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From Linear to Nonlinear DSGE Models

® Linear DSGE model leads to
Yt = Wo(9)+\|11(9)t+\|/2(9)5t+ ug, Uy ~ N(O7 Zu),
St = ¢1(9)St71 + ¢6(9)6t, €t N~ N(O7 ZE)

® Nonlinear DSGE model leads to
Y = \U(St, t; 0) + Ut, ug ~ Fu(y 8)
St = <I>(St—la €t, 9)7 €t ~ Fe('; 9)-
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From Linear to Nonlinear DSGE Models

® While DSGE models are inherently nonlinear, the nonlinearities are often small and
decision rules are approximately linear.

® One can add certain features that generate more pronounced nonlinearities:

® stochastic volatility;
® markov switching coefficients;
® asymmetric adjustment costs;

® occasionally binding constraints.
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Particle Filters

® There are many particle filters...
® We will focus on three types:

® Bootstrap PF
® A generic PF

® A conditionally-optimal PF
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Filtering - General Idea

® State-space representation of linearized DSGE model
Wo(0) + W1 ()t + Vo (6)s:(+ur) measurement

Y+ =
st = $q(0)s: + P (O)e; state transition
® Likelihood function:
-
P(Yl:T|9) = H P()/t| Y1it-1, 9)

t=1
e A filter generates a sequence of conditional distributions s;|Y7.;.
® [terations:
® [nitialization at time t — 1: p(s¢—1|Y1:t—1,6)
® Forecasting t given t — 1:
@ Transition equation: p(s¢|Y1.t—1,0) = [ p(stlst—1, Yi:t—1,0)p(st—1|Y1:t—1,0)dst—1
@ Measurement equation: p(y¢|Y1.c—1,0) = [ p(ytlst, Yi:e—1,0)p(st| Y1:e—1,0)dst

® Updating with Bayes theorem. Once y; becomes available:
_ p(yelse, Yie—1,0)p(se| Yi:e-1,0)

Y1 ,9 = aYi - 79 -
,D(St| 1t ) p(Stlyt Lt—1 ) p(yt|yl:t7139)
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Bootstrap Particle Filter — Idea
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Bootstrap Particle Filter

@ Initialization. Draw the initial particles from the distribution sé id p(so) and set Wg =1,
j=1...,M.
® Recursion. Fort=1,..., T:
@ Forecasting s;. Propagate the period t — 1 particles {5{71, W{q} by iterating the
state-transition equation forward:

§=d(sl_y,eli0), e~ F(:0). (1)

An approximation of E[h(s¢)|Y1.t—1, 6] is given by

M
R 1 o
he,m = m J; h(s)W{_,. (2)
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Bootstrap Particle Filter

@ Initialization.
® Recursion. Fort=1,..., T:

@ Forecasting s;.
® Forecasting y;. Define the incremental weights

Wi = p(y:|8},6). 3)

The predictive density p(y:|Yi:t—1,6) can be approximated by

" 1 i
B(ye| Yie—1,0) = i Z i Wiy (4)

J=1

If the measurement errors are N(0,X,) then the incremental weights take the form
- j —n - 1 o - o
W = (2m) "% 1/2exp{ - 5(}/:fW(Sﬁ,t;@))/Zul(yrf‘V(sJut:@))}v (5)

where n here denotes the dimension of y;.
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Bootstrap Particle Filter

@ Initialization.
® Recursion. Fort=1,... T:

@ Forecasting s;.
@® Forecasting y;. Define the incremental weights

W = p(y:|3, ). (6)

©® Updating. Define the normalized weights

R ™
W 2 W Wy
An approximation of E[h(s;)| Y1, 0] is given by
e = iEM:h(ﬁ)Wg (8)
, M —
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Bootstrap Particle Filter

@ Initialization.
® Recursion. Fort=1,..., T:

@ Forecasting s;.

® Forecasting y;.

© Updating. ‘

O Selection (Optional). Resample the particles via multinomial resampling. Let {s/}}X;
denote M iid draws from a multinomial distribution characterized by support points and
weights {&/, W/} and set W/ =1 for j=,1..., M.

