
A Bayesian Look at New Open Economy

Macroeconomics

Thomas Lubik

Johns Hopkins University

Frank Schorfheide∗

University of Pennsylvania

May 2005

Abstract

This paper develops a small-scale two country model following the New Open Economy Macroeco-

nomics paradigm. Under autarky the model specializes to the familiar three equation New Keynesian

dynamic stochastic general equilibrium (DSGE) model. We discuss two challenges to successful estima-

tion of DSGE models: potential model misspecification and identification problems. We argue that prior

distributions and Bayesian estimation techniques are useful to cope with these challenges. We apply these

techniques to the two-country model and fit it to data from the U.S. and the Euro Area. We compare

parameter estimates from closed and open economy specifications, study the sensitivity of parameter

estimates to the choice of prior distribution, examine the propagation of monetary policy shocks, and

assess the model’s ability to explain exchange rate movements.

∗Thomas Lubik: Department of Economics, Johns Hopkins University, Mergenthaler Hall, 3400 N. Charles Street, Baltimore,

MD 21218; email: thomas.lubik@jhu.edu. Frank Schorfheide: Department of Economics, University of Pennsylvania, 3718

Locust Walk, Philadelphia, PA 19104; email: schorf@ssc.upenn.edu. Part of this research was conducted while Schorfheide was

visiting New York University, for whose hospitality he is grateful. We thank Mark Gertler, Michael Krause, Paolo Pesenti, Pau

Rabanal, Ken Rogoff, Chris Sims, John Williams and seminar participants at Georgetown University, Johns Hopkins University,

the NBER Macroeconomics Annual Conference, UC Davis, and the Federal Reserve Bank of San Francisco for useful comments

and discussion. Thanks also to Frank Smets and Raf Wouters for making the Euro Area data set available. Sungbae An provided

excellent research assistance. Schorfheide gratefully acknowledges financial support from the Alfred P. Sloan Foundation.



1

1 Introduction

We develop a small-scale two-country model and estimate it based on U.S. and Euro Area data to study the

magnitude of nominal rigidities, the transmission of monetary policy shocks as well as demand and supply

shocks, and the determinants of exchange rate fluctuations. The two economies are roughly of equal size

and are each characterized by a unified monetary policy. While the trade-linkages between the two currency

areas are small compared to the linkages between, say the U.S. and Canada, the U.S. dollar and the Euro are

the two most important currencies to date and the conduct of monetary policy in these two currency areas

is of interest to policy makers and academic researchers alike. Closed economy versions of our two-country

model have been fitted to both U.S. and Euro Area data and provide a natural benchmark for our empirical

analysis.

An important feature of our model is that the real side, that is, preferences and technologies, is fully

symmetric, while the nominal side allows for asymmetries. Specifically, we let nominal rigidities in domestic

and import sectors differ across countries, and distinguish between monetary policy rules at home and abroad.

In the absence of trade in goods and financial assets the model reduces to the standard New Keynesian

dynamic stochastic general equilibrium (DSGE) model that has been widely used to study monetary policy

in closed economies, e.g. Woodford (2003). The main theoretical contribution is the extension of the small

open economy framework in Monacelli (2005) to a large open economy setting. We introduce endogenous

deviations from purchasing power parity (PPP) via price-setting importers that lead to imperfect pass-

through.

Structural empirical modelling is subject to the following tension: small, stylized models can lead to

misspecification, whereas large-scale models with many exogenous shocks, e.g. Smets and Wouters (2003),

may introduce identification problems and computational difficulties. The Bayesian framework is rich enough

to cope both with misspecification and identification problems. A section of this paper is devoted to these

issues and provides an accessible introduction to the Bayesian estimation of DSGE models. We decided

to work with a relatively small model that abstracts from capital accumulation. Nevertheless, due to the

multi-country setting we estimate roughly as many structural parameters as Smets and Wouters (2003) and

fit the model to the same number of time series.

In our empirical analysis we carefully document the sensitivity of posterior estimates to changes in model

specification and prior distribution. We begin with a comparison of closed and open economy parameter

estimates. If the long-run implications of the two-country model are taken seriously, and we impose common

steady states for the U.S. and the Euro Area, we find some discrepancies between open and closed economy

estimates, in particular with respect to the price stickiness and the monetary policy reaction function of

the Euro Area. If the models are fitted to demeaned data most of the discrepancies vanish. Estimation of
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the open economy model with diffuse priors alters the posterior distributions. Since we do not use direct

observations on trade flows and import prices, the estimated price rigidities and import shares are very

sensitive to the choice of prior.

An advantage of the Bayesian approach is that prior distributions can play an important role. Priors

enable the researcher to include information that is available in addition to the estimation sample. This

information helps to sharpen inference. Non-degenerate prior distributions can be used to incorporate

non-conclusive evidence. The resulting posterior provides a coherent measure of parameter (and model)

uncertainty that can inform academic debates and policy making.

Unfortunately, the model only has limited success in explaining exchange rate movements. We introduce

a non-structural PPP-shock that is designed to capture the deviations of the model from the data. The PPP

shock generates most of the fluctuations in the nominal depreciation rate as the model implied real exchange

rate is not sufficiently volatile. Attempts to reduce the role of the PPP shock by restricting its magnitude

resulted in substantially inferior fit.

The structure of the paper is as follows. We begin by discussing the progress made so far in develop-

ing empirical models based on the New Open Economy Macroeconomics (NOEM) paradigm set forth by

Obstfeld and Rogoff (1995). We focus our discussion on structural estimation methods and in particular

on a Bayesian approach. Section 3 contains the theoretical model. Section 4 introduces and discusses the

Bayesian estimation approach with a specific focus on misspecification and identification issues. Section 5

describes construction of the two-country data set and explains the choice of priors based on an extensive

pre-sample analysis. The empirical results are summarized in Section 6. The final section concludes and

offers directions for future research.

2 In Search of an Empirical NOEM Model

The development of theoretical models in the NOEM mold has changed the nature of debate in international

finance. While these models have proven to be quite successful at both a conceptual level and in terms of

quantitative theory, progress has been slower in developing an empirically viable NOEM model.1 In recent

years, however, the literature has made large strides towards that goal with the development and widespread

use of Bayesian estimation techniques for DSGE models. In a seminal contribution, Leeper and Sims (1994)

1Naturally, there have been various early attempts to take the NOEM framework to the data. Schmitt-Grohe (1998) matches

impulse response functions from a structural VAR to theoretical impulse responses derived from a model of the Canadian

economy to study the transmission of business cycles. Ghironi (2000) uses GMM to estimate various first-order conditions

derived from a NOEM model. None of these earlier approaches assesses overall fit or estimates the model over the entire

parameter space.
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estimated a DSGE model using full-information maximum-likelihood methods with the goal to obtain an

empirical model that is usable for monetary policy analysis. Structural empirical modelling thereby became

a viable alternative to non-structural and partial information methods.

Among others, Schorfheide (2000) pushed the research agenda further by developing useful Bayesian

techniques to estimate and evaluate DSGE models in the presence of model misspecification.2 Applying

these methods, Smets and Wouters (2003) estimated a fully-specified, optimization-based model of the Euro

Area that successfully matched the time series facts. This work has stimulated a host of research in closed

economy models. The open economy literature has not been far behind in utilizing Bayesian techniques. In

what follows we discuss the progress that has been made in search of an empirical NOEM model.

Most estimated NOEM models to date are small open economy (SOE) models. The first paper to use

maximum likelihood techniques was Bergin (2003). He estimates and tests an intertemporal SOE model

with monetary shocks and nominal rigidities. His results offer mixed support for a benchmark model where

prices are assumed to be sticky in the currency of the buyer. However, the benchmark model does a poor

job explaining exchange rate movements. Similar contributions along this line are Dib (2003) and Ambler,

Dib and Rebei (2004). While the former shows that a richly parameterized SOE model has forecasting prop-

erties that are comparable to those of a vector autoregression (VAR), the latter authors focus on structural

parameter estimates to guide optimal monetary policy.

From a modelling point of view, many SOE models can be regarded as an extension of the closed economy

New Keynesian framework as detailed in, for instance, Clarida, Gali, and Gertler (1999). This interpretation

is supported by the contribution of Gali and Monacelli (2005) who develop a small open economy NOEM

that mimics the reduced-form structure of the New Keynesian paradigm model. This similarity facilitated

the use of already established Bayesian techniques in a closed economy context.

Consequently, Lubik and Schorfheide (2003) estimate a simplified version of the Gali and Monacelli

(2005) model to assess whether central banks respond to exchange rate movements. The NOEM framework

simply serves as a data-generating process to provide identification restrictions for the estimation of the

monetary policy rule. The likelihood function of the DSGE model implicitly corrects for the endogeneity

of the regressors in the monetary policy rule. Earlier work on monetary policy in the open economy by

Clarida, Gali, and Gertler (1998) has used generalized methods of moments (GMM) estimation with a large

and varied set of instruments in order to deal with endogeneity. While potentially robust to misspecification,

this approach suffers from subtle identification problems that can often lead to implausible estimates. Full-

information based methods, on the other hand, use the optimal set of instruments embedded in the model’s

cross-equation restrictions and make identification problems transparent.

2Other early contributions to the literature on Bayesian estimation of DSGE models are Dejong, Ingram, and Whiteman

(2000), Fernandez-Villaverde and Rubio-Ramirez (2004), Landon-Lane (1998), and Otrok (2001).
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Lubik and Schorfheide (2003) find that among the central banks of Australia, New Zealand, the United

Kingdom, and Canada, only the latter one consistently responds to exchange rate movements. This conclu-

sion is robust to changes in the sample period, to the type of inflation targeting (forward vs. current-looking)

and to the type of international relative price variable targeted. Subsequent empirical studies of SOE models

include Adolfson, Laseen, Linde, and Villani (2004), Del Negro (2003), Justiniano and Preston (2004), and

Leigh and Lubik (2005).

In contrast to the development of the empirical NOEM literature, the extensive theoretical body of

work on open economy DSGE models is largely based on two-country settings.3 We believe that this paper

is one of the first attempts to estimate a two-country model with Bayesian methods.4 Using a maximum

likelihood framework, Bergin (2004) is the closest precursor to our paper in terms of scope and purpose.

Bergin develops a two-country model that combines features of international real business cycle models

with the NOEM. Specifically, he allows for capital accumulation and investment dynamics to provide richer

internal dynamics. Additionally, he assumes that firms can engage in local currency pricing which allows for

deviations from the law of one price, and that international asset markets are incomplete. Since the linearized

version of the model would imply non-stationarity due to foreign asset accumulation, he introduces portfolio

adjustment costs which render the dynamics stationary. Bergin applies the model to the U.S. and the G-6

countries and uses data on output, interest rates, inflation, exchange rates, and the current account. He

imposes complete symmetry on the model and estimates it on output, inflation and interest rate differentials.

He finds that the model has a similar fit as a VAR, and that it produces in-sample exchange rate forecasts

that are slightly better than a random walk model.

Several institutions have developed large-scale multi-country models with the goal to assist monetary

policy analysis. Examples include the SIGMA model of the Federal Reserve Board of Governors (see Erceg,

Guerrieri, and Gust, 2005) and the Global Economic Model (GEM) of the International Monetary Fund (see

Laxton and Pesenti, 2003). However, size creates computational challenges and up to now these models have

only been calibrated to conduct simulation experiments, and not yet formally estimated.

Empirical researchers often face difficult choices when attempting to take DSGE models to the data.

Even more so than in a closed-economy context, there is an embarrassment of riches in terms of open economy

model elements that are designed to capture different aspects of international linkages. Of particular interest

are the degree of international risk sharing, the structure of import and export markets, the pricing decisions

by producers, and the degree of exchange rate pass-through to domestic prices. Additionally, an overriding

3An excellent survey of that literature can be found in Lane (2001).
4de Walque and Wouters (2004) recently reported some preliminary results from a large-scale two-country model fitted to

U.S. and Euro data. Since Justiniano and Preston (2004) include a reduced-form rest-of-the-world sector in their SOE model,

their specification shares similarities with a two-country framework.
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concern in open economy macro is the ability to explain the behavior of nominal and real exchange rates,

their persistence, comovement with aggregate variables, and their driving forces.

Our approach in this paper is deliberately parsimonious in order to focus on robustness and identification

instead of fit. We introduce imperfect pass-through via a conceptually straightforward, yet elegant, import

price mark-up mechanism. This allows us to gauge the contribution of deviations from the law of one price

in explaining exchange rate dynamics. We do not utilize the richer multi-sector structure as in Adolfson,

Laseen, Linde, and Villani (2004). Bergin (2003, 2004) has demonstrated empirically that local currency

pricing, i.e. price-setting in the currency of the consumer, is an important component for explaining exchange

rate movements. We assume producer currency pricing for tractability.

