• Suppose the parameter vector θ can be partitioned into $\theta = [\theta'_1, \ldots, \theta'_m]'$.

• For each j it is possible to generate draws of θ_j from the conditional distribution $p(\theta_j|\theta_{-j}, Y)$, where θ_{-j} denotes the vector θ without the partition θ_j.

• For $j = 1, \ldots, N$:

1. Draw θ_{1}^{i+1} from the density $p(\theta_1|\theta_2^i, \ldots, \theta_m^i, Y)$.

2. Draw θ_{2}^{i+1} from the density $p(\theta_2|\theta_1^{i+1}, \theta_3^i, \ldots, \theta_m^i, Y)$.

3. \ldots

4. Draw θ_{m}^{i+1} from the density $p(\theta_m|\theta_1^{i+1}, \ldots, \theta_{m-1}^{i+1}, Y)$. \square
Gibbs samplers belong to the class of Markov chain Monte Carlo (MCMC) algorithms.

For large N we obtain dependent draws from the posterior distribution of θ.

To reduce the influence of the initialization of the sampler, it is common practice to discard the initial draws.

Approximate the posterior expectations of $h(\theta)$ by Monte Carlo averages:

$$\hat{\mathbb{E}}[\hat{\theta}] = \frac{1}{N - N_0} \sum_{i=N_0+1}^{N} h(\theta^i) \xrightarrow{a.s.} \mathbb{E}[h(\theta)|Y]$$

provided $\mathbb{E}[|\theta(\theta)||Y] < \infty$.
Back to the Basic State-Space Model

• Consider

 \[y_t = \Psi s_t + u_t \]
 \[s_t = \Phi s_{t-1} + \epsilon_t \]

 measurement equation
 state transition equation

 where \(\epsilon_t \sim iidN(0, \Sigma) \) and \(u_t \sim iidN(0, H) \).

• \(y_t \)'s are observed.

• \(s_t \)'s are unobserved.

• Model generates joint density for the observations and latent states:

 \[
 p(Y_{1:T}, S_{1:T}|\theta) = \prod_{t=1}^{T} p(y_t, s_t|Y_{1:t-1}, S_{1:t-1}, \theta) \\
 = \prod_{t=1}^{T} p(y_t|s_t, \theta) p(s_t|s_{t-1}, \theta).
 \]
Consider the following model of inflation:

\[\pi_t = \pi_t^* + \tilde{\pi}_t \]

where \(\pi_t^* \) is a time-varying inflation target:

\[\tilde{\pi}_t = \rho \tilde{\pi}_{t-1} + \sigma \epsilon_t, \quad \pi_t^* = \pi_{t-1}^* + \sigma \eta_t. \]

This looks like a state-space model:

\[
\begin{align*}
 y_t &= \begin{bmatrix} 1 & 1 \end{bmatrix} s_t \\
 s_t &= \begin{bmatrix} \pi_t^* \\ \tilde{\pi}_t \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & \rho \end{bmatrix} s_{t-1} + \begin{bmatrix} \sigma \eta & 0 \\ 0 & \sigma \epsilon \end{bmatrix} \begin{bmatrix} \eta_t \\ \epsilon_t \end{bmatrix}.
\end{align*}
\]
• Extract “true” GDP growth from income and expenditure-side GDP measures.

• Measurement equation:

\[
\begin{bmatrix}
GDP_{Et} \\
GDP_{It}
\end{bmatrix} = \begin{bmatrix} 1 & 1 \\
1 & 1
\end{bmatrix} \begin{bmatrix} GDP_t \\
\epsilon_t
\end{bmatrix} + \begin{bmatrix} \epsilon_{Et} \\
\epsilon_{It}
\end{bmatrix}
\]

• State-transition equation:

\[
GDP_t = \mu (1 - \rho) + \rho GDP_{t-1} + \epsilon_{Gt}.
\]

• We can also allow for correlation between measurement errors and state-transition innovations:

\[
(\epsilon_{Gt}, \epsilon_{Et}, \epsilon_{It})' \sim iid N(0, \Sigma), \quad \text{where} \quad \Sigma = \begin{bmatrix}
\sigma_{GG}^2 & 0 & 0 \\
0 & \sigma_{EE}^2 & \sigma_{EI}^2 \\
0 & \sigma_{IE}^2 & \sigma_{II}^2
\end{bmatrix}.
\]
Suppose that all the non-redundant parameters of the state space model are collected in the vector θ.