An approximation of E[h(s;)|Y1.,6] is given by

M
- 1 L
Feas = 37 3l W ©)

© Likelihood Approximation. The approximation of the log likelihood function is given by

T

M
In p(Yr.710) = Z Z Wi (10)
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® The convergence results can be established recursively, starting from the assumption
heam 22 Elh(se—1)|Yie-1l,
VM (he—1,m — E[h(se—1)| Ya:e-1]) = N(0,Qe—1(h)).

* Forward iteration: draw s; from gi(s¢|s/_;) = p(se|si_,).
® Decompose

/A7t,M - IE[/7(5t)|Y1:1r—1] (11)
M
= i D (hE ) Wi
o
2 0 (B [AIWE, — Elh(se)| Yaa])
j=1
= 141,

® Both / and I/ converge to zero (and potentially satisfy CLT).



® Updating step approximates

Iy e
h( Yie_1)d 1M op Wi
E[h(s;)| 1] = J h(se)p(yelse)p(sel Yie-1)dse _ ai 2oj=1 (t). Wiy 12)
TPOrlsp(sianddse = 4l Wi
® Define the normalized incremental weights as
(St) (}’t|5t) . (13)

fp yelse)p(se| Yie—1)ds;

® Under suitable regularity conditions, the Monte Carlo approximation satisfies a CLT of the
form

VM (he.m — E[h(s:)| Yae]) (14)
= N(0,Q:(h)), S$(h) = Qe(ve(s:)(h(s:) — E[h(se)| Yie]))-
® Distribution of particle weights matters for accuracy! = Resampling!
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The Role of Measurement Errors

® Measurement errors may not be intrinsic to DSGE model.

® Bootstrap filter needs non-degenerate p(y:|s;, #) for incremental weights to be well
defined.

® Decreasing the measurement error variance ¥, holding everything else fixed, increases the
variance of the particle weights, and reduces the accuracy of Monte Carlo approximation.
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Generic Particle Filter

@ Initialization. Same as BS PF
® Recursion. Fort=1,...,T: _
@ Forecasting s;. Draw 5/ from density g¢(5:|s]_;,0) and define
_ PGS 0)
C &8sy, 0)
An approximation of E[h(s;)| Y1.t—1, 0] is given by

(15)

M
1 e
e = 22 > WSl WLy (16)

j=1
@® Forecasting y;. Define the incremental weights
W = p(ye|3, )t (17)
The predictive density p(y:|Yi:t—1,6) can be approximated by

M
R 1 o
P(}/t| Yie-1, 9) = M Z Wﬁ W#—l' (18)
j=1
© Updating. Same as BS PF

O Selection. Same as BS PF



Adapting the Generic PF

e Conditionally-optimal importance distribution:
g:(3tls{_1) = p(3lye, si_1)-
This is the posterior of s; given 5{71. Typically infeasible, but a good benchmark.

® Approximately conditionally-optimal distributions: from linearize version of DSGE model
or approximate nonlinear filters.

e Conditionally-linear models: do Kalman filter updating on a subvector of s;. Example:
yi = Wo(my)+WVi(me)t + Wa(my)se + vy,  ur ~ N(0,XZ,),
se = $o(my) + P1(my)se—1 + Pe(my)er, € ~ N(0, %),
where m; follows a discrete Markov-switching process.
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More on Conditionally-Linear Models

® State-space representation is linear conditional on m;.