Although there is only weak empirical support for perfect international risk sharing, we impose complete

international asset markets. This is in line with most of the theoretical NOEM literature, and is likely to

have second order implications only.5 In order to capture the persistence in the data we introduce habit

formation in consumption as in Justiniano and Preston (2004). These authors additionally model inflation

indexation in the pricing decision of the firms, but find only weak support for this assumptions. We also

abstract from modelling investment dynamics as in Bergin (2003).

3 A Small-Scale Two-Country Model

We develop a two-country model of the U.S. (‘Home’) and the Euro Area (‘Foreign’) in the mold of the

New Open Economy Macroeconomics. We allow for endogenous deviations from purchasing power parity in

the short-run, but not in the long-run. Specifically, the same good can have different prices depending on

where it is sold even after adjusting for exchange rate movements. Producers set prices monopolistically for

the domestic as well as the world market in their own currency. Imported goods, however, are subject to

price discrimination as monopolistic importers charge a mark-up to consumers at the border.6 We assume

symmetric preferences and technologies, but allow for differences in price-setting, policies and disturbances

affecting each economy. Under the assumption of complete international asset markets the model has a

manageable reduced form, but can allow for potentially rich exchange rate behavior. In terms of notation,

we denote goods produced and activities associated with them in the Home (Foreign) country by H (F),

while the location of economic activities is indexed by a ‘*’ for the Foreign country, and no index for the

5See the discussion of the implications of market completeness in Corsetti and Pesenti (2001). Under incomplete asset

markets, devices such as portfolio adjustment costs have to be introduced to render the model stationary. Schmitt-Grohe and

Uribe (2003) show that the differences to the complete market benchmark are quantitatively negligible.
6Our framework extends Monacelli (2005) to a large open economy setting. This form of endogenous pass-through has also

been studied by Justiniano and Preston (2004) and Leigh and Lubik (2005).
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Home country. For instance, cH (c∗F ) is the consumption of the home- (foreign-) produced good in the Home

(Foreign) country.

3.1 Domestic Households

The domestic economy is populated by a continuum of households whose preferences are described by an

intertemporal utility function7:

E0

[
∞∑

t=0

βt

[
(Ct/AW,t)

1−τ

1− τ
−Nt

]]
, (1)

where Ct = Ct − hγCt−1 is effective consumption under habit formation and Nt is labor input. We assume

that habits are internalized by the household. 0 ≤ h ≤ 1 is the habit persistence parameter, γ is the steady

state growth rate of AW,t, τ > 0 is the coefficient of relative risk aversion. 0 < β < 1 is the discount factor.

AW,t is a non-stationary world-wide technology shock, where we define zt = AW,t/AW,t−1. The presence of

the term AW,t in 1 implies that households derive utility from effective consumption relative to the level

of technology and guarantees that the model has a balanced growth path along which hours worked are

stationary even if τ 6= 1.

Ct is an aggregate consumption index:

Ct =

[
(1− α)

1
η C

η−1
η

H,t + α
1
ηC

η−1
η

F,t

] η
η−1

, (2)

where 0 ≤ α < 1 is the import share and η > 0 is the intratemporal substitution elasticity between home

and foreign consumption goods. Households allocate aggregate expenditure based on the demand functions:

CH,t = (1− α)

(
PH,t

Pt

)−η

Ct and CF,t = α

(
PF,t

Pt

)−η

Ct. (3)

PH,t, PF,t are domestic and foreign goods price indices, and

Pt =
[
(1− α)P 1−η

H,t + αP 1−η
F,t

] 1
1−η

,

and is the consumption-based price index (CPI).8

In the aggregate, households face the budget constraint:

PH,tCH,t + PF,tCF,t + Et[Qt,t+1Dt+1] ≤WtNt +Dt − Tt, (4)

7We ignore household-specific indices for notational convenience.
8 Each domestic- and foreign-produced goods aggregate is composed of differentiated individual products with demand

functions:

CH,t(i) =

(
PH,t(i)

PH,t

)−ω

CH,t and CF,t(i) =

(
PF,t(i)

PF,t

)−ω

CF,t

and associated price indexes. We abstract from this level of disaggregation since it is immaterial to our aggregate model

specification.
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where Wt is the nominal wage for labor services provided to firms. Qt,t+1 is the stochastic discount fac-

tor used for evaluating consumption streams and Dt represents payments from a portfolio of assets, so

that Et[Qt,t+1Dt+1] corresponds to the price of portfolio purchases at time t. Under the assumption of

complete asset markets, both domestically and internationally, this portfolio comprises a complete set of

state-contingent claims. Tt are lump-sum taxes imposed by the government to finance its purchases.

Households maximize the intertemporal utility function subject to a sequence of budget constraints for

all t. The labor-leisure choice is governed by the intratemporal optimality condition λ−1
t =Wt/Pt, where λt

is the marginal utility of income. Intertemporal consumption choice is given by:

AW,tλtPt = C
−τ
t − hγβEt

[
AW,t

AW,t+1
C−τ
t+1

]
, (5)

while optimal portfolio choice implies:

Qt,t+1 = β
λt+1

λt

Pt

Pt+1
. (6)

This equation can be used to construct the return on nominal government bonds, i.e. the nominal interest

rate:

R−1
t = βEt

[
λt+1

λt

Pt

Pt+1

]
, (7)

which we take to be the monetary authority’s instrument.

3.2 Domestic Producers

Domestic differentiated goods are produced by a continuum of monopolistically competitive producers which

are subject to Calvo-type price setting. Each period a fraction 1− θH of domestic firms set prices optimally,

while θH firms adjust prices according to the steady state inflation rate π, which is common to the home

and the foreign economy. Each firm j ∈ [0, 1] maximizes discounted intertemporal profits subject to a

downward-sloping demand curve. Demand for a firm’s product derives both from domestic sources CH,t

and government expenditure GH,t, as well as from abroad C∗
H,t.

9 Firms have access to a linear production

technology that uses labor as its only input:

YH,t(j) = AW,tAH,tNt (j) , (8)

where AH,t is a stationary and country-specific technology shock.

Those firms that are able to re-optimize their price in period T maximize

ET

[
∞∑

t=T

θt−T
H QT,tYH,t (j)

[
PH,T (j)πt−T − PH,tMCH,t

]
]
, (9)

9We assume that the government shares the preferences of the consumers so that its demand has the same functional form.

Moreover, we also assume for simplicity that firms do not engage in local currency pricing. An extension of the model in this

regard would be a promising research direction.
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with respect to PH,T (j) subject to the demand function:

YH,t (j) =

(
PH,t (j)

PH,t

)−ω (
CH,t +GH,t + C∗

H,t

)
, (10)

where MCH,t = Wt/PH,t is common to all producers due to perfectly competitive labor markets. Firms

evaluate revenue streams by the households’ stochastic discount factor QT,t. θ
t−T
H is the probability that the

specific firm will not be allowed to adjust its price between periods T and t. The solution to the domestic

firm’s optimization problem implies that prices are set as a (time-varying) mark-up over marginal cost.

This results in the familiar Phillips-curve relationship between domestic inflation and marginal cost after

aggregation over individual firms and imposing ex-post homogeneity.

3.3 Domestic Importers

Following Monacelli (2005) we assume that endogenous deviations from PPP in the short run arise due to the

existence of monopolistically competitive importers. Domestic consumers are required to purchase foreign-

produced goods form importers that exert market power. Importers purchase foreign goods at world-market

prices P ∗
F,t(j) (which are set by their respective producers in their own currency), so that the law of one

price holds at the border. Importers sell these goods to domestic consumers and charge a mark-up over their

cost, which creates a wedge between domestic and import prices of foreign goods when measured in the same

currency. We can define define the law of one price (l.o.p.) gap as:

ψF,t =
etP

∗
F,t

PF,t
. (11)

If PPP holds, then ψF,t ≡ 1. Therefore, pass-through from exchange rate movements to the domestic

currency prices of imports is imperfect as importers adjust their pricing behavior to extract optimal revenue

from consumers.

Similarly to domestic producers, importers operate under Calvo-style price-setting, with 1−θF importers

setting prices optimally each period. Importers maximize the discounted stream of expected profits:

ET

[
∞∑

t=T

θt−T
F QT,tCF,t (j)

[
PF,T (j)πt−T − etP

∗
F,t(j)

]
]
, (12)

subject to the demand function:

CF,t (j) =

(
PF,t (j)

PF,t

)−ω

CF,t, (13)

where we assume that domestic government purchases cannot fall on foreign-produced goods. Note also that

the marginal cost of purchasing imports is the l.o.p. gap for the specific good. Consequently, importers

set domestic currency prices of foreign goods as a (time-varying) mark-up over ψF,t. These endogenous

deviations from PPP then result in a Phillips-curve relationship between import-price inflation and the l.o.p.

gap.
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3.4 The Foreign Economy

We assume that home and foreign economies are symmetric in terms of preferences and technology, but they

can differ in price-setting and monetary policy. The equations describing the foreign economy are therefore

the same as for Home, with ‘starred’ variables and parameters properly substituted. We can define the real

exchange rate as:

st =
etP

∗
t

Pt
. (14)

Symmetry implies that the foreign real exchange rate s∗t = s−1
t . On the other hand, the terms of trade differ

between the two countries by the l.o.p. gaps. The domestic terms of trade, that is, the price of exports in

terms of imports measured in domestic currency are

qt =
PH,t

PF,t
, (15)

while the foreign terms of trade are:

q∗t =
P ∗
F,t

P ∗
H,t

. (16)

Using the definition of the real exchange rates we can derive the expression:

ψF,t

qt
=
ψ∗
H,t

q∗t
. (17)

Home and foreign terms of trade coincide (inversely) only when pass-through is perfect.

3.5 Risk-sharing, Market Clearing and Equilibrium

Complete international asset markets imply perfect risk-sharing between households in the two countries.

In equilibrium, stochastic discount factors in the two countries have to be equalized, which leads to the

following condition:

β
λt+1

λt

Pt

Pt+1
= Qt,t+1 = β

λ∗t+1

λ∗t

P ∗
t

P ∗
t+1

et
et+1

. (18)

Goods market clearing requires that:

YH,t = CH,t +Gt + C∗
H,t and Y

∗
F,t = C∗

F,t +G∗
t + CF,t. (19)

Moreover, we assume that both countries are of equal size and that initial asset positions are zero. This

implies balanced trade in value terms in the steady state and no net asset accumulation by any country.
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3.6 Linearization

We proceed by (log-) linearizing the model equations around the balanced growth path. Our model imposes

common steady state real interest rates, inflation rates, growth rates, and technologies. Since the model

contains a non-stationary component in form of world-wide productivity growth, we de-trend the affected

variables by their specific growth components beforehand. In our empirical analysis, we exploit the properties

of the model as a variant of the New Keynesian monetary policy model that has attracted a lot of recent

interest due its interpretability and tractability. In what follows we therefore briefly discuss the key structural

equations. All variables are in log-deviations from the steady state, where x̃t = log xt − log x.

A linear approximation to the solution of the domestic firms’ price-setting problems results in a Phillips-

curve type relationship between domestic inflation and marginal cost:

π̃H,t = βEtπ̃H,t+1 + κHm̃ct, (20)

where κH = 1−θH
θH

(1− θHβ). Using the condition for labor-leisure choice, the marginal cost term can be

expressed as m̃ct = −λ̃t − αq̃t − Ãt. λ̃t is the marginal utility of income, which evolves according to:

−λ̃t =
τ

1− hβ
C̃t −

hβ

1− hβ
Et[τC̃t+1 + z̃t+1], (21)

where the law of motion for the habit stock is:

(1− h) C̃t = c̃t − hc̃t−1 + hz̃t. (22)

For h = 0, the model reduces to standard consumption preferences. Recall that z̃t = ∆ÃW,t. World-wide

shocks do not affect marginal costs (only country-specific shocks do), but they change the intertemporal

consumption trade-off as evidenced by habit dynamics and the Euler-equation:

−λ̃t = −Etλ̃t+1 − (R̃t − Etπ̃t+1) + Etz̃t+1. (23)

The price-setting problem of importers reduces to a Phillips-curve type relation between import price

inflation and the l.o.p. gap:

π̃F,t = βEtπ̃F,t+1 + κF ψ̃F,t, (24)

where κF = 1−θF
θF

(1− θFβ). CPI-inflation can be derived using the definition

π̃t = απ̃F,t + (1− α)π̃H,t (25)

and the terms of trades evolve according to

q̃t = q̃t−1 + π̃H,t − π̃F,t. (26)
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Inflation dynamics therefore depends on domestic driving forces as well as international relative price move-

ments and endogenous deviations from PPP in the form of imperfect pass-through. The real exchange rate

behaves according to

s̃t = ψ̃F,t − (1− α)q̃t − αq̃
∗
t (27)

and captures the distortions introduced by the l.o.p. gap as well as movements in each country’s own terms of

trade. Using the definition of the real exchange rate also allows us to derive nominal exchange rate dynamics:

∆ẽt = π̃t − π̃
∗
t +∆s̃t. (28)

The (linearized) asset pricing equation for nominal bonds implies that the interest rate differential is

related to expected exchange rate depreciation, in other words, uncovered interest parity (UIP):

R̃t − R̃
∗
t = Et∆ẽt+1. (29)

Furthermore international risk-sharing implies a relationship between marginal utilities across countries

adjusted for purchasing power:

λ̃t = λ̃∗t − st. (30)

The goods market clearing condition:

ỹH,t = c̃t − g̃t −
α

τ
s̃t − α(1− α)η (q̃t − q̃

∗
t ) (31)

shows how output is affected by demand and relative prices. Demand disturbances in the form of government

expenditure shocks g̃t therefore affect output directly and not via changing marginal rates of substitution in

consumption and leisure.