Bayes Theorem:

$$p(\theta|Y) \propto p(Y|\theta)p(\theta)$$

We have learned how to numerically evaluate $p(Y|\theta)$ using the Kalman filter.

But, how should we draw from the posterior?
• In the Bayesian framework, there is no conceptual difference between:
 • unknown model parameters θ,
 • latent states $S_{1:T}$.

• Implement a posterior sampler on the enlarged probability space for $(S_{1:T}, \theta)$.

• Bayes Theorem again:

$$p(\theta, S_{1:T}|Y_{1:T}) \propto \left(\prod_{t=1}^{T} p(y_t|s_t, \theta)p(s_t|s_{t-1}, \theta) \right) p(\theta)$$

• Construct a Gibbs sampler that iterates over parameters and states $S_{1:T}$:

$$p(S_{1:T}|Y_{1:T}, \theta) \propto p(S_{1:T}|\theta)p(Y_{1:T}|S_{1:T}, \theta)$$

$$p(\theta|Y_{1:T}, S_{1:T}) \propto p(\theta)p(S_{1:T}|\theta)p(Y_{1:T}|S_{1:T}, \theta)$$
• Gibbs-sampling algorithm iterates over the conditional posteriors of θ and $S_{1:T}$.

• Recall the linear Gaussian state space representation

\[
y_t = A + Bs_t + u_t, \quad u_t \sim N(0, H) \\
s_t = \Phi s_{t-1} + e_t, \quad e_t \sim N(0, Q)
\]

with $\theta = (A, B, H, \Phi, Q)$

• For $i = 1, \ldots, n_{\text{sim}}$

 (a) Draw $\theta^{(i)}$ from $p\left(\theta \mid Y_{1:T}, S_{1:T}^{(i-1)}\right)$

 • Conditional on $S_{1:T}^{(i-1)}$, drawing θ is a standard linear regression
 • (Measurement) $y_t = A + Bs_t + u_t$
 • (Transition) $s_t = \Phi s_{t-1} + e_t$

 (b) Draw $S_{1:T}^{(i)}$ from $p\left(S_{1:T} \mid Y_{1:T}, \theta^{(i)}\right)$

 • Kalman / simulation smoother
• Suppose we iterate over
 \[p(\theta | \phi), \quad p(\phi | \theta). \]

• Define marginals
 \[p(\theta) = \int_{\Phi} p(\theta | \phi) p(\phi) d\phi, \quad p(\phi) = \int_{\Theta} p(\phi | \tilde{\theta}) p(\tilde{\theta}) d\tilde{\theta}. \]

• Combine:
 \[p(\theta) = \int_{\Phi} p(\theta | \phi) \left[\int_{\Theta} p(\phi | \tilde{\theta}) p(\tilde{\theta}) d\tilde{\theta} \right] d\phi = \int_{\Theta} \left[\int_{\Phi} p(\theta | \phi) p(\phi | \tilde{\theta}) d\phi \right] p(\tilde{\theta}) d\tilde{\theta} \]

• Define Markov transition kernel:
 \[K(\theta | \tilde{\theta}) = \int_{\Phi} p(\theta | \phi) p(\phi | \tilde{\theta}) d\phi \]
Gibbs Sampler – Some Intuition

• Recall Markov transition kernel:

\[K(\theta|\tilde{\theta}) = \int_{\Phi} p(\theta|\phi)p(\phi|\tilde{\theta})d\phi \]

• Note that \(p(\theta) \) is a fixed point of the mapping \(M[\cdot] \):

\[p(\theta) = \int K(\theta|\tilde{\theta})p(\tilde{\theta})d\tilde{\theta} = M[p(\tilde{\theta})] \]

• Questions (see Tanner and Wong (1987) for answers):
 • Is the fixed point unique? Yes
 • Is \(M[\cdot] \) a contraction mapping? Yes
Some Regularity Conditions

- $K(\theta | \tilde{\theta})$ is uniformly bounded and equicontinuous in θ.
- For any $\theta_0 \in \Theta$ there is a neighborhood $U(\theta_0)$ such that $K(\theta | \tilde{\theta}) > 0$ for all $\theta, \tilde{\theta} \in U(\theta_0)$.
• For a function $f(\theta)$ let $\|f\| = \int |f(\theta)| d\theta$.

• Recall the map $M[f] = \int K(\theta|\tilde{\theta})f(\tilde{\theta}) d\tilde{\theta}$. Note that $M[\cdot]$ can be applied to a large class of functions $f(\cdot)$ (not just densities).
Lemma 1

Every fixed point of $M[.]$ must be continuous.

