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Online Appendix for Evaluating DSGE Model

Forecasts of Comovements

Edward Herbst and Frank Schorfheide

A Prior Distribution for Small-Scale Model

The prior distribution for the small-scale model is summarized in Table A-1. Priors for

the autocorrelations and standard deviations of the exogenous processes, the steady-state

parameters γ̄, π(A), and r(A), as well as the standard deviation of the monetary policy shock,

are quantified based on regressions on pre-1984 observations of output growth, inflation,

and nominal interest rates. The priors for the policy rule coefficients ψ2 and ρR are loosely

centered around Taylor (1993)’s values. The prior for the parameter that governs price

stickiness is chosen based on micro-evidence on price setting-behavior provided. More formal

methods for the elicitation of priors for DSGE model parameters are discussed in Del Negro

and Schorfheide (2008).
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Table A-1: Prior Distribution for Small-Scale Model

Density Para (1) Para (2)

τ Gamma 2.00 0.50

κ Gamma 0.20 0.10

ψ2 Gamma 0.50 0.25

ρR Beta 0.50 0.20

ρG Beta 0.80 0.10

ρZ Beta 0.66 0.15

r(A) Gamma 0.50 0.50

π(A) Gamma 7.00 2.00

γ̄ Normal 0.40 0.20

σR InvGamma 0.40 4.00

σG InvGamma 1.00 4.00

σZ InvGamma 0.50 4.00

Notes: The following parameter is fixed: ψ1 = 1.70. Para (1) and Para (2) list the means and

the standard deviations for Beta, Gamma, and Normal distributions; the upper and lower

bound of the support for the Uniform distribution; and s and ν for the Inverse Gamma

distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

. The effective prior is truncated at the

boundary of the determinacy region.
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B The Smets-Wouters Model

The equilibrium conditions of the Smets and Wouters (2007) model take the following form:

ŷt = cy ĉt + iy ît + zyẑt + εgt (A.1)
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ĉt−1 +

1

1 + h/γ
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q̂t = β(1− δ)γ−σcEtq̂t+1 − r̂t + Etπ̂t+1 + (1− β(1− δ)γ−σc)Etr̂kt+1 − εbt (A.4)

ŷt = Φ(αk̂st + (1− α)l̂t + εat ) (A.5)

k̂st = k̂t−1 + ẑt (A.6)
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r̂t = ρr̂t−1 + (1− ρ)(rππ̂t + ry(ŷt − ŷ∗t )) (A.14)

+r∆y((ŷt − ŷ∗t )− (ŷt−1 − ŷ∗t−1)) + εrt .

The exogenous shocks evolve according to
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εat = ρaε
a
t−1 + ηat (A.15)

εbt = ρbε
b
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a
t + ηgt (A.17)

εit = ρiε
i
t−1 + ηit (A.18)
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p
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p
t−1 (A.20)

εwt = ρwε
w
t−1 + ηwt − µwηwt−1. (A.21)

The counterfactual no-rigidity prices and quantities evolve according to

ŷ∗t = cy ĉ
∗
t + iy î

∗
t + zyẑ

∗
t + εgt (A.22)
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ĉ∗t−1 +

1

1 + h/γ
Etĉ
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q̂∗t = β(1− δ)γ−σcEtq̂∗t+1 − r∗t + (1− β(1− δ)γ−σc)Etrk∗t+1 − εbt (A.25)

ŷ∗t = Φ(αks∗t + (1− α)l̂∗t + εat ) (A.26)

k̂s∗t = k∗t−1 + z∗t (A.27)

ẑ∗t =
1− ψ
ψ

r̂k∗t (A.28)

k̂∗t =
(1− δ)
γ

k̂∗t−1 + (1− (1− δ)/γ)̂it + (1− (1− δ)/γ)ϕγ2(1 + βγ(1−σc))εit (A.29)

ŵ∗t = α(k̂s∗t − l̂∗t ) + εat (A.30)

r̂k∗t = l̂∗t + ŵ∗t − k̂∗t (A.31)

ŵ∗t = σl l̂
∗
t +

1

1− h/γ
(ĉ∗t + h/γĉ∗t−1). (A.32)