The model is closed by specifying monetary policy. We assume that central banks in both countries

adjust the nominal interest in response to deviations of inflation, a measure of output, and exchange rate

depreciation from their respective targets:

R̃t = ρRR̃t−1 + (1− ρR) [ψ1π̃t + ψ2(∆ỹt + z̃t) + ψ3∆ẽt] + εR,t. (32)

The monetary policy rule is of the standard Taylor-type with the exception that the central bank responds

to deviations of output growth from the mean growth rate γ, instead of a measure of the output gap.

Once the equations describing the foreign economy are added, the log-linearized model consists of 21

equations in endogenous variables, and 5 equations describing the evolution of the exogenous autoregressive

shocks:

z̃t = ρz z̃t−1 + εz,t, Ãt = ρAÃt−1 + εA,t, Ã∗
t = ρA∗Ã∗

t−1 + εA∗,t, (33)

G̃t = ρGG̃t−1 + εG,t, G̃∗
t = ρG∗G̃∗

t−1 + εG∗,t.
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Moreover, there are innovations in each country’s monetary policy rule denoted by εR,t and εR∗,t. Given

these exogenous process the model is then solved using the methods described in Sims (2002). The closed

economy version of the model is obtained by setting α = 0 and combining Equations (20), (21), (22), (23),

(25), (31), and (32).

4 Why a Bayesian Approach?

Our empirical analysis focuses on three broad questions, some of which are directly related to estimates of

the structural parameters and others are related to the dynamic properties of the two-country model. First,

we examine the magnitude of nominal rigidities, captured by the Calvo parameters. The rigidities in the

import sectors, controlled by θF and θ∗H , determine the degree of exchange rate pass-through and play an

important role for the transmission of shocks across country borders. Second, we estimate monetary policy

rules for the U.S. and the Euro Area and study the propagation of monetary policy shocks. Unanticipated

changes in monetary policy appear as innovations in the interest rate feedback rule (32). The estimation

of the policy coefficients and hence the identification of the monetary policy shocks is hindered by the joint

endogeneity of the variables in the interest-rate feedback rule. Finally, we use the open economy model

to determine the relative importance of the various nominal and real structural shocks for exchange rate

fluctuations.

The Bayesian approach pursued in this paper has three main characteristics. First, unlike GMM estima-

tion of monetary policy rules and first-order conditions, the Bayesian analysis is system-based and fits the

solved DSGE model to a vector of aggregate time series. Second, the estimation is based on the likelihood

function generated by the DSGE model rather than, for instance, the discrepancy between DSGE model

impulse response functions and identified VAR impulse responses as in Rotemberg and Woodford (1997) and

Christiano, Eichenbaum, and Evans (2005). Third, prior distributions can be used to incorporate additional

information into the parameter estimation.

Any estimation method for DSGE models has to address the problem of potential model misspecification

and lack of identification. DSGE models impose potentially invalid cross-coefficient restrictions on the time

series representation of yt, resulting often in poor out-of-sample fit relative to VARs. For instance, in order

to keep our two-country model transparent and the estimation tractable, we assumed symmetric tastes

across countries, a common trend in productivity, perfect risk sharing, uncovered interest rate parity, and

abstracted from capital accumulation. While in a closed economy setting more elaborate models such as

Smets and Wouters (2003) had some success in closing the gap between model and reality, misspecification

remains a concern even for large-scale DSGE models as documented in Del Negro, Schorfheide, Smets, and

Wouters (2004).
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If different parameterizations of a DSGE model have distinct substantive implications but are obser-

vationally equivalent, then the model is not fully identified. Unlike in the context of linear simultaneous

equations models or vector autoregressions there are no easily verifiable identification conditions for DSGE

models available because the mapping from the structural parameters into the reduced form state space rep-

resentation is highly nonlinear. The use of large-scale models that relax some of the unrealistic restrictions

imposed by their smaller cousins potentially amplifies identification problems. Hence, it is important that a

DSGE model estimation procedure generates coherent inference, even if some parameters are not identifiable,

and is able to incorporate additional information from other data sets. After some preliminary remarks on

the structure of linearized DSGE models the remainder of this section will focus on how Bayesian inference

can be used to cope with misspecification and identification problems.

4.1 Preliminaries

The log-linearized DSGE model can be written as a rational expectations (LRE) system of the form

Γ0(θ)st = Γ1(θ)st−1 + Γε(θ)εt + Γη(θ)ηt. (34)

Here, st denotes the vector of model variables such as ỹt, π̃t, R̃t. The vector εt stacks the innovations of

the exogenous processes and ηt is composed of rational expectations forecast errors.10 The dynamics of

the exogenous shock processes are absorbed in the definition of the Γ matrices and θ collects the structural

parameters of the model. The solution to (34) can be expressed as

st = Φ1(θ)st−1 +Φε(θ)εt. (35)

A measurement equation then relates the model variables st to a vector of observables yt:

yt = A(θ) +Bst. (36)

In our application yt is composed of output growth, inflation, and nominal interest rates for the U.S. and

Euro Area, as well as the US$-Euro exchange rate. B does not depend on θ as it merely selects elements of

st. A(θ) captures the mean of yt, which is related to the underlying structural parameters.

In practice, if yt is predicted based on its lagged values, then its forecast error covariance matrix is

non-singular. Hence, any DSGE model that generates a rank-deficient covariance matrix for yt is clearly

at odds with the data. So far, our model has seven shocks and is indeed able to generate a forecast error

covariance matrix that is full rank. The larger the dimension of yt, the more shocks have to be introduced

into the model. For instance, Smets and Wouters (2003) include investment, consumption, hours worked,

10For instance, one can define ηct = c̃t− IEt−1[c̃t] and absorb IEt[c̃t+1] to represent the model developed in Section 3 in terms

of (34).
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and wages in addition to output, inflation, and interest rates. As a consequence, they have to use a high-

dimensional vector εt that includes shocks to the mark-up of the monopolistically competitive firms, to the

shadow value of installed capital, and the disutility of labor.11 Other authors, referring to Sargent (1989)

have added shocks not to the LRE system (34) but rather to the measurement equation (36), avoiding a

structural interpretation of these additional sources of uncertainty. These additional error terms are often

called measurement errors, a misnomer, as the shocks are designed to capture an obvious form of model

misspecification.

Bayesian analysis provides a powerful framework for DSGE model estimation and inference that is

attractive both at a conceptual level as well as from a practical perspective. Let Y = {yt}
T
t=1. We will

collect the DSGE model parameters in the vector θ. The likelihood function L(θ|Y ) is combined with a prior

density p(θ) to form a posterior density p(θ|Y ):

p(θ|Y ) ∝ L(θ|Y )p(θ), (37)

where ∝ denotes proportionality. Bayesian procedures tend to have many desirable statistical properties and

allow for coherent inference and decision making under model and parameter uncertainty, as discussed in

textbooks such as Robert (1994). We want to emphasize two different aspects of Bayesian inference, namely

its properties under potential misspecification and lack of identification. In the subsequent discussion we will

assume that the researcher has, in addition to Y , access to some data set X that is potentially informative

with respect to θ. X might contain a pre-sample of yt’s, other macroeconomic time series, or micro-level

observations.

4.2 Misspecification

The presence of misspecification complicates econometric inference and decision making. In this paper we are

mostly interested in the estimation of structural parameters such as the response of central banks to exchange

rates or the substitution elasticity between home and foreign goods, and moving average representation

of the time series yt in terms of the structural shocks εt. DSGE model misspecification can take many

forms including omitted non-linearities, misspecified structural relationships due to incorrect preferences or

technologies, or misspecification due to omitted or wrongly-specified exogenous processes.

Once we acknowledge that our econometric model provides merely an approximation to the law of motion

of the time series yt then it seems reasonable to allow for the possibility that there does not exist one single

parameter vector θ0 that delivers, say, the ‘true’ substitution elasticity between home and foreign goods

and the most precise impulse responses to a monetary policy shock. All formal and informal estimation

11In fact, Smets and Wouters (2003) used more shocks and variables to overcome some aspects of model misspecification.
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procedures implicitly use a measure of discrepancy between the ‘true’ law of motion and the approximating

model. Not surprisingly, under model misspecification, different measures of discrepancy tend to deliver

different parameter estimates. Likelihood-based methods, for instance, search for values of θ under which

the approximating model generates good time series forecasts.12

One interpretation of the calibration approach advocated by Kydland and Prescott (1982, 1996) is that

there exists ample evidence on θ0 both through the long-run properties of yt and from other data sets,

which we denoted by X. As mentioned above, X might contain micro-level observations on household

and firm behavior. This evidence is translated into calibrated values of θ that are used to parameterize

the DSGE model to address the questions of interest. In the absence of model misspecification and the

presence of abundant out-of-sample evidence X, likelihood-based estimation methods should generate the

same parameter values that calibrators choose, and vice versa, parameter values obtained from a calibration

analysis should yield high likelihoods. The experience of two decades of calibration and one decade of

estimation has been, unfortunately, that there is neither enough information in X to unambiguously pin

down θ0, nor that parameter values obtained from micro-level studies necessarily lead to large values of

likelihood functions.

In a Bayesian framework, the likelihood function in (37) is re-weighted by the prior density p(θ) and

the prior can bring to bear information X that is not contained in the sample Y . Unlike in a maximum

likelihood approach that uses some of the extraneous information to fix elements of the parameter vector θ,

the prior density allows to weigh information about different parameters according to its reliability. Strong

micro econometric evidence about the frequency with which firms change their prices or information on the

degree of exchange-rate pass-through can be captured in a tight prior distribution for the corresponding

model parameters. Since priors are always subject to revision the shift from prior to posterior distribution

can be an indicator of the tension between the micro-level and time series information. If the likelihood

function peaks at a value that is at odds with the information in X, then the marginal data density, defined

as

p(Y ) =

∫
L(θ|Y )p(θ)dθ (38)

will be substantially lower than the marginal data density computed under an alternative, more diffuse prior.

Marginal data densities can be used to compare different Bayes models, where a Bayes model consists of a

likelihood function and a prior distribution. Illustrating how the marginal data density changes as the prior

is modified can also highlight tensions between different sources of information.

The overall fit of a DSGE model can be assessed by comparison to a reference model. In this paper

we simply compute marginal data densities for different versions of Bayesian VARs with Minnesota-type

12Formally, likelihood-based estimators tend to converge to the θ̃ that minimizes the Kullback-Leibler discrepancy between

M0 and Mθ, see for instance, White (1982).
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priors and compare them to marginal data densities computed from the estimated two-country model. More

elaborate methods are available but not pursued in this paper. For instance, in Del Negro, Schorfheide,

Smets, and Wouters (2004) the assessment of fit is not based on a VAR with Minnesota prior. Instead

the DSGE model itself is used to construct a prior distribution for the VAR coefficients. The procedure

has the interpretation that the restrictions imposed by the DSGE model on the VAR representation of yt

are relaxed to the extent that the deviation from the restriction improves the marginal data density of the

resulting specification. A comparison of DSGE model impulse responses and identified responses from the

so-called DSGE-VAR can yield insights in the nature of the misspecification. A procedure that allows for

a loss-function based comparison of multiple, potentially misspecified DSGE models has been developed in

Schorfheide (2000).

The two most popular alternatives to likelihood-based inference are (i) parameter estimation based

on the minimization of the discrepancy between impulse responses of DSGE models and identified vector

autoregressions and (ii) single-equation GMM estimation. Impulse response function matching tries to cope

with model misspecification by leaving most of the exogenous shocks unspecified. Its disadvantage is that

it requires correctly identified and precisely estimated VAR impulse responses to, for instance, a monetary

policy or a technology shock. Moreover, it does not provide an overall measure of time series fit of the DSGE

model.