® Write
p(me, se| Yie) = p(me| Yi:e)p(se|me, Yi:e), (19)

where
se|(my, Y1.t) ~ N(§t|t(mt), Pt|t(mt)). (20)

® Vector of means 5;:(m;) and the covariance matrix P;;(m); are sufficient statistics for
the conditional distribution of s,.
Approximate (m, s;)| Y1.c by {m}, & e t|t7
The swarm of particles approximates

/h(mhst)P(mnSh Yl:t)d(mnst) (21)

JAN
Wll

B /[/ h(me st)p(selm. Yl:f)dst] p(me|Yi.:)dm,
Z [/ pN(st' tje’ tt)dst] .
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More on Conditionally-Linear Models

® We used Rao-Blackwellization to reduce variance:
V[h(St, mt)] = E [V[h(st, mt)lmt]] + V[E[h(st, mt)|mt]]
ge V[]E[h(st, mt)|mt]]

* To forecast the states in period t, generate . from gt(nﬁt\m’;_l) and define:

W= p(ﬁﬂm{A)

T e(flm ) (22)
C (ilm )
® The Kalman filter forecasting step can be used to compute:
§{|'t—1 ¢0(ﬁ7’%) + ‘Dl.(ﬁTJtI)S{,.l
Plew = Olm)T(m)odi) -
ﬂ[t—l = Wo(fﬁjt_) + Wy ()t —|— “’2(574)51”_1
Fi\t—l = WZ(’ﬁjt)Pi‘t_l\Uz(fﬁjt)’ + ..
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More on Conditionally-Linear Models

® Then,
/h(mt7St)p(mt75t|yl:t—1)d(mtaSt) (24)

= / [/ h(me, s¢)p(se|me, Yl:tl)dst} p(m:|Yi:e—1)dm;

Q

- Z [ bt (sl P )| W
® The likelihood apprOX|mat|on is based on the incremental weights
it = P (el s Fijea) - (25)

® Conditional on r?T’t we can use the Kalman filter once more to update the information
about s; in view of the current observation y;:

Si{[t §{|_t—1 + P{|_t 1w2(mj) (Fi\t 1)7 ( yl|t 1) (26)
Pi\t = Pi|t—1_Pi|t 1\|J2(mj) (Fg|t 1) \U2(mj)'Dt|t—1'
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Particle Filter For Conditionally Linear Models

@ Initialization.
® Recursion. Fort=1,..., T . ‘
@ Forecasting s;. Draw A7, from density g:(f:|m._;,0), calculate the importance weights w;

in (22), and compute 5{“_1 and P{lt_l
E[h(st, m¢)|Y1:e—1, 0] is given by (25). _
® Forecasting y;. Compute the incremental weights W] according to (25). Approximate the

predictive density p(y:| Y1:t—1,0) by

according to (23). An approximation of

M
R 1 o
P(ye| Yiie-1,0) = i pA (27)
j=1
© Updating. Define the normalized weights
y Wi W/
I = T (28)
M Zj:l M Wiy
and compute §£|: a.nd' IS{E'acc?r‘ding to (26). An approximation of E[h(m¢, s;)| Y1.t,0] can be
obtained from {n"*r’t,§i‘t7 Pi‘t, W/}
@ Selection.
© Likelihood Approximation.
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Nonlinear and Partially Deterministic State Transitions

® Example:
S1,t = q>1(St—17 Et)a St = ¢2(5t—1)7 €t ~ N(07 1)-
® Generic filter requires evaluation of p(s;|s;—1).

® Define ¢; = [s;,€;]’ and add identity €; = ¢, to state transition.

® Factorize the density p(st|si—1) as
p(§t‘§t71) = Pe(Et)P(Sl,t|5t—17 6t)P(52,t|5t—1)~
where p(s1 ¢|si—1,€:) and p(sp,¢|si—1) are pointmasses.
® Sample innovation ¢; from gf(e¢|st—1).

® Then

Plstn) _  PEIPGLesl 1 &)p(3.lsl 1) p(&l)

g(dldy)  &f(@lsl_)pE sy &)p( lsly)  &f(Elsi_y)

U\)Jt.-:



Degenerate Measurement Error Distributions

® Qur discussion of the conditionally-optimal importance distribution suggests that in the
absence of measurement errors, one has to solve the system of equations

Yt = \IJ(QD(SLl, af))a
to determine é’t as a function of 5{—1 and the current observation y;.

® Then define

wi=p(&) and & =(s]_;.&).