- Let $p_*(\theta)$ be a fixed point of $M[.]$.

- Consider

$$
\lim_{\theta_1 \to \theta_0} |p_*(\theta_1) - p_*(\theta_0)|
= \lim_{\theta_1 \to \theta_0} \left| \int K(\theta_1 | \tilde{\theta}) p_*(\tilde{\theta}) d\tilde{\theta} - \int K(\theta_0 | \tilde{\theta}) p_*(\tilde{\theta}) d\tilde{\theta} \right|
\leq \lim_{\theta_1 \to \theta_0} \int \left| K(\theta_1 | \tilde{\theta}) - K(\theta_0 | \tilde{\theta}) \right| p_*(\tilde{\theta}) d\tilde{\theta}
= \int \left[\lim_{\theta_1 \to \theta_0} \left| K(\theta_1 | \tilde{\theta}) - K(\theta_0 | \tilde{\theta}) \right| \right] p_*(\tilde{\theta}) d\tilde{\theta}
= 0
$$

- The second-to-last equality follows from the assumptions.
Lemma 2

\[\| M[f] \| = \| f \| \]

- Note that

\[\| M[f] \| = \int \left[\int K(\theta|\tilde{\theta})|f(\tilde{\theta})|d\tilde{\theta} \right] d\theta \]

\[= \int \int K(\theta|\tilde{\theta})d\theta \left[f(\tilde{\theta}) \right] d\tilde{\theta} \]

\[= \int f(\tilde{\theta})d\tilde{\theta} \]

\[= \| f \| \]
Lemma 3

\[\| M[f] \| \leq \| f \| \]

• Note that

\[\| M[f] \| = \int |M[f]| d\theta \]
\[\leq \int M[|f|] d\theta \]
\[= \| M[|f|] \| \]
\[= \| f \| \]
Lemma 4
Let $f^+ = f \{ f \geq 0 \}$ and $f^- = (-f) \{ f < 0 \}$. If f is such that neither f^+ nor f^- are identical to zero, then $\|M[f]\| < \|f\|$.

- Recall that $M[f] = \int K(\theta|\tilde{\theta})f(\tilde{\theta})d\tilde{\theta}$.
- Now consider

- Note: $\text{supp}(f^+) \subset \text{supp}(M[f^+])$ and $\text{supp}(f^-) \subset \text{supp}(M[f^-])$.
- Deduce $\text{supp}(M[f^+])$ and $\text{supp}(M[f^-])$ overlap.
- Thus, $\|M[f]\| < \|M[|f|] = \|f\|$ (Lemma 2).
Uniqueness of Fixed Point

Uniqueness

p_* is the only density that satisfies $p_* = M[p_*]$.

- Suppose (to the contrary) $p_{**} = M[p_{**}]$ and define $f = p_* - p_{**}$.
- Then $M[f] = M[p_* - p_{**}] = p_* - p_{**} = f$ and f is a fixed point.
- f must be continuous (Lemma 1).
- Since $\int f(\theta)d\theta = 0$ and $f(\theta) \neq 0$ neither f^+ nor f^- can be zero.
- Thus, $\|M[f]\| < \|f\|$ (Lemma 4), which contradicts that f is a fixed point.
We want that \(\|p_{(s+1)} - p_*\| < \|p_{(s)} - p_*\| \), where \(p_{(s+1)} = M[p_{(s)}] \).

- It is straightforward to show the weaker result: \(\|p_{(s+1)} - p_*\| \leq \|p_{(s)} - p_*\| \).

- Let \(f = p_{(s)} - p_* \) such that \(M[f] = p_{(s+1)} - p_* \).

- Desired result follows from Lemma 3 which states that \(\|M[f]\| \leq \|f\| \).

- One can use arguments similar to those on the previous slide to turn the weak inequality into a strict inequality.
• Suppose that the starting value $p(0)(\theta)$ satisfies $\sup_{\theta} \frac{p(0)(\theta)}{p^*(\theta)} < \infty$.

• Then there exists a constant $\alpha \in (0, 1)$ such that

$$\|p(s) - p^*\| \leq \alpha^s \|p(0) - p^*\|$$

• See Tanner and Wong (1987).
• Let $p(\theta)$ be a normalized probability density. Define the mapping

$$M[p(\theta)] = \int K(\theta|\tilde{\theta}, Y)p(\tilde{\theta})d\tilde{\theta}$$

$M[\cdot]$ maps a density $p(\theta)$ into a density $p'(\theta)$.