Single-equation approaches also address the problem of model misspecification by leaving parts of the

DSGE model unspecified. Consider the price-setting equation (20) for U.S. producers in our two-country

model. The system-based Bayesian estimation approach treats inflation π̃H,t and marginal costs m̃ct as

latent variables. It uses the model restrictions stemming from the production function and the equilibrium

prices together with the observations on CPI inflation, output growth, interest rates, and nominal exchange

rates to infer inflation and marginal costs in the U.S. production sector. A single-equation GMM estimation

of the price-setting equation would require time series observations for π̃H,t and m̃ct. The use of direct

observations on marginal costs is likely to deliver a more reliable estimate of κH , but the single-equation

approach tends to mask identification problems and the model’s potential inability to predict the movements

of these additional observations.

In the estimation of the monetary policy rule the likelihood function adjusts the endogenous regression

equation (32) by the conditional expectation term E[εR,t|π̃t, ỹt − ỹt−1 + z̃t,∆ẽt]. In a GMM approach, on

the other hand, one would choose a set of instrumental variables, e.g., lagged endogenous variables, that

are orthogonal to the current monetary policy shock εt. The likelihood-based approach exploits the cross-

equation restrictions to construct the conditional expectation of the policy shock. This can lead to sharper

inference if the model is well specified, or it might contaminate the parameter estimates if the conditional

expectation is poorly specified.
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Most importantly, single-equation estimates do not provide an overall measure of time series fit of

the DSGE model. Hence, the reliability of, for instance, impulse response functions constructed based on

parameter estimates that have been obtained with single-equation estimation methods is difficult to assess.

Since the exogenous shocks that generate business cycles are typically left unspecified, it is not possible to

disentangle the relative importance of the various shocks for the fluctuations of the endogenous variables. In

the presence of rational expectations, the idea of single-equation estimation is often fundamentally flawed,

since identification of the structural parameters can only be achieved if the remainder of the system is

sufficiently restricted. We will elaborate this point in the following subsection.

4.3 Identification

Identification problems can arise due to a lack of informative observations, or more fundamentally, from a

probability model that implies that different values of structural parameters lead to the same joint distribu-

tion for the observables Y . We will provide a simple example for each case.

Suppose we are interested in estimating the degree of exchange rate pass-through, which in our two-

country model is tied to the parameters θF and θ∗H . In the absence of nominal rigidities in the import

sector pass-through is perfect. We would expect that the degree of pass-through is best measured through

the dynamics of import prices. Non-structural studies of exchange rate pass-through often regress import

prices on measures of exchange rate variation, e.g., Campa and Goldberg (2004). Smets and Wouters (2002)

implicitly estimate the degree of nominal rigidity in the import sector of a small open economy model by

matching DSGE model impulse responses to VAR impulse responses, whereby the response of import prices

to an exchange rate shock plays an important role in determining the degree of pass-through. The estimation

results presented subsequently are based on U.S. and Euro Area CPI inflation. While the degree of pass-

through also affects the dynamics of CPI inflation, the choice not to use direct information on import prices

will make it more difficult to identify the degree of pass-through.

Rational expectations models can generate delicate identification problems that are very difficult to

detect in larger systems, since the mapping from the vector of structural parameters θ into the state-space

representation (35) and (36) that determines the joint probability distribution of Y is highly nonlinear and

typically can only be evaluated numerically. Consider the following two models, in which yt is the observed

endogenous variable and ut is an unobserved shock process. In model M1, the ut’s are serially correlated:

M1 : yt =
1

α
IEt[yt+1] + ut, ut = ρut−1 + εt ∼ iid(0, σ2). (39)

In model M2 the shocks are serially uncorrelated, but we introduce a backward-looking term φyt−1 on the

right-hand-side as is often done in the New Keynesian Phillips Curve literature:

M2 : yt =
1

α
IEt[yt+1] + φyt−1 + ut, ut = εt ∼ iid(0, σ2). (40)



18

Under M1 the equilibrium law of motion becomes

M1 : yt = ρyt−1 +
1

1− ρ/α
εt, (41)

whereas under the ‘backward looking’ specification13

M2 : yt =
1

2
(α−

√
α2 − 4φα)yt−1 +

2α

α+
√
α2 − 4φα

εt. (42)

ModelsM1 andM2 are observationally equivalent. The model with the ‘backward looking’ component

is distinguishable from the purely ‘forward looking’ specification only under a strong a priori restriction

on the exogenous component, namely ρ = 0. Although M1 and M2 will generate identical reduced form

forecasts, the effect of changes in α on the law of motion of yt is different in the two specifications. While

Bayesian analysis does not alter the likelihood functions associated with models M1 and M2 it can bring

to bear additional information X about the parameters that may help to discriminate between the two

specifications.

For M1 it is easy to see that α and the standard deviation of εt are not separately identifiable. The

likelihood function conditional on ρ is flat for values of α and σ such that σ/(1−ρ/α) is constant. More gen-

erally, suppose that the generic parameter vector θ of a probability model can be partitioned into θ = [θ ′1, θ
′
2]
′

and the likelihood function is flat in the direction of θ2: L(θ|Y ) = L̄(θ1|Y ). Straightforward manipulations

with Bayes Theorem lead to

p(θ|Y ) = p(θ1|Y )p(θ2|θ1) ∝ L̄(θ1|Y )p(θ1, θ2) (43)

First, a proper prior p(θ1, θ2) can introduce curvature into the objective function that facilitates numerical

maximization and the use of Markov Chain Monte Carlo methods to generate draws from the posterior dis-

tribution. Second, there is updating of the marginal distribution of θ1, but not of the conditional distribution

of θ2|θ1.
14 Nevertheless, the posterior distribution is well defined as long as the joint prior distribution of

θ integrates to one. Hence, a comparison of priors and posteriors can provide insights about the extent to

which the data provide information about the parameters of interest.

Finally, consider the attempt to answer the question whether there is backward-looking behavior via

GMM analysis. Let ηt be the rational expectations forecast error associated with yt and write

yt − αyt−1 + αφyt−2 = ηt − αut−1. (44)

The presence of ut−1 on the right-hand-side suggests that yt has to be lagged by at least two periods to

obtain valid instruments. It is straightforward to verify that under M1 α̂
p
−→ ρ and under M2 α̂

p
−→

13To ensure determinacy we assume α > 1 in M1 and |α−
√
α2 − 4φα| < 2 and |α+

√
α2 − 4φα| > 2 inM2.

14This is well-known in Bayesian econometrics, see Poirier (1993) for a discussion, and has been exploited in Lubik and

Schorfheide (2004) when estimating DSGE models with indeterminacies.
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1
2 (α −

√
α2 − 4φα), where ‘

p
−→’ denotes convergence in probability. Under both specifications α̂φ

p
−→ 0.

Hence, the GMM estimates are inconsistent in this example.

The identification of rational expectation systems and DSGE models more generally is typically only

possible under strong a priori restrictions on the model and the exogenous driving processes. This point

has been emphasized by Sims (1980), and in recent years in the context of indeterminacy by Lubik and

Schorfheide (2004) and Beyer and Farmer (2004). Limited information approaches that try to avoid auxiliary

assumptions are often subject to hidden identification problems as illustrated in the stylized example above.

Hence, we advocate to use a system-based estimation approach that spells out all auxiliary assumptions,

constructs a likelihood function, and combines the sample information Y with out-of-sample information X

summarized in a prior distribution.

5 Data and Priors

We interpret our theoretical two-country model as representing the economies of the U.S. and the Euro Area.

The two regions are roughly of the same size, have a similar per capita income, and unlike other groups

of countries such as the OECD, the Euro Area can be viewed as a unified economic region. Even before

European Monetary Union, monetary policy in Europe was guided by the Deutsche Bundesbank within a

system of fixed exchange rates. Moreover, closed economy versions of New Keynesian DSGE models have

been estimated for both the U.S. and the Euro Area and can serve as a benchmark for the analysis of the

two-country model developed in this paper.

Our empirical analysis is based on output growth, inflation, and nominal interest rate series for the U.S.

and the Euro Area, as well as data on nominal depreciation rates. Most of the U.S. data were extracted

from the FRED 2 database maintained by the Federal Reserve Bank of St. Louis. The Euro Area time

series stem from the database underlying the Area Wide Model of the European Central Bank. In addition,

we construct a synthetic US$-Euro exchange rate series for the time period prior to the introduction of the

Euro in 1999.15 Details on the construction of the data set are provided in Appendix A. The estimation

results reported in Section 6 are based on a sample from 1983:I to 2002:IV.

5.1 A Preliminary Look at the Data

The top panel of Figure 1 plots the ratio of per capita GDP in the U.S. and the Euro Area. According to

the DSGE model the technology processes in the two regions have a common stochastic trend. Since all

15Over the sample period from 1983:I to 2002:IV the correlation between depreciation rates calculated from our synthetic

US$-Euro exchange rate and the published US$-Ecu depreciation rates is greater than 0.99.
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the other shocks in the model are stationary the output ratio should be stationary. While the series plotted

in the first panel appears fairly persistent, its autocorrelation is 0.85 and a conventional Dickey-Fuller test

rejects the null hypothesis of a unit root. Thus, the common trend assumption does not seem to be at odds

with the data.

The nominal depreciation rate is depicted in the bottom panel of Figure 1. The depreciation rate is very

volatile, in particular compared to quarter-to-quarter interest rate differentials R̃t−1 − R̃
∗
t−1 and quarter-to-

quarter inflation differentials π̃t − π̃∗t . Our model imposes uncovered interest rate parity, that is,

Et−1[∆ẽt] = R̃t−1 − R̃
∗
t−1.

According to the data the interest rate differential, and hence the conditional mean of the nominal deprecia-

tion rate, shows very little time variation. Thus, in order to fit the exchange rate data, the DSGE model has

to generate a mapping from the structural shocks into unanticipated movements of the depreciation rates

that can explain the large fluctuations of ∆ẽt.

We also impose the PPP relationship

∆ẽt = ∆s̃t + (π̃t − π̃
∗
t ).

Figure 1 shows that the actual inflation differential is fairly smooth and that most of the nominal exchange

rate fluctuations are aligned with movements of the real exchange rate. It is well known that the current

generation of NOEM models has difficulties reproducing the observed volatility of the real exchange rate (see,

for instance, Chari, Kehoe, and McGrattan, 2002). Therefore, we introduce a shock to the PPP equation:

∆ẽt = ∆s̃t + (π̃t − π̃
∗
t ) + εE,t

This shock essentially captures model misspecification. If the estimated variance of εE,t is small, we can

conclude that the model is able to explain most of the observed real exchange rate fluctuations.

5.2 Presample Analysis and Prior Distributions

While, in principle, priors can be gleaned from personal introspection to reflect strongly held beliefs about

the validity of economic theories, in practice most priors are chosen based on some observations, denoted by

X in Section 4, that are available in addition to the estimation sample Y . We will subsequently motivate

the choice of most of our priors based on a pre-sample of observations from 1970:I to 1982:IV. The prior

distributions for the price stickiness parameters are loosely chosen based on micro-econometric studies of price

setting behavior. The marginal prior distributions for the parameters of the NOEM model are summarized

in Tables 1 and 4. We assume all parameters to be a priori independent.
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For both the US and the Euro Area we are fitting AR(1) models to inflation rates, import shares, and ex

post real interest rates. The estimated means are used to guide the choice of prior means for the steady state

real interest r, the import share parameter α, and steady state inflation rates π, and π∗. We also estimate

a common stochastic trend model for U.S. and Euro Area output data:

∆ỹt = γ +∆Ãt + zt, ∆ỹ∗t = γ +∆Ã∗
t + zt,

where

Ãt = ρAÃt−1 + uA,t, Ã∗
t = ρA∗Ã∗

t−1 + uA∗,t, z̃t = ρz z̃t−1 + uz,t,

The estimate of γ is used to set the prior mean for γ in the analysis of the DSGE model. We use the estimates

of ρz and σ(uz,t) to inform the choice of prior means for the non-stationary technology process in the DSGE

model. The processes Ãt and Ã
∗
t are not directly comparable to the country specific technology processes in

the DSGE model. Nevertheless, we use the estimates to guide the choice of prior for the remaining exogenous

processes in the DSGE model. In order to obtain a prior for the standard deviation of the monetary policy

shock we estimate the following regression by OLS (for the U.S. and the Euro Area):

Rt = β0 + β1Rt−1 + β2πt−1 + β2∆Yt−1 + uR,t.

The benchmark prior for σE , the standard deviation of the PPP shock, is based on the unconditional standard

deviation of the nominal depreciation rate during the pre-sample period. We vary this prior in our empirical

analysis to assess how the fit of the model changes as a function of prior beliefs about the misspecification

of the exchange rate equations.

