 - \tau.$$

Approximately, c_T has to solve the following equation:

$$\Phi_N(\hat{V}^{-1/2}\lambda + c_T) - \Phi_N(-c_T) = 1 - \tau.$$

Here critical value is independent of θ and generates a level set. If $\hat{V}^{-1/2}\lambda$ is large 95% interval is:

$$CS_\theta^\phi(Y^n) = \left[\hat{\phi}_n - 1.64\hat{V}^{1/2}, \hat{\phi}_n + \lambda + 1.64\hat{V}^{1/2} \right]$$
• If \(\lambda = 0 \), \(CS^\theta_F(Y) \) and \(CS^\theta_B(Y) \) are identical.

• If \(\lambda > 0 \), then frequentist and Bayesian intervals are different:

 • \(CS^\theta_F(Y) \) expands the boundaries of the interval \(\Theta(\hat{\phi}) \) by approximately \(\Phi^{-1}(1 - \tau)\hat{V}^{1/2} \).

 • \(CS^\theta_B(Y) \) lies strictly in the interior of \(\Theta(\hat{\phi}) \) for large \(T \).

• Frequentist inference is non-standard because

 • nuisance parameter problem (concentrate or integrate!);

 • sampling distribution of \(Q(\theta|\phi) \) changes with distance to boundary of \(\Theta(\phi_0) \);

• Literature also considers confidence sets for \(\Theta(\phi_0) \).