¢ Difficulty: one has to find all solutions to a nonlinear system of equations.

® While resampling duplicates particles, the duplicated particles do not mutate, which can
lead to a degeneracy.
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We will now apply PFs to linearized DSGE models.

This allows us to compare the Monte Carlo approximation to the “truth.”

Small-scale New Keynesian DSGE model

® Smets-Wouters model
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[llustration 1: Small-Scale DSGE Model

Parameter Values For Likelihood Evaluation

Parameter 6™ 2 Parameter om Iz

T 200 326 & 098  0.89
1 225 1.88 1 065  0.53
or 0.81 076 pg 098  0.98
Dz 093 089 rA 034  0.19
7(A) 316 329 @ 051  0.73
o, 019 020 o, 0.65  0.58
o, 0.24 029 Inp(Y|0) -3065 -313.4
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Likelihood Approximation

In ﬁ()/t| Yie—1, Hm) vs. In P()/t| Yie—1, 9m)

2
1984 1989 1994 1999

Notes: The results depicted in the figure are based on a single run of the bootstrap PF
(dashed), the conditionally-optimal PF (dotted), and the Kalman filter (solid).
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Filtered State

E[ﬁt‘ Y1t em] VS. E[gt| Y1t em]

0
1984 1989 1994 1999

Notes: The results depicted in the figure are based on a single run of the bootstrap PF
(dashed), the conditionally-optimal PF (dotted), and the Kalman filter (solid).
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Distribution of Log-Likelihood Approximation Errors

Bootstrap PF: ™ vs. '

0.10

0.05

0.00
—40

20

Notes: Density estimate of Ay =1In p(Y1.710) — In p(Y1.7]0) based on N,,, = 100 runs of the
PF. Solid line is § = #™; dashed line is § = §' (M = 40, 000).
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Distribution of Log-Likelihood Approximation Errors

0™: Bootstrap vs. Cond. Opt. PF

1.2
1.0
0.8
0.6
0.4
0.2

AN

0.0
—15

Notes: Density estimate of Ay =In p(Y1.7|0) — In p(Y1.7]0) based on N,,, = 100 runs of the
PF. Solid line is bootstrap particle filter (M = 40,000); dotted line is conditionally optimal

particle filter (M = 400).

—10 -5 0
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Summary Statistics for Particle Filters

Bootstrap Cond. Opt. Auxiliary

Number of Particles M 40,000 400 40,000
Number of Repetitions 100 100 100
High Posterior Density: 6 = 6™
Bias A; -1.39 -0.10 -2.83
StdD A, 2.03 0.37 1.87
Bias A, 0.32 -0.03 -0.74
Low Posterior Density: 6 = 6’

Bias A; -7.01 -0.11 -6.44
StdD A, 4.68 0.44 4.19
Bias A, -0.70 -0.02 -0.50

Notes: Ay = In p(Y1.7]0) — In p(Y1.7|0) and Ay = exp[In p(Y1.7]0) — In p(Y1.7]0)] — 1. Results
are based on N,,, = 100 runs of the particle filters.
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Great Recession and Beyond

Mean of Log-likelihood Increments In p(y;| Y1.t—1,60™)

v_—-a-—uN—..W_\/—-—-._mu-_.w-_m_
o
'

—100

—200

—300
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Notes: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap
particle filter (M = 40,000) and dotted lines correspond to conditionally-optimal particle filter
(M = 400). Results are based on N,,, = 100 runs of the filters.
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Great Recession and Beyond

Mean of Log-likelihood Increments In p(y;| Y1.t—1,60™)
-3.0

=5.0

—5.5

—6.0

—06.5

=7.0
2010 2011 2012 2013

Notes: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap
particle filter (M = 40,000) and dotted lines correspond to conditionally-optimal particle filter
(M = 400). Results are based on N,,, = 100 runs of the filters.
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Great Recession and Beyond