The priors for the price stickiness parameters θ are chosen based on evidence on the average frequency

of price changes. Following Bils and Klenow (2004) an average 26% of U.S. sectoral prices are changed every

3.3 months which translates into a Calvo-adjustment parameter of θH = 0.5. Stickiness of import prices

is set at the same level. For Euro-area data we use information reported by Angeloni et al. (2004) to set

the prior mean at 0.75. The prior mean for the intratemporal substitution elasticity η is set at 1 with a

large standard deviation to account for uncertainty about its location. The priors for the coefficients in the

monetary policy rule are loosely centered around values typically associated with the Taylor rule. We allow

for the possibility of a small policy response to exchange rate movements in both countries following Lubik

and Schorfheide (2003). As a final point, it is well known that linear rational expectations models can have

multiple equilibria. While this may be an issue of independent interest (see Lubik and Schorfheide, 2004),

we do not pursue this direction in this paper. The prior distribution for the model is therefore truncated at

the boundary of the determinacy region.
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6 Empirical Analysis

The empirical analysis has three parts. We begin by estimating the two-country model developed in Section 3

under a benchmark prior distribution. We then document the sensitivity of the parameter estimates to

changes in the prior distribution. The second part studies the dynamics of the estimated NOEM model

through impulse response functions. We assess the estimates of the transmission of monetary policy shocks

under the benchmark prior and a perfect pass-through version of the model. Finally we are examining the

estimated exchange rate dynamics and the relative importance of the various structural shocks for exchange

rate fluctuations.

6.1 Estimation

Markov Chain Monte Carlo Methods described in Appendix B are used to generate draws from the posterior

distribution of the model parameters. Based on these draws we compute the summary statistics (posterior

means and 90% probability intervals) reported in Tables 2 to 7. The results in Sections 6.2 and 6.3 are

obtained by converting the parameter draws into impulse response functions and variance decompositions.

The estimated steady state inflation rates reported subsequently, denoted by π(A) are annualized. We also

report a r(A) which is related to β according to β = 1/(1 + r(A)/400). Moreover, γ is the quarter-to-quarter

percentage growth rate of AW,t.

6.1.1 Closed versus Open Economy Estimates

We begin our empirical analysis with a comparison of parameter estimates obtained from a closed and the

open economy specification. If agents do not value goods produced abroad (α = 0) and the exchange of

financial assets across country borders is prohibited, our model reduces to the familiar New Keynesian closed

economy (CE) DSGE model. Although Bayesian estimates for the CE version have been reported elsewhere

in the literature, we re-estimate CE models based on our particular model specification and data set.16

The results obtained under the benchmark prior distribution (Table 1) are summarized in Table 2. For

convenience, we also reproduce prior means and probability intervals.

16There are typically subtle differences in model specification that makes a direct comparison of estimates difficult. For

instance, Rabanal and Rubio-Ramirez (2003, 2005) use a stationary version of the New Keynesian benchmark model and

work with output data that are deviations from a quadratic trend. Lubik and Schorfheide (2004) use HP-filtered output and

transform the exogenous technology and government spending processes into a pure shift of the Euler equation and a pure shift

of the price setting equations with correlated innovations. Schorfheide (2005) uses output growth data and non-transformed

structural shocks.



23

The closed economy U.S. estimates are by and large similar to the Euro Area estimates. This finding is

consistent with the results obtained by Rabanal and Rubio-Ramirez (2003, 2005) and Smets and Wouters

(2004). There is a substantial overlap of the confidence sets for τ , h, ρz, γ, π
(A), and σz, supporting the

symmetry assumptions built into the two-country model. Only the estimates of r(A) differ. In our model

r(A) + 4γ determines the steady state real interest rate. According to the closed economy estimates the real

interest rate in the Euro Area was more than 100 basis points higher than in the U.S. over the sample period.

The Calvo parameters θH and θ∗F are about 0.65, implying an average duration between price optimizations

of 3 quarters. The 90% probability intervals range from about 0.5 to 0.85. These numbers are comparable to

estimates reported elsewhere in the literature: Rabanal and Rubio-Ramirez (2003, 2005) obtain 0.77 for the

U.S. (sample period 1960-2001) and 0.82 for the Euro Area (sample period 1970-2003). Gali and Rabanal

(2004) estimate θH to be 0.53 in a slightly larger model (sample period 1948-2002) and Schorfheide (2005)

reports 0.55 (sample period 1960-1997). On the demand side, habit formation seems to play an important

role in both the U.S. and the Euro Area. The estimates of h are 0.40 and 0.48, respectively. The policy rule

estimates imply fairly strong responses to inflation and output growth movements by both the U.S. Federal

Reserve as well as the European monetary authority.

The open economy estimates are by and large similar to the closed economy estimates, with a few

exceptions. The posterior mean of the nominal rigidity in the Euro Area production section rises from

0.64 to 0.76, a value that is not unreasonable given the estimates reported elsewhere and the probability

intervals from the CE estimation. The posterior mean of the risk aversion parameter τ increases from 2.8

and 3.0, respectively, to about 3.8. While the policy rule coefficients for the U.S. are not affected by the

inclusion of the Euro Area data, ψ̂∗
1 drops from 1.80 to 1.37 and ψ̂∗

2 increases from 0.49 to 1.27. There are

two potential sources for this discrepancy: first, the two-country model imposes common steady states for

the U.S. and the Euro Area, which implies that the estimated fluctuations around the steady states have

potentially changed. Notice that r̂(A) is 0.86 in the open economy specification, but rises to 1.68 if the closed

economy model is fitted to Euro Area data. Second, the likelihood function associated with the two-country

model might generate a different correction for the endogeneity of the regressors included in the policy rule

equation (see Section 4). We will investigate this issue below, by estimating the models with detrended data.

We included the depreciation rate as an argument into the policy rule but found that the corresponding

coefficient estimates for the U.S. and the Euro Area are nearly zero. This finding complements the empirical

results reported in Lubik and Schorfheide (2003), who find no evidence of exchange rate responses for a

variety of small open economies.

The prior distribution for the import share parameter α and the nominal rigidity in the U.S. import

sector θF are essentially not updated, indicating that the likelihood function is not informative with respect to

these parameters. The estimated substitution elasticity between home and foreign goods, η, is 0.4, a number
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that is substantially lower than the values that are typically used in calibration studies. This finding is

robust to all specifications we investigated. It suggests that home and foreign output are not very responsive

to movements in terms of trade differentials, which in turn are related to the l.o.p. gaps. Consequently,

imperfect pass-through does not seem to play an important role in driving output.

Finally, our estimated standard deviation of the PPP shock is large, suggesting that the model is unable

to generate the real exchange rate fluctuations that we observe in the data. Since the importance of shocks

cannot directly be assessed from the magnitude of the associated standard deviation due to normalization

issues, we decompose the variance of exchange rate fluctuations in Section 6.3.

6.1.2 Estimation based on Demeaned Data

So far we imposed all the long-run restrictions implied by our open economy model, in particular, a common

technology growth rate γ, a common steady state inflation rate π(A), and a common steady state real

interest rate r(A) + 4γ. Many of the key equations in an open economy model, such as uncovered interest

rate parity or purchasing power parity have to hold in levels and not just in terms of deviations from steady

state. Persistent deviations from these steady state relationships in the data are typically absorbed in the

estimated exogenous shock processes and might lead to a contamination of the parameter estimates. In order

to assess the affect of the imposed long-run restrictions on the parameter estimation, we re-estimate the open

and closed economy specifications based on demeaned data. The results for some of the key parameters are

reported in Table 3. For most of the parameter estimates the effect of demeaning the data is small. Not

surprisingly, those open economy parameter estimates that do shift, are now more similar to their closed

economy counterparts, examples are θ̂∗F , ψ̂
∗
1 , and ψ̂

∗
2 .

6.1.3 Estimation under Alternative Priors

In order to assess the sensitivity of our parameter estimates to the choice of prior distribution, we re-

estimate the open economy model under several alternative prior distributions. The modifications of the prior

distribution are presented in Table 4 and the corresponding posteriors for key parameters are summarized

in Table 5. Since our previous analysis indicated that the monetary authorities in the U.S. and the Euro

Area do not respond to exchange rate movements we impose ψ3 = ψ∗
3 = 0 and also re-estimate the model

under the (modified) benchmark prior.

First, we consider a perfect pass-through version of our model, that is, θF = θ∗H = 0. It turns out that

the model without nominal rigidities in the import section roughly leads to similar parameter estimates as

the benchmark model. Without data on import prices it is very difficult to measure the degree of price
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stickiness in the import sector. We will revisit this point when we examine the impulse response dynamics

of the estimated models.

Diffuse Prior I replaces the Beta-priors for the Calvo parameters by uniform distributions. Moreover,

we make the priors for the autocorrelations of the exogenous processes less informative by changing them

to uniform distributions as well. Diffuse Prior II relaxes some of the restrictions that we placed on the

preference parameters. We find the benchmark posteriors to be sensitive to changes in the prior distribution.

For instance, the posterior mean of α rises from 0.16 to 0.39 (Diffuse Prior I) and 0.74 (Diffuse Prior II),

respectively. Since we are not using direct observations on the magnitude of bilateral trade between the U.S.

and the Euro Area, the estimate of α, in particular under Diffuse Prior II becomes counterfactually large,

while the intratemporal substitution elasticity η declines considerably to compensate for the change in α.

The estimate of η is not anchored by direct observation of sectoral prices and quantities.

If we relax the priors on the Calvo parameters, θ̂∗H is essentially 1 and θ̂∗F drops from 0.71 to 0.17.

Information on price stickiness in the U.S. and in the Euro Area is obtained from the CPI inflation series.

According to the model, CPI inflation is a function of inflation in the domestic production sector and the

import sector. However, without sample information on import prices, it is difficult to disentangle the sources

of stickiness. The estimates suggest that under Diffuse Prior I almost all the stickiness in the Euro Area

consumer prices is attributed to import price rigidity.

It is interesting to note that the posteriors of the policy rule coefficients are also affected by the choice

of priors for the non-policy parameters, in particular for the Euro Area. As discussed in Section 4, the

estimation of policy rules involves a regression with endogenous regressors. The DSGE model is used to

construct a conditional expectation of the monetary policy shock given the current values of the endogenous

regressors (inflation and output growth). This conditional expectation is used to correct for the endogeneity.

Changes in the prior distribution seem to generate different correction terms and hence lead to different

parameter estimates.

Overall, we conclude that the prior distribution plays an important role in the system-based estimation

for DSGE models. For instance, in the case of the import share coefficient α and the nominal rigidity

parameters θF and θ∗H , the prior can be used incorporate additional information, that is not contained in

the estimation sample Y . This information down-weighs the likelihood function in a region of the parameter

space that is implausible in the light of data on the magnitude of bilateral trade and avoids a contamination

of other parameter estimates.

In addition to the results reported in Table 5 we carried out a number of additional robustness checks.

The disturbance εE,t captures exogenous deviations from PPP that cannot be explained via the perfect

pass-through mechanism. More generally, it captures model misspecification. We estimated the model
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subject to the restriction that σE = 0 and under a number of prior distributions that shrink the estimate

of σE toward zero. Whenever we restricted the variance of the PPP shock, the likelihood fit of the model

deteriorated substantially, and the estimated standard deviation of at least one of the structural shocks

increased dramatically to capture the nominal exchange rate fluctuations observed in the data.

In order to improve the fit his two-country model, Bergin (2004) introduces a serially correlated shock

to the UIP equation which increases the variability of the expected exchange rate depreciation Et−1[∆ẽt].

This reduces the volatility of the unexpected component ∆ẽt − Et−1[∆ẽt] that has to be explained by the

structural shocks of the model. In Bergin’s setup, the UIP shock is correlated with the other structural

shocks. We estimated a specification with an iid UIP shock and found that such a shock is unable to explain

the observed exchange rate fluctuations. The fit of the UIP shock specification was very poor compared to

the version of the model with PPP shock.

Finally, in the conference draft of this paper we reported estimation results for a model in which the

central banks react to deviations of output from the stochastic trend AW,t, instead of deviations of output

growth rates from the steady state growth rate. Moreover, we did not impose a common steady state inflation

rate. The parameter estimates of the output gap version of the model were very sensitive to the underlying

potential output series that was implicitly constructed through the latent exogenous processes. For instance,

the estimated Calvo parameter for the U.S. production sector, θ̂H , dropped from 0.78 in the closed-economy

specification to 0.46 in the open-economy version. The posterior mean of the U.S. policy rule coefficient ψ2

decreased from 0.56 to 0.01 by switching from a closed to an open economy setting.