• We are interested in applying the mapping iteratively: Let $p^i(\theta) = M[p^{i-1}(\theta)]$.

• The mapping is constructed such that the fixed point corresponds to the posterior of interest.

• Under suitable regularity conditions
 1. The fixed point $p_*(\theta)$ of the mapping $M[\cdot]$ is unique.
 2. The mapping $M[\cdot]$ is a contraction mapping and the sequence of densities $\{p^i(\theta)\}_{i=0}^{\infty}$ converges to the fixed point $p_*(\theta)$

$$\int |p^i(\theta) - p_*(\theta)|d\theta \longrightarrow 0$$

as $i \longrightarrow \infty$. □
• For $i = 1, \ldots, N$:
 1. Draw ϕ_{i+1}^i from the density $p(\phi|\theta^i)$.
 2. Draw θ_{i+1}^i from the density $p(\theta|\phi_{i+1}^i)$.

• It turns out that for $s > \bar{S}$ the marginal distribution of the draws (θ^i, ϕ^i) is approximately equal to the target distribution $p(\theta, \phi)$.

• However, the sequence of draws is serially correlated!

• Gibbs sampler creates a Markov chain. It belongs to the class of Markov chain Monte Carlo (MCMC) procedures.
More Generally

- Suppose the parameter vector θ can be partitioned into $\theta = [\theta_1', \ldots, \theta_m']'$.

- For each j it is possible to generate draws of θ_j from the conditional distribution $p(\theta_j|\theta_{-j}, Y)$, where θ_{-j} denotes the vector θ without the partition θ_j.

- For $j = 1, \ldots, N$:

 1. Draw θ_1^{i+1} from the density $p(\theta_1|\theta_2^i, \ldots, \theta_m^i, Y)$.
 2. Draw θ_2^{i+1} from the density $p(\theta_2|\theta_1^{i+1}, \theta_3^i, \ldots, \theta_m^i, Y)$.
 3. \ldots
 4. Draw θ_m^{i+1} from the density $p(\theta_m|\theta_1^{i+1}, \ldots, \theta_{m-1}^{i+1}, Y)$. \qed
A stationary process \(\{\theta^i\} \) is said to be ergodic, if for any two bounded and measurable functions \(f(\cdot) \) and \(g(\cdot) \):

\[
\lim_{n \to \infty} \left| \mathbb{E}[f(\theta^i, \ldots, \theta^{i+k})g(\theta^{i+n}, \ldots, \theta^{i+n+l})] \right|
\]

\[
- \left| \mathbb{E}[f(\theta^i, \ldots, \theta^{i+k})] \right| \cdot \left| \mathbb{E}[g(\theta^{i+n}, \ldots, \theta^{i+n+l})] \right| = 0.
\]

If \(\{\theta^i\} \) is strictly stationary and ergodic with \(\mathbb{E}[|h(\theta)|] < \infty \), then

\[
\frac{1}{N} \sum_{i=1}^{N} h(\theta^i) \xrightarrow{a.s.} \mathbb{E}[h(\theta)].
\]
A Sufficient Condition for Ergodicity

Suppose that for every $\theta \in \Theta$ and every $A \subseteq \Theta$

$$\int_A p(\theta|Y) d\theta > 0 \quad \text{implies} \quad \int_A K(\tilde{\theta}|\theta) d\tilde{\theta} > 0$$

then the transition kernel of the Gibbs sampler is ergodic. (Geweke, 2005, Corollary 4.5.1)
Another Sufficient Condition for Ergodicity

Suppose that the following three conditions are satisfied:

- For all θ with $p(\theta|Y) > 0$ there exists an open neighborhood $N_\delta(\theta)$ such that for all $\tilde{\theta} \in N_\delta(\theta)$ $p(\tilde{\theta}|Y) > 0$.

- For every point $\tilde{\theta} \in \Theta$ and each block b of the Gibbs sampler, there exists an open neighborhood $N_\delta(\tilde{\theta}_b)$ of $\tilde{\theta}_b$ and a bounded function $c(\tilde{\theta}_b)$ such that for all $\theta_{-b} \in N_\delta(\tilde{\theta}_b)$

\[
\int_{\Theta(b)} p(\tilde{\theta}_{<b}, \theta_b, \tilde{\theta}_{>b}) d\theta_b \leq c(\tilde{\theta}_b)
\]

- Θ is connected.

Then the transition kernel of the Gibbs sampler is ergodic. (Geweke, 2005, Theorem 4.5.4)
For large N we obtain dependent draws from the posterior distribution of θ. It is common practice to discard the initial draws.