The steady state (ratios) that appear in the measurement equation or the log-linearized

equilibrium conditions are given by
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γ = γ̄/100 + 1 (A.33)

π∗ = π̄/100 + 1 (A.34)

r̄ = 100(β−1γσcπ∗ − 1) (A.35)

rkss = γσc/β − (1− δ) (A.36)

wss =

(
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α

) 1
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(A.37)

ik = (1− (1− δ)/γ)γ (A.38)

lk =
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α
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(A.39)

ky = Φl
(α−1)
k (A.40)

iy = (γ − 1 + δ)ky (A.41)

cy = 1− gy − iy (A.42)

zy = rkssky (A.43)

wlc =
1

λw

1− α
α

rkssky
cy

. (A.44)

The prior distribution for the parameters of the SW model is summarized in Table A-2.
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Table A-2: Prior Distribution for Smets-Wouters Model

Density Para (1) Para (2) Density Para (1) Para (2)

ψ Beta 2.00 0.50 Φ Normal 1.25 0.12

ρ Beta 0.75 0.10 ry Normal 0.12 0.05

r∆y Normal 0.12 0.05 π̄ Gamma 0.62 0.10

100(β−1 − 1) Gamma 0.25 0.10 l̄ Normal 875 10.0

γ̄ Normal 0.40 0.10 σa Invgamma 0.10 2.00

σb Invgamma 0.10 2.00 σg Invgamma 0.10 2.00

σI Invgamma 0.10 2.00 σr Invgamma 0.10 2.00

σp Invgamma 0.10 2.00 σw Invgamma 0.10 2.00

ρa Beta 0.50 0.20 ρb Beta 0.50 0.20

ρg Beta 0.50 0.20 ρI Beta 0.50 0.20

ρr Beta 0.50 0.20 ρp Beta 0.50 0.20

ρw Beta 0.50 0.20 µp Beta 0.50 0.20

µw Beta 0.50 0.20 ρga Beta 0.50 0.20

Notes: The following parameters are fixed in Smets and Wouters (2007): δ = 0.025, gy = 0.18, λw = 1.50,

εw = 10.0, and εp = 10. In addition, we fix: ϕ = 5.00, σc = 1.5, h = 0.7, ξw = 0.7, σl = 2, ξp = 0.7, ιw = 0.5,

ιp = 0.5, rπ = 2, α = 0.3. Para (1) and Para (2) list the means and the standard deviations for Beta,

Gamma, and Normal distributions; the upper and lower bound of the support for the Uniform distribution;

and s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

. The effective prior is

truncated at the boundary of the determinacy region.
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C Computational Details

C.1 Posterior Simulator

To implement the posterior predictive checks, we need to generate draws from a sequence

of posterior distributions p(θ|Y1:t) for t = R, . . . , T − 1. For t = R we use the Random-

Walk Metropolis (RWM) algorithm in An and Schorfheide (2007). Draws for τ > 0 are

also generated with the RWM algorithm. However, the covariance matrix of the proposal

density is constructed by re-weighting the draws from p(θ|Y1:t−1) with the importance weights

constructed from p(yt|θ, Y1:t−1).9 We proceed in the same manner to obtain draws from the

posteriors associated with the synthetic samples (Y1:R, Y
∗
R+1:t).

For Step 1(a) of Algorithm 1 we use the RWM algorithm to obtain 250,000 draws from

p(θ|Y1:R) and take a subsample of N = 500 draws to generate 500 trajectories Y
∗(j)
R+1:T in

Step 1(b). Since our MCMC methods have better mixing properties for posterior distri-

butions created from simulated data and since the repeated recursive estimation of the

DSGE model is computationally quite costly, we reduce the number of draws from the

RWM algorithm in Step 1(c)(ii) from 250,000 to 25, 000 and take a subsample of L = 2, 500

equally-spaced draws. For Step 1(c)(iii) we set M = 10 to simulate a total of LM = 25, 000

trajectories ỹ
(l,m)
t+h , h = 1, . . . , 8. When we execute Step 2, that is, estimate the DSGE model

recursively on the actual data, we increase the number of MCMC draws to 250,000 and use

every 10’th, which leads to L = 25, 000. We keep M = 10, which means that we are using

a total of LM = 250, 000 simulated trajectories from which point and density forecasts are

computed.