6.1.4 Model Fit

Table 6 reports log marginal data densities for the various specifications that we have estimated. The fit of

the benchmark specification is improved by imposing that the central banks do not respond to exchange rate

movements. The assumption of perfect pass-through leads to a slight deterioration of fit, and so does the

Diffuse Prior I. It is important to note that the marginal data density penalizes the likelihood fit by a measure

of model complexity. Making a prior distribution more diffuse is equivalent to the removal of restrictions

on parameters and increases the model complexity (approximately measured by the log determinant of the

posterior covariance matrix of the parameters). For Diffuse Prior II the improvement in model fit dominates

the penalty for increased model complexity and the marginal data density improves by 24 points on a log

scale. This indicates that the benchmark prior restricts the parameter estimates from moving into an area

of the parameter space that yields a higher likelihood. If one is willing to interpret the benchmark prior as

driven by empirical evidence not contained in the estimation sample Y , then there seems to be a tension

here. Trying to keep the estimates close to values that are consistent with this additional information, e.g.,

a small import share α, leads to a deterioration of model fit.
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We also report marginal data densities for reduced form vector autoregressions with 4 lags, estimated un-

der various Minnesota-type prior distributions. Details on the VAR estimation are relegated to Appendix C.

The hyperparameter τ controls the tightness of the prior distribution. The larger τ the more the parameter

estimates are tilted towards the prior mean. The marginal data density of the VAR is quite sensitive to the

choice of hyperparameter. For τ = 3 the fit of the Bayesian VAR and the DSGE model are roughly at par,

whereas for τ = 5 the VAR clearly dominates all specifications of the DSGE model. While the two-country

model seems to suffer from misspecified cross-coefficient restrictions, not every VAR dominates the DSGE

model. Hence, careful attention has to be paid to model fit if the DSGE model is supposed to be evaluated

based on VAR estimates. The loss-function based evaluation framework of Schorfheide (2000) and the DSGE

model prior approach of Del Negro and Schorfheide (2004) enable more refined comparisons between DSGE

models and a VAR that account for model fit.

6.2 Impulse Response Analysis

We can develop some understanding of the inherent dynamics and the relative importance of different shocks

by computing impulse response functions. The responses of endogenous variables of interest to one-standard

deviations structural shocks are reported in Figure 2. We first discuss overall results for the benchmark model.

We then focus on the effects of monetary policy shocks and the importance of imperfect pass-through.

The effects of monetary policy shocks are as expected (first and second row of the panel). Inflation and

output decline in response to contractionary domestic policy. The inflation response in the U.S. is stronger

than in the Euro Area on account of a higher policy coefficient. Interest rate shocks sharply appreciate the

currency as depicted in the last column, but the effect quickly dissipates within a few periods. A monetary

contraction in the U.S. leads to a rise in European output and inflation to which the monetary authority

responds endogenously with an interest rate hike. The transmission of European monetary shocks to the U.S.

is weaker and estimated with less precision. The main transmission mechanism of shocks between countries

in this model are relative price movements that are implied by and are consistent with perfect risk sharing.

This has an expenditure switching effect away from domestic goods toward foreign output.

U.S. technology shocks are expansionary at home, lower prices and the interest rate, thereby depreciating

the Dollar. European technology shocks have similar effects on Euro Area variables. Transmission of

productivity disturbances, however, is negative, lowering output. This can be explained by the assumption

of perfect risk-sharing which leads to production shifting to the country with the highest productivity.

In contrast, government expenditure shocks have supply effects via relative price changes. The effects

of government purchases are broadly similar in both economies. Output expands, inflation declines, the
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currency appreciates. Transmission from the U.S. to the Euro Area is positive, while transmission in the

other direction is negative.

In a perfectly symmetric model, world-wide productivity shocks would not have any effects on relative

prices. In our framework, however, (see the seventh row of the panel) they imply a Dollar depreciation.

Since the Euro interest rate barely responds, the positive differential in favor of the U.S. requires an expected

depreciation. Together with the inflation differential in favor of the U.S. this pattern explains the behavior

of the exchange rate. Different degrees of price stickiness therefore play a role determining the direction of

exchange rate responses.

We look at this issue in more detail by considering impulse responses to expansionary U.S. monetary

policy shocks in isolation. Figure 3 reports results for the benchmark prior and for the case of perfect

pass-through. The responses are remarkably similar. The exception is the behavior of import inflation.

Under imperfect pass-through adjustment is smooth and gradual, driven by the l.o.p. gap, and ultimately

differential terms of trade movements. Under perfect pass-through import inflation essentially reflects the

nominal exchange rate.

This is not to say that this particular mechanism of introducing deviations from PPP is conceptually

flawed or important. But it highlights the difficulties of explaining disaggregated behavior with aggregate

data alone. This outcome is likely to be changed when sectoral inflation rates, more specifically, import price

inflation data are used since this would allow to explain their behavior directly.

6.3 What Determines Exchange Rate Dynamics?

Our estimation methodology allows us to decompose exchange rate volatility into individual components

explained by the disturbances in the model. The model is driven by seven structural shocks (monetary

policy, technology, and government purchases) to which we add an additional disturbance in form of an

error term appended to the equation defining the nominal depreciation rate. The disturbance is not strictly

structural since it is not contained in the model’s primitives. It captures deviations from PPP not already

explained endogenously through imperfect pass-through. However, this interpretation is problematic since

it is not tied to behavior by the agents in the model.

Nevertheless, it is often instructive to add disturbances of this type as they provide a measure to what

extent the data are explained by specific features of the model. In a purely econometric sense, introducing

these shocks allows a better fit of individual equations since they do not appear anywhere else in the model

and do not have to obey any cross-equation restrictions. Without these shocks, the estimation procedure

attempts to fit the model’s unobservables base on a tightly restricted equation such as the definition of the

depreciation rate, which may result in implausible estimates.
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We report variance decompositions for the depreciation rate in Table 7. Notice that the prior distribution

on θ induces a prior distribution for the variance decomposition of the exchange rate fluctuations. We consider

two priors: the benchmark prior with the exchange rate coefficient set to zero; and a prior that imposes full

pass-through. Under both priors the PPP-shock explains about 80% of exchange rate fluctuations, while

monetary policy shocks make the biggest model-based contribution. It turns out that the data are very

informative with respect to the variance decompositions and the posteriors obtained under these priors look

very similar.

In our benchmark estimation, PPP-shocks explain 93% of the variability of the depreciation rate. This

result had already been hinted at by the estimated variance of the PPP-shock which is an order of magnitude

larger than those of other disturbances. The second largest component is the Euro Area monetary policy

shock, followed by the U.S. policy shock. By and large, the contribution of of real shocks is almost negligible.

The same conclusion emerges from the estimation under perfect pass-through, which attributes a slightly

larger percentage of exchange rate movements to the PPP-shock.

Overall, these results do not lend support to the notion that exchange rate dynamics are largely driven

by real shocks, at least as far the endogenous components are concerned. Our benchmark model can thus

explain roughly 10% of the movements in the depreciation rate. This result is not immediately comparable to

other contributions in the literature mainly because of different methodologies applied. Calibration studies

typically only study one shock at a time and attempt to match a small set of statistics with large degrees of

freedom in setting parameters.

Methodologically comparable results can be found in Bergin (2004). He reports that monetary policy

shocks contribute between 50% and 70% to exchange rate movements at longer horizons. His approach differs

from ours in various ways, however. Bergin introduces UIP shocks that are correlated with the structural

shocks in the model. He shows that different orthogonalization schemes change the variance decompositions

considerably. It is therefore not a priori clear whether the influence attributed to monetary policy shocks is

the artefact of an orthogonalization scheme. Using long-run identification restrictions in a VAR framework

Ahmed, Ickes, Wang, and Yoo (1993) do not find support for a role of monetary policy shocks in exchange

rate dynamics. On the other hand, in a VAR study using similar identification Clarida and Gali (1994)

show that monetary shocks, demand shocks in their interpretation, are a main driving force behind output

movements over short horizons. This suggests that the lack of explanatory power derives from the disconnect

between output movements and relative prices that is also evident in our model.17

The variance decompositions are not robust, however, to seemingly minor changes in the model spec-

ification. In the conference draft of this paper we reported results from a specification that used the level

17This exchange rate disconnect puzzle has been emphasized by Rogoff (1996) as the main challenge for open economy macro

models.
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of output relative to technology AW,t as the target variable in the policy rule. This specification attributed

20% of exchange rate movements to the structural shocks. Estimates with diffuse priors showed that the

endogenous component to exchange rate movements can even be increased to beyond 20% when more en-

dogenous persistence is allowed via, for instance, habit formation. Moreover, monetary policy shocks did not

have any significant influence at all, as the exchange rate was largely driven by Euro Area technology and

government shocks. A possible explanation for this finding is that these real shocks in fact mostly operate

through the monetary policy rules by creating movements in the model implied output gap that affect the

exchange rates.

The conclusion we derive from this analysis is that NOEM models are still very far away from offering a

satisfactory explanation for exchange rate dynamics. Our finding of an explanatory power of 10% is not out

of line with results from other studies. Since the failure of the model in this respects is likely due to several

factors this will be an active research area for years to come.

7 Conclusion

This paper has developed and estimated a two-country NOEM model using a Bayesian approach. We provide

estimates for various prior distributions and document the extent to which inference is robust and sensitive

to the choice of priors. The model can be extended to an incomplete market setting which could be used to

additionally study current account dynamics. Although construction of a bilateral current account data set

is not straightforward, the same procedure that we used in constructing the exchange rate series could be

employed. Adding another data series requires the introduction of another disturbance. A likely candidate is

a shock to the UIP relationship. Our benchmark estimates reject that specification in favor of a PPP-shock,

but the former may contain information that helps explain current account dynamics as in Bergin (2004).

Real exchange rate dynamics in our model exclusively depend on movements in relative prices of traded

goods. However, movements in non-traded goods prices are an important component of real exchange rates

(see Betts and Kehoe, 2004). The model can be extended to include a non-traded sector that is also subject

to nominal rigidities. It is our presumption that this would help improve the overall fit of the model and

help explain exchange rate movements endogenously.

It is also plausible to assume that the host of puzzles in international finance cannot satisfactorily be

explained by models with fully-rational agents. Attempts to integrate deviations from this benchmark have

been made by Duarte and Stockman (2001) and, albeit in a less structural framework, by Gourinchas and

Tornell (2004). While we used a log-linear approximation of our two-country model, nonlinearities might

play an important role in the understanding of exchange rate fluctuations. Fernandez-Villaverde and Rubio-



31

Ramirez (2002) have made significant progress toward algorithms that enable the likelihood-based estimation

of DSGE models solved with nonlinear methods.

A final challenge for researchers is how to communicate the fruits of their labor to a wider public, in

particular policymakers. We argue that a Bayesian approach is supremely useful for this. Researchers can

report to what extent information comes from the likelihood function, and to what extent it derives from

the prior. This leaves it up to the policymaker to decide what value to place on the information conveyed.

Finally, implementation has become much easier and more transparent due to available software. We provide

GAUSS programs, and the analysis in this paper can be conducted with the user-friendly DYNARE package.
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A Data Set

Most of the U.S. data were extracted from the FRED 2 database maintained by the Federal Reserve Bank of

St. Louis: http://research.stlouisfed.org/fred2/. The Euro Area data stem from the database underlying the

Area Wide Model (AWM) of the European Central Bank, which is described in detail in Fagan, Henry, and

Mestre (2001). Exchange Rate data are obtained from the International Financial Statistics (IFS) database

maintained by the IMF: http://ifs.apdi.net/imf/.
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• U.S. Output Growth (quarter-to-quarter, percent): is based on the real GDP series GDPC96-FRED2.

We construct a measure of U.S. working age population (age 16-64) from the series PAN17-DRI

and PAN19-DRI provided by DRI-Global Insight http://www.globalinsight.com/. The observations

from 1990-1999 are updated using intercensal estimates, and the observations from 2000 onwards

are updated based on postcensal estimates http://www.census.gov/popest/. Annual data are con-

verted to quarterly frequency using a quadratic interpolation. Per capita output growth is defined

as 100 ∗ [ln(GDPt/POPt)− ln(GDPt−1/POPt−1)].

• U.S. Inflation (quarter-to-quarter, annualized, percent): is based on the Consumer Price Index for

All Urban Consumers CPIAUCSL-Fred2. The monthly series is converted into quarterly frequency by

arithmetic averaging. Inflation is defined as 400 ∗ ln(CPIt/CPIt−1).

• U.S. Nominal Interest Rate (annualized, percent): is the effective Federal Funds Rate FEDFUNDS-

Fred2. The monthly series is converted into quarterly frequency by arithmetic averaging.

• Euro Area Output Growth (quarter-to-quarter, percent): is based on the real output series YER-AWM.