Log Standard Dev of Log-Likelihood Increments

-
-5
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Notes: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap
particle filter (M = 40,000) and dotted lines correspond to conditionally-optimal particle filter
(M = 400). Results are based on N,,, = 100 runs of the filters.
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SW Model: Distr. of Log-Likelihood Approximation Errors

BS (M = 40,000) versus CO (M = 4,000)

0.09
0.08
0.07
0.06 :
0.05 t
0.04 L
0.03 L
0.02 x
0.01 i
0.00 | .
7600 —500 —400 —300 —200 —100 0 100

Notes: Density estimates of A; = Inp(Y|0) — In p(Y|6) based on N,,, = 100. Solid densities
summarize results for the bootstrap (BS) particle filter; dashed densities summarize results for
the conditionally-optimal (CO) particle filter.
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SW Model: Distr. of Log-Likelihood Approximation Errors

BS (M = 400, 000) versus CO (M = 4,000)
0.09
0.08 !
0.07 :
0.06 ;
0.05 :
0.04

0.03
0.02

0.01 ‘/\
0.00 :

"—350—300—250—200—150—100 =50 0 50

Notes: Density estimates of A; = Inp(Y|0) — In p(Y|6) based on N,,, = 100. Solid densities
summarize results for the bootstrap (BS) particle filter; dashed densities summarize results for
the conditionally-optimal (CO) particle filter.
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SW Model: Summary Statistics for Particle Filters

Bootstrap Cond. Opt.
Number of Particles M 40,000 400,000 4,000 40,000
Number of Repetitions 100 100 100 100
High Posterior Density: 8 = 6™
Bias A, -238.49 -118.20 -8.55 -2.88
StdD A, 6828 3569 443 249
Bias A, -1.00 -1.00 -0.87 -0.41
Low Posterior Density: 6 = 6
Bias Aq -253.890 -128.13 -11.48 -4.91
StdD A, 6557 4125 498 275
Bias A, -1.00 -1.00  -0.97  -0.64

Notes: Results are based on N,,, = 100.
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Embedding PF Likelihoods into Posterior Samplers

® Likelihood functions for nonlinear DSGE models can be approximated by the PF.
® We will now embed the likelihood approximation into a posterior sampler:

® PFMH Algorithm (a special case of PMCMC)

° SMC?
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® Distinguish between:
° {p(Y|0),p(8]Y),p(Y)}, which are related according to:

plo1v) = PO ov) = [ avio)ete)a
° {p(Y]0),p(0]Y),p(Y)}, which are related according to:
pov) = PO vy = [ pvio)eto)as.

® Surprising result (Andrieu, Docet, and Holenstein, 2010): under certain conditions we can
replace p(Y|6) by p(Y|#) and still obtain draws from p(6]Y).
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PFMH Algorithm

Fori=1to N:
©® Draw ¥ from a density q(9]0'~1).
@® Set 6" = 1) with probability

i1y — min p(Y[9)p(9)/q(9]0" 1)
a(0]0"") = {1’ ﬁ(Y|91—1)p(9i_1)/CI(9i_119)}

and 0" = 0'~1 otherwise. The likelihood approximation p(Y|9) is computed using a
particle filter.
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Why Does the PFMH Work?

® At each iteration the filter generates draws & from the proposal distribution gt(-|s{_1).
o Let 5, = (5}, .. ,§tM)I and denote the entire sequence of draws by Nll;7"-”.

® Selection step: define a random variable AJ; that contains this ancestry information. For
instance, suppose that during the resampling particle j = 1 was assigned the value 51°
then A% =10. Let A; = (A%, - ,Aiv) and use A;.7 to denote the sequence of A;'s.

® PFMH operates on an enlarged probability space: 6, §1;T and Aqi.T.
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Why Does the PFMH Work?

® Use U;.7 to denote random vectors for S;.7 and Aj.7. Ui.7 is an array of iid uniform
random numbers.

® The transformation of U;.7 into (51;T,A1;T) typically depends on 6 and Yi.7, because the
proposal distribution g¢(5¢|s;_;) depends both on the current observation y; as well as the
parameter vector 6.