Approximate the mean and covariance matrix of θ by Monte Carlo averages:

$$\hat{E}[\theta] = \frac{1}{N - N_0} \sum_{i=N_0+1}^{N} h(\theta^i) \overset{a.s.}{\Rightarrow} E[h(\theta)|Y]$$

provided $E[|\theta(\theta)||Y] < \infty$.

Stronger regularity conditions are required to obtain a Central Limit Theorem (CLT)

$$\sqrt{N - N_0}(\hat{E}[\theta|Y] - E[\theta|Y]) \Rightarrow N(0, V)$$

A CLT facilitates the computation of numerical standard errors for Monte Carlo approximations.
• Suppose that

\[
\begin{bmatrix}
\theta_1 \\
\theta_2
\end{bmatrix}
\sim N\left(
\begin{bmatrix}
\mu_1 \\
\mu_2
\end{bmatrix},
\begin{bmatrix}
\Sigma_{11} = 1 & \Sigma_{12} = \rho \\
\Sigma_{21} = \rho & \Sigma_{22} = 1
\end{bmatrix}
\right)
\]

• Conditional distribution 1:

\[
\theta_1 | \theta_2 \sim N\left(\mu_1 + \Sigma_{12} \Sigma^{-1}_{22} (\theta_2 - \mu_2), \Sigma_{11} - \Sigma_{12} \Sigma^{-1}_{22} \Sigma_{21}\right)
\]

• Conditional distribution 2:

\[
\theta_2 | \theta_1 \sim N\left(\mu_2 + \Sigma_{21} \Sigma^{-1}_{11} (\theta_1 - \mu_1), \Sigma_{22} - \Sigma_{21} \Sigma^{-1}_{11} \Sigma_{12}\right)
\]

• Vary \(\rho \) and observe performance.
• If parameters are highly correlated across blocks the draws will also be highly correlated and the sampler moves slowly through the parameter space.

• What’s bad about large serial correlation?

\[
\sqrt{N}(\bar{h}_N - \mathbb{E}[\bar{h}_N]) \\
\Rightarrow N\left(0, \frac{1}{N} \sum_{i=1}^{n} \nabla[h(\theta^i)] + \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq i} \text{COV}[h(\theta^i), h(\theta^j)]\right).
\]
Illustration 2 - Dynamic Factor Model

- Observables:
 \[y_{it} = \alpha_i + \lambda_i f_t + \xi_{it} \]

- Common factor:
 \[f_t = \phi_0 f_{t-1} + u_{0t} \quad u_{0t} \sim N(0, \sigma^2) \]

- Idiosyncratic processes
 \[\xi_{it} = \phi_i \xi_{it-1} + u_{it} \quad u_{it} \sim N(0, \sigma_i^2) \]

- Grouping of parameters: \(\theta_0 = [\phi_0, \sigma^2] \), \(\theta_{1i} = [\phi_1, \sigma_i^2, \lambda_i, \alpha_i] \).
• Conditional on \((\alpha_i, \lambda_i, f_{1:T})\) we can compute
\[
\xi_{it} = y_{it} - \alpha_i - \lambda_i f_t
\]
and estimate a Bayesian regression model for
\[
\xi_{it} = \phi_i \xi_{it-1} + u_{it}.
\]

• Conditional on \((\phi_i, f_{1:T})\) we can estimate the quasi-differenced regression:
\[
y_{it} - \phi_i y_{it-1} = \alpha_i \cdot (1 - \phi_i) + \lambda_i \cdot (f_t - \phi_i f_{t-1}) + u_{it}.
\]

• Conditional on \(f_{1:T}\) we can estimate the regression:
\[
f_t = \phi_0 f_{t-1} + u_t.
\]
• State-space representation for filter/smoother...
• There are N measurement equations:

$$y_{it} - \phi_i y_{it-1} = \alpha_i \cdot (1 - \phi_i) + \lambda_i \cdot f_t - (\lambda_i \phi_i) \cdot f_{t-1} + u_{it}.$$

• State vector $s_t = [f_t, f_{t-1}]'$.
• State transition (companion form VAR):

$$
\begin{bmatrix}
 f_t \\
 f_{t-1}
\end{bmatrix} =
\begin{bmatrix}
 \phi_0 & 0 \\
 1 & 0
\end{bmatrix}
\begin{bmatrix}
 f_{t-1} \\
 f_{t-2}
\end{bmatrix} +
\begin{bmatrix}
 1 \\
 0
\end{bmatrix} u_t.
$$