A measure of the Euro Area working age population (15-64) is obtained from the AMECO database

http://europa.eu.int. The Euro Area series is extended backwards using growth rates calculated from

the Euro Area (incl. West Germany) series. Annual population data are converted to quarterly fre-

quency using a quadratic interpolation. Per capita output growth is defined as 100∗[ln(Y ERt/POPt)−

ln(Y ERt−1/POPt−1)].

• Euro Area Inflation (quarter-to-quarter, annualized, percent): is based on the Harmonized Index of

Consumer Prices HICP-AWM and defined as 400 ∗ ln(HICPt/HICPt−1).

• Euro Area Nominal Interest Rate (annualized, percent): is defined as the short term nominal rate

STN-AWM.

• Exchange Rate Depreciation (quarter-to-quarter, percent): Starting in 1999 we use the official US$-

Euro exchange rate obtained from the IFS database. Prior to 1999, we construct a synthetic bilateral

exchange rate series. We extract US$-National Currency Unit exchange rates Ei,t for the Euro Area

countries from the IFS database and define

Et =

n∏

i=1

(fiEi,t)
wi .

The weights wi correspond to the real GDP weights underlying the construction of the AWM database.18

The fi’s are the fixed conversion rates between the National Currency Units and the Euro. Taking

18These weights are: BE=0.036; DE=0.283; ES=0.111; FR=0.201; IE=0.015; IT=0.195; LU=0.003; NL=0.060; AT=0.030;

PT=0.024; FI=0.017; GR=0.025.
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logs and differences yields

∆ lnEt =

n∑

i=1

wi∆lnEi,t.

Thus, prior to 1999 the depreciation rate of the synthetic US$-Euro exchange rate is the output-

weighted average of the depreciation rates of the national currencies. The depreciation rate is multiplied

by 100 to convert it into percentages.

• The import shares that are used to specify a prior for α are defined as IMP/(GDP −EXP +IM). We

are using EXPGSC96-FRED2 and IMPGSC96-FRED2 for the U.S. and XTR-AWM and XTR-AWM

for the Euro Area to measure real exports and imports, respectively.

B Practical Implementation

The results reported in this paper have been computed using GAUSS 6.0. The GAUSS programs and the data

set are available from the authors at http://www.econ.upenn.edu/˜schorf. The empirical analysis can also be

implemented using the MATLAB-based DYNARE package that is available at http://www.cepremap.cnrs.fr/dynare/.

1. The matrices Γ0(θ), Γ1(θ), Γε(θ), and Γη(θ) in Equation (34) can be derived from the linearized

equations presented in Section 3.6. The solution algorithm described in Sims (2002) is used to compute

the state transition equation (35).

2. Combine (35) with the measurement equation (36) to form a state space model for the observables yt.

The matrix A(θ) in (36) is composed of

A(θ) = [γ, π(A), r(A) + π(A) + 4γ, γ, π(A), r(A) + π(A) + 4γ, 0]′

where yt stacks U.S. output growth, U.S. inflation, the U.S. nominal interest rate, Euro Area output

growth, Euro Area inflation, the Euro Area nominal interest rate, and the depreciation rate. The

matrix B selects and scales the relevant model variables to construct yt. The growth adjusted steady

state real rate is related to the discount factor β through β = 1/(1 + r(A)/400).

3. The likelihood function L(θ|Y ) is evaluated with the Kalman Filter. To make the DSGE model

estimation comparable to the VAR estimation, which conditions on the first 4 observations to initialize

lags, we run the Kalman Filter from 1983:I to 2002:IV, but calculate the likelihood only based on the

observations from 1984:I to 2002:IV. Since ln p(Y |Y0) = ln p(Y, Y0) − ln p(Y0) this adjustment of the

Kalman filter yields a conditional likelihood function for the DSGE model.
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4. A numerical-optimization procedure is used to maximize

p(θ|Y ) ∝ L(θ|Y )p(θ)

and find the posterior mode. The inverse Hessian is calculated at the posterior mode.

5. 500,000 draws from p(θ|Y ) are generated with a random-walk Metropolis Algorithm. The scaled inverse

Hessian serves as a covariance matrix for the Gaussian proposal distribution used in the Metropolis-

Hastings algorithm. The first 50,000 draws are discarded. The parameter draws θ are converted into

impulse response functions and variance decompositions to generate the results reported in Section 6.

Posterior moments are obtained by Monte-Carlo averaging. The marginal data densities for the two

regions are approximated with Geweke’s (1999) modified harmonic-mean estimator. Further details of

these computations are discussed in Schorfheide (2000).

C Marginal Data Density of VAR

We use a modified version of the “Minnesota Prior,” see Doan, Litterman, and Sims (1984), that is im-

plemented based on dummy observations. In the main text we report results based on a VAR(4) with

7 endogenous variables. Subsequently, we present the choice of dummy observations in the context of a

bivariate VAR(2):


 y1,t

y2,t


 =


 α1

α2


+


 β11 β12

β21 β22




 y1,t−1

y2,t−1


+


 γ11 γ12

γ21 γ22




 y1,t−2

y2,t−2


+


 u1,t

u2,t


 .

Define yt = [y1,t, y2,t]
′, xt = [1, y′t−1, y

′
t−2]

′, and ut = [u1,t, u2,t]
′ and

Φ′ =


 α1 β11 β12 γ11 γ12

α2 β21 β22 γ21 γ22


 .

The VAR can be rewritten as y′t = x′tΦ + u′t, t = 1, . . . , T , and ut ∼ iidN (0,Σu). The dummy obser-

vations that generate the prior can be classified as follows (the generalization to larger VAR systems is

straightforward):

• Dummy observations for the β coefficients, reflecting the belief that β11 and β22 are equal to ι and β12

and β21 are equal to zero on average:


 ιτs1 0

0 ιτs2


 =


 0 τs1 0 0 0

0 0 τs2 0 0


Φ+ u′
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• Dummy observations for the γ coefficients, reflecting the belief that the γ’s are zero on average:

 0 0

0 0


 =


 0 0 0 τs12

d 0

0 0 0 0 τs22
d


Φ+ u′

• Co-persistence prior dummy observations, reflecting the belief that when data on all y’s are stable at

their initial levels, they will tend to persist at that level:

[
λȳ1 λȳ2

]
=

[
λ λȳ1 λȳ2 λȳ1 λȳ2

]
Φ+ u′

• Own-persistence prior dummy observations, reflecting the belief that when yi has been stable at its

initial level, it will tend to persist at that level, regardless of the value of other variables:

 µȳ1 0

0 µȳ2


 =


 0 µȳ1 0 µȳ1 0

0 0 µȳ2 0 µȳ2


Φ+ u′

• Dummy observations for the covariance matrix:

 s1 0

0 s2


 =


 0 0 0 0 0

0 0 0 0 0


Φ+ u′

The ȳi’s and si’s are calculated as means and standard deviations of the values of yt that are used to

initialize the lags of the VAR. The parameters τ , d, λ, and µ are hyperparameters that control the weight on

different characteristics of the prior distribution. We set d = 0.5, λ = 5, µ = 2, and vary τ , which controls

the overall tightness of the prior. The typical Minnesota Prior shrinks the VAR parameter estimates toward

univariate random walks, which can be achieved by setting ι = 1. However, since we are using growth rates

as dependent variables (interest rates being an exception), we set ι = 0.

Write the system in matrix notation Y = XΦ + U , where Y , X, and U have rows y′t, x
′
t, and u′t,

respectively. We condition on the observations that are used to initialize the lags of the VAR. The T ∗

dummy observations are collected into the matrices Y ∗ and X∗. The likelihood function p(Y ∗|Φ,Σu) for

the dummy observations combined with the improper prior distribution p(Φ,Σu) ∝ |Σu|
−(n+1)/2 induces a

proper prior distribution for the VAR parameters. The marginal data density of the VAR can be written as

p(Y |Y ∗) =

∫
p(Y, Y ∗|Φ,Σu)dΦdΣu∫
p(Y ∗|Φ,Σu)dΦdΣu

, (45)

where p(Y, Y ∗|Φ,Σu) is the joint likelihood function for actual and dummy observations. The integrals on

the right-hand-side of Equation (45) can be obtained by replacing Ỹ , X̃, and T̃ in the subsequent formula

by [Y ′, Y ∗′ ]′, [X ′, X∗′ ]′, T + T ∗ and Y ∗, X∗, T ∗ respectively:

∫
p(Ỹ |Φ,Σu)dΦdΣu = π−

T̃−k
2 |X̃ ′X̃|−

n
2 |S|−

T̃−k
2 π

n(n−1)
4

n∏

i=1

Γ[(T̃ − k + 1− i)/2], (46)
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where n is the dimension of yt, k is the dimension of xt, and

Φ̂ = (X̃ ′X̃)−1X̃ ′Ỹ , S = (Ỹ − X̃Φ̂)′(Ỹ − X̃Φ̂).

The specification of the dummy observations and the computation of the marginal data densities is imple-

mented with MATLAB programs written by Chris Sims.
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Table 1: Prior Distribution (Benchmark), Part 1

Name Domain Density Para (1) Para (2)

θH [0, 1) Beta 0.50 0.15

θF [0, 1) Beta 0.50 0.15

θ∗H [0, 1) Beta 0.75 0.15

θ∗F [0, 1) Beta 0.75 0.15

τ IR+ Gamma 2.00 0.50

h [0, 1) Beta 0.30 0.10

α [0, 1) Beta 0.12 0.05

η IR+ Gamma 1.00 0.50

ψ1 IR+ Gamma 1.50 0.25

ψ2 IR+ Gamma 0.50 0.25

ψ3 IR+ Gamma 0.10 0.05

ψ∗
1 IR+ Gamma 1.50 0.25

ψ∗
2 IR+ Gamma 0.50 0.25

ψ∗
3 IR+ Gamma 0.10 0.05

ρA [0, 1) Beta 0.80 0.10

ρR [0, 1) Beta 0.50 0.20

ρG [0, 1) Beta 0.80 0.10

ρ∗A [0, 1) Beta 0.60 0.20

ρ∗R [0, 1) Beta 0.50 0.20

ρ∗G [0, 1) Beta 0.80 0.10

ρZ [0, 1) Beta 0.66 0.15

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma, and Normal

distributions; the upper and lower bound of the support for the Uniform distribution; s and ν for the Inverse

Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs2/2σ2

. The effective prior is truncated at the boundary

of the determinacy region.
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Table 1: Prior Distribution (Benchmark), Part 2

Name Domain Density Para (1) Para (2)

r(A) IR+ Gamma 0.50 0.50

γ IR Normal 0.40 0.20

π(A) IR+ Gamma 7.00 2.00

σA IR+ InvGamma 1.00 4.00

σG IR+ InvGamma 1.00 4.00

σR IR+ InvGamma 0.40 4.00

σA∗ IR+ InvGamma 0.40 4.00

σG∗ IR+ InvGamma 1.00 4.00

σR∗ IR+ InvGamma 0.20 4.00

σZ IR+ InvGamma 0.50 4.00

σE IR+ InvGamma 3.50 4.00

Notes: The prior is truncated at the boundary of the determinacy region. Para (1) and Para (2) list

the means and the standard deviations for Beta, Gamma, and Normal distributions; the upper and lower

bound of the support for the Uniform distribution; s and ν for the Inverse Gamma distribution, where

pIG(σ|ν, s) ∝ σ−ν−1e−νs2/2σ2

.
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Table 2: Open and Closed Economy Estimates, Part 1

Posterior Distributions

Prior U.S. - Euro Area U.S. Euro Area

Mean 90% Interval Mean 90% Interval Mean 90% Interval

θH 0.50 [ 0.25, 0.75] 0.66 [ 0.53, 0.80] 0.65 [ 0.51, 0.82]

θF 0.50 [ 0.25, 0.74] 0.56 [ 0.28, 0.86]

θ∗H 0.75 [ 0.53, 0.98] 0.86 [ 0.73, 1.00]

θ∗F 0.75 [ 0.53, 0.98] 0.76 [ 0.67, 0.85] 0.64 [ 0.47, 0.85]

τ 2.00 [ 1.19, 2.79] 3.76 [ 2.81, 4.69] 2.77 [ 1.91, 3.61] 3.01 [ 2.12, 3.87]

h 0.30 [ 0.14, 0.46] 0.41 [ 0.15, 0.67] 0.40 [ 0.19, 0.62] 0.48 [ 0.27, 0.70]

α 0.12 [ 0.04, 0.20] 0.13 [ 0.04, 0.23]

η 1.00 [ 0.23, 1.73] 0.43 [ 0.07, 0.80]

ψ1 1.50 [ 1.09, 1.89] 1.41 [ 1.03, 1.75] 1.51 [ 1.07, 1.89]