9Strictly speaking, we are reweighting draws from the posterior distribution p(θ|Y t−1
1:t−1) with importance

weights obtained from p(ytt |θ, Y t1:t−1). In the presence of data revisions, this does not generate a posterior

covariance matrix conditional on Y t1:t. However, the approximation appears to be sufficient to construct a

good proposal density for the RWM algorithm.
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C.2 Generating Point Forecasts and PITs Based on the Output

of a Posterior Simulator

In Step 1(c)(iii) of Algorithm 1 we generate draws y
(l,m)
t+h from the predictive distribution

that conditions on time t information. To simplify the notation, we drop the m superscript

and assume that we have L draws y
(l)
t+h, l = 1, . . . , L. The (unconditional) point forecasts

considered in this paper are defined as
∫
yi,t+hp(yi,t+h|Y1:t)dyi,t+h and approximated by

ŷi,t+h|t =
1

L

L∑
l=1

y
(l)
i,t+h.

The probability integral transformations are defined as
∫ yi,t+h
−∞ p(ỹi,t+h|Y1:t)dỹi,t+h and approx-

imated by

ẑi,h,t =
1

L

L∑
l=1

I{ỹ(l)
i,t+h ≤ yi,t+h}.

A Kernel approach is used to compute conditional point forecasts and PITs. The condi-

tional point forecasts considered in this paper are defined as
∫
yi,t+hp(yi,t+h|yj,t+h, Y1:t)dyi,t+h

and approximated by

ŷi,t+h|j,t =
1

L

L∑
l=1

K

(
ỹ

(l)
j,t+h − yj,t+h

b

)
y

(l)
i,t+h,

where b is the bandwidth and K(·) is a normalized kernel. In our application we are using a

Gaussian kernel and with the bandwidth equal to 1.06σ̂j,t+hL
−1/5, where σj,t+h = std(yj,t+h),

the optimal bandwidth for the Gaussian kernel with Gaussian data. Adjusting the bandwidth

does not qualitatively alter the results and only has a minor impact on the quantitative

results. The probability integral transforms based on the conditional density forecasts are

computed according to

ẑi|j,h,t =
1

L

L∑
l=1

K

(
ỹ

(l)
j,t+h − yj,t+h

b

)
I{ỹ(l)

i,t+h ≤ yi,t+h}.
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D Estimation of SW Model on Detrended Data

The SW model imposes a common linear trend on real output, real consumption, real in-

vestment, and real wages. This trend is rejected by the data. We eliminated this trend from

the model and treated the data by individually HP-filtering each series. For each forecast

sample, we applied the HP-filter (with smoothing parameter 1600) individually to each of

the four series over both the estimation and forecast period collectively. Using this treated

data, we repeated the analysis in the paper without the trend in the model (γ̄ = 0), but we

have omitted the calculation of credible bands because it is computationally very costly.

Figure A-1 shows the PITs from the unconditional forecasts for output, consumption,

investment, and wages. The top panel shows the PIT histograms associated with the origi-

nal version of the model, while the bottom panel shows the PIT histograms associated with

the detrended model. Recall that for output, the predictive distribution implied by the SW

model was too diffuse. The bottom panel indicates that the linear trend in output in the

SW model may be driving this result. The PITs for output under the detrended do not

cluster in the center of the distribution, especially at longer horizons. In the original model,

consumption was underpredicted, as the PITs are overrepresented in the bins on the right

side of the histogram. Once detrended, however, the PITs look much more uniform. A

similar improvement (albeit from a smaller deficiency) is seen in the predictive distribution

for investment. On the other hand, the calibration of the four step ahead predictive distri-

bution for wages has deteriorated by using detrended data. Taken collectively, though, the

histograms in Figure A-1 seem to indicate that the counterfactual common trend in output,

consumption, investment, and wages deteriorates density forecasts in the SW model.
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Figure A-1: PIT Histograms – Unconditional Forecasts

Smets-Wouters Model, Original Data

Smets-Wouters Model, Detrended Data

Notes: Probability integral transforms for one and four-step ahead forecasts of output growth

(GDP), inflation (INF), and interest rates (FFR). Bars correspond to actuals, and dashed

bands indicate 90% credible intervals obtained from the predictive distribution.