ψ2 0.50 [ 0.12, 0.87] 0.66 [ 0.38, 0.96] 0.69 [ 0.37, 1.00]

ψ3 0.10 [ 0.02, 0.17] 0.03 [ 0.01, 0.05]

ψ∗
1 1.50 [ 1.09, 1.89] 1.37 [ 1.08, 1.65] 1.80 [ 1.42, 2.17]

ψ∗
2 0.50 [ 0.13, 0.88] 1.27 [ 0.80, 1.73] 0.49 [ 0.20, 0.78]

ψ∗
3 0.10 [ 0.02, 0.17] 0.03 [ 0.01, 0.05]

ρA 0.80 [ 0.65, 0.96] 0.83 [ 0.75, 0.92] 0.85 [ 0.78, 0.93]

ρR 0.50 [ 0.18, 0.84] 0.76 [ 0.70, 0.81] 0.76 [ 0.71, 0.82]

ρG 0.80 [ 0.65, 0.96] 0.90 [ 0.83, 0.97] 0.88 [ 0.80, 0.97]

ρ∗A 0.60 [ 0.29, 0.93] 0.85 [ 0.77, 0.94] 0.89 [ 0.85, 0.94]

ρ∗R 0.50 [ 0.18, 0.83] 0.84 [ 0.80, 0.88] 0.83 [ 0.77, 0.89]

ρ∗G 0.80 [ 0.65, 0.96] 0.94 [ 0.91, 0.97] 0.88 [ 0.78, 0.97]

ρZ 0.66 [ 0.42, 0.91] 0.60 [ 0.40, 0.82] 0.64 [ 0.45, 0.85] 0.54 [ 0.33, 0.75]
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Table 2: Open and Closed Economy Estimates, Part 2

Posterior Distributions

Prior U.S. - Euro Area U.S. Euro Area

Mean 90% Interval Mean 90% Interval Mean 90% Interval

r(A) 0.50 [ 0.00, 1.15] 0.86 [ 0.29, 1.40] 0.45 [ 0.00, 0.86] 1.68 [ 0.81, 2.54]

γ 0.40 [ 0.07, 0.73] 0.39 [ 0.23, 0.55] 0.43 [ 0.25, 0.60] 0.42 [ 0.26, 0.58]

π(A) 7.00 [ 3.72, 10.11] 3.16 [ 2.50, 3.83] 3.30 [ 2.50, 4.01] 2.92 [ 2.18, 3.64]

σA 1.26 [ 0.53, 1.99] 1.66 [ 0.89, 2.44] 1.53 [ 0.81, 2.13]

σG 1.26 [ 0.53, 1.98] 0.50 [ 0.41, 0.58] 0.47 [ 0.39, 0.56]

σR 0.50 [ 0.21, 0.79] 0.18 [ 0.15, 0.21] 0.18 [ 0.15, 0.21]

σA∗ 0.50 [ 0.21, 0.79] 2.61 [ 1.18, 4.16] 1.89 [ 0.94, 2.87]

σG∗ 1.25 [ 0.52, 1.97] 0.62 [ 0.50, 0.73] 0.49 [ 0.40, 0.57]

σR∗ 0.25 [ 0.11, 0.40] 0.18 [ 0.14, 0.21] 0.15 [ 0.12, 0.18]

σZ 0.63 [ 0.27, 0.99] 0.35 [ 0.23, 0.47] 0.37 [ 0.24, 0.49] 0.40 [ 0.26, 0.54]

σE 4.39 [ 1.82, 6.90] 4.48 [ 3.88, 5.07]
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Table 3: Open and Closed Economy Estimates – Demeaned Data, Part 1

Posterior Distributions

Prior U.S. - Euro Area U.S. Euro Area

Mean 90% Interval Mean 90% Interval Mean 90% Interval

θH 0.50 [ 0.25, 0.75] 0.62 [ 0.49, 0.77] 0.63 [ 0.51, 0.76]

θF 0.50 [ 0.25, 0.74] 0.45 [ 0.17, 0.72]

θ∗H 0.75 [ 0.53, 0.98] 0.90 [ 0.82, 1.00]

θ∗F 0.75 [ 0.53, 0.98] 0.61 [ 0.43, 0.81] 0.60 [ 0.44, 0.82]

τ 2.00 [ 1.19, 2.79] 3.91 [ 3.00, 4.82] 2.81 [ 1.97, 3.61] 3.01 [ 2.11, 3.90]

h 0.30 [ 0.14, 0.46] 0.46 [ 0.23, 0.70] 0.40 [ 0.19, 0.59] 0.47 [ 0.25, 0.68]

α 0.12 [ 0.04, 0.20] 0.19 [ 0.08, 0.29]

η 1.00 [ 0.23, 1.73] 0.30 [ 0.05, 0.55]

ψ1 1.50 [ 1.09, 1.89] 1.54 [ 1.15, 1.91] 1.52 [ 1.12, 1.90]

ψ2 0.50 [ 0.12, 0.87] 0.63 [ 0.37, 0.90] 0.64 [ 0.36, 0.89]

ψ3 0.10 [ 0.02, 0.17] 0.03 [ 0.01, 0.05]

ψ∗
1 1.50 [ 1.09, 1.89] 1.51 [ 1.17, 1.84] 1.82 [ 1.47, 2.17]

ψ∗
2 0.50 [ 0.13, 0.88] 0.74 [ 0.35, 1.10] 0.43 [ 0.17, 0.69]

ψ∗
3 0.10 [ 0.02, 0.17] 0.02 [ 0.00, 0.04]
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Table 4: Alternative Prior Distributions

Name Domain Density Para (1) Para (2)

Perfect Pass-through

θF [0, 1) Fixed 0.00

θ∗H [0, 1) Fixed 0.00

Diffuse Prior I

θH [0, 1) Uniform 0.00 1.00

θF [0, 1) Uniform 0.00 1.00

θ∗H [0, 1) Uniform 0.00 1.00

θ∗F [0, 1) Uniform 0.00 1.00

ρA [0, 1) Uniform 0.00 1.00

ρR [0, 1) Uniform 0.00 1.00

ρG [0, 1) Uniform 0.00 1.00

ρ∗A [0, 1) Uniform 0.00 1.00

ρ∗R [0, 1) Uniform 0.00 1.00

ρ∗G [0, 1) Uniform 0.00 1.00

Diffuse Prior II

τ IR+ Gamma 2.00 2.00

h [0, 1) Uniform 0.00 1.00

α [0, 1) Uniform 0.00 1.00

η IR+ Gamma 1.00 1.00

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma, and Normal

distributions; the upper and lower bound of the support for the Uniform distribution.
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Table 5: Posterior Estimates under Alternative Priors

Benchmark Perfect Pass-through Diffuse Prior I Diffuse Prior II

Mean 90% Interval Mean 90% Interval Mean 90% Interval Mean 90% Interval

θH 0.66 [ 0.52, 0.83] 0.60 [ 0.43, 0.77] 0.43 [ 0.22, 0.68] 0.53 [ 0.40, 0.67]

θF 0.50 [ 0.21, 0.78] 0.00 [ 0.00, 0.00] 0.09 [ 0.00, 0.20] 0.66 [ 0.41, 0.89]

θ∗H 0.86 [ 0.73, 1.00] 0.00 [ 0.00, 0.00] 0.99 [ 0.99, 1.00] 0.91 [ 0.86, 0.95]

θ∗F 0.74 [ 0.60, 0.85] 0.77 [ 0.68, 0.86] 0.17 [ 0.00, 0.41] 0.32 [ 0.13, 0.51]

τ 3.61 [ 2.72, 4.49] 3.84 [ 2.82, 4.79] 3.53 [ 2.57, 4.52] 6.45 [ 3.72, 9.61]

h 0.41 [ 0.14, 0.66] 0.47 [ 0.23, 0.71] 0.63 [ 0.44, 0.82] 0.84 [ 0.64, 0.99]

α 0.14 [ 0.05, 0.24] 0.07 [ 0.03, 0.10] 0.39 [ 0.21, 0.53] 0.74 [ 0.51, 0.88]

η 0.43 [ 0.05, 0.82] 0.35 [ 0.06, 0.67] 0.18 [ 0.04, 0.30] 0.18 [ 0.00, 0.29]

ψ1 1.43 [ 1.06, 1.76] 1.54 [ 1.17, 1.90] 1.79 [ 1.42, 2.16] 1.82 [ 1.45, 2.21]

ψ2 0.63 [ 0.34, 0.92] 0.57 [ 0.31, 0.82] 0.38 [ 0.16, 0.59] 0.40 [ 0.18, 0.62]

ψ3 0.00 [ 0.00, 0.00] 0.00 [ 0.00, 0.00] 0.00 [ 0.00, 0.00] 0.00 [ 0.00, 0.00]

ψ∗
1 1.37 [ 1.06, 1.66] 1.39 [ 1.09, 1.67] 1.85 [ 1.52, 2.19] 1.61 [ 1.25, 1.96]

ψ∗
2 1.13 [ 0.67, 1.57] 1.03 [ 0.61, 1.44] 0.49 [ 0.20, 0.75] 0.57 [ 0.26, 0.86]

ψ∗
3 0.00 [ 0.00, 0.00] 0.00 [ 0.00, 0.00] 0.00 [ 0.00, 0.00] 0.00 [ 0.00, 0.00]

Notes: We fixed ψ3 = ψ∗
3 = 0 in all specifications.
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Table 6: Log Marginal Data Densities

DSGE Model: Benchmark Prior, ψ3, ψ
∗
3 estimated -795.22

DSGE Model: Benchmark Prior, ψ3 = ψ∗
3 = 0 -786.78

DSGE Model: Perfect Pass-through -788.58

DSGE Model: Diffuse Prior I -788.83

DSGE Model: Diffuse Prior II -763.66

VAR(4): τ = 2 -834.18

VAR(4): τ = 3 -788.93

VAR(4): τ = 5 -754.34

VAR(4): τ = 20 -795.19

Notes: The log marginal data densities for the DSGE model specifications are computed based on Geweke’s

(1999) modified harmonic mean estimator. The marginal data densities for the VARs are calculated analyt-

ically (see Appendix C).

Table 7: Variance Decompositions of Depreciation Rate

Benchmark, ψ3 = ψ∗
3 = 0 Perfect Pass-through

Prior Posterior Prior Posterior

Mean 90% Interval Mean 90% Interval Mean 90% Interval Mean 90% Interval

Monetary Policy 0.08 [ 0.00, 0.19] 0.02 [ 0.01, 0.02] 0.07 [ 0.00, 0.17] 0.01 [ 0.01, 0.02]

Monetary Policy (*) 0.03 [ 0.00, 0.06] 0.03 [ 0.02, 0.05] 0.02 [ 0.00, 0.05] 0.03 [ 0.01, 0.04]

Stat Technology 0.02 [ 0.00, 0.04] 0.01 [ 0.00, 0.01] 0.01 [ 0.00, 0.03] 0.01 [ 0.00, 0.01]

Stat Technology (*) 0.00 [ 0.00, 0.00] 0.00 [ 0.00, 0.00] 0.00 [ 0.00, 0.00] 0.00 [ 0.00, 0.01]

Gov Spending 0.02 [ 0.00, 0.04] 0.00 [ 0.00, 0.00] 0.02 [ 0.00, 0.04] 0.00 [ 0.00, 0.00]

Gov Spending (*) 0.02 [ 0.00, 0.04] 0.01 [ 0.00, 0.01] 0.01 [ 0.00, 0.03] 0.00 [ 0.00, 0.01]

World Technology 0.03 [ 0.00, 0.06] 0.01 [ 0.00, 0.02] 0.02 [ 0.00, 0.05] 0.00 [ 0.00, 0.01]

PPP Shock 0.82 [ 0.61, 0.99] 0.93 [ 0.91, 0.96] 0.85 [ 0.65, 1.00] 0.94 [ 0.92, 0.96]
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Figure 1: Output, Inflation, Interest Rates, and Exchange Rates

Notes: Top panel: log real per capita GDP ratio for U.S. versus Euro Area. Bottom panel: nominal

exchange rate depreciation, quarter-to-quarter interest rate differential R̃t−1− R̃
∗
t−1, and quarter-to-quarter

inflation differential p̃it − π̃
∗
t−1.
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Figure 2: Impulse Response Functions for Benchmark Estimation

Notes: Figure depicts posterior means (solid lines) and pointwise 90% posterior probability intervals

(dashed lines) for impulse responses of endogenous variables to one-standard deviation structural shocks.
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Figure 3: Impulse Responses to a U.S. Monetary Policy Shock

Notes: Figure depicts impulse response functions at posterior mean parameter estimates (reported in Ta-

ble 5). Solid responses correspond to imperfect pass-through, dashed responses correspond to perfect pass-

through, obtained by setting θF = θ∗H = 0.