® E.g., implementation of conditionally-optimal PF requires sampling from a N(§£‘t, Py¢)

distribution for each particle j. Can be done using a prob integral transform of uniform
random variables.

® We can express the particle filter approximation of the likelihood function as
ﬁ(yl:TW) - g(Yl:T‘aa Ul:T)-

where
-

Ut ~ p(UiT) = HP(Ut)~

t=1
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Why Does the PFMH Work?

® Define the joint distribution
pe (Yi.1,0, Ur.T) = g(Y1.710, Ur.7)p(Us.T) p(6).
® The PFMH algorithm samples from the joint posterior
pg (0, Ur.7| Yi.7) o< g(Y16, U.T)p(Us.7) p(6)
and discards the draws of (Uy.7).

® For this procedure to be valid, it needs to be the case that PF approximation is unbiased:

E[p(Yy.710)] = / g(Yarl0, Upr)p(Usr)do = p(Yar0).
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Why Does the PFMH Work?

® We can express acceptance probability directly in terms of p(Y1.7|0).
® Need to generate a proposed draw for both 6 and Uy.7: ¥ and U5 .

® The pr_oposal distribution for (9, Uy 1) in the MH algorithm is given by
q(910v=D)p(U5: 7).

® No need to keep track of the draws (U; 7).

MH acceptance probability:

g(Y19,U")p(U")p(9)
q(9]00~1)p(U*)
T g(Y]00=1, UG=D)p(UG—) p(9(=1)
q(00=116*)p(U(=D)

[ (YR /a9l )
" B(Y106-D)p(00-11) /q(60D]0) |

a(@et) = min 1
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Small-Scale DSGE: Accuracy of MH Approximations

® Results are based on N,,, = 20 runs of the PF-RWMH-V algorithm.

® Each run of the algorithm generates N = 100, 000 draws and the first Ny = 50,000 are
discarded.

® The likelihood function is computed with the Kalman filter (KF), bootstrap particle filter
(BS-PF, M = 40,000) or conditionally-optimal particle filter (CO-PF, M = 400).

® "“Pooled” means that we are pooling the draws from the N,,, = 20 runs to compute
posterior statistics.
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Small-Scale DSGE: Accuracy of MH Approximations

Posterior Mean (Pooled) Inefficiency Factors Std Dev of Means

KF CO-PF  BS-PF KF  CO-PF BS-PF  KF CO-PF BS-PF
T 2.63 2.62 264  66.17 126.76 136022 0.020 0.028  0.091
K 0.82 0.81 0.82 128.00 97.11 1887.37 0.007 0.006  0.026
1 1.88 1.88 1.87  113.46 159.53 749.22 0.011 0.013  0.029
o 0.64 0.64 063 6128 5610 681.85 0.011 0.010 0.036
pr 0.75 0.75 0.75 108.46 134.01 153534 0.002 0.002  0.007
g 0.98 0.98 098 9410 8848 1613.77 0.001 0.001  0.002
Pz 0.88 0.88 0.88  124.24 118.74 151866 0.001 0.001  0.005
rA 0.44 0.44 0.44 14846 151.81 111574 0.016 0.016  0.044
(A 3.32 333 332 152.08 141.62 1057.90 0.017 0.016  0.045
+(@ 0.59 0.59 059  106.68 142.37 899.34 0.006 0.007 0.018
o, 0.24 0.24 024 3521 179.15 110599 0.001 0.002  0.004
oy 0.68 0.68 067 9822 6418 1490.81 0.003 0.002  0.011
o2 0.32 0.32 032 8477 6155 57590 0.001 0.001  0.003
Inp(Y) -357.14 -357.17 -358.32 0.040 0.038  0.949
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Autocorrelation of PFMH Draws

- " I
1.0 U 1.0 u 1.0 d
09 [\, 0o 09
0.8 . .
o . s 08
S 0.7
0.6 . 0.7 Q
N S e 0.6
0.5 S 0.6 NG
0.4 S Sol 05 e
- i &
0.3 0.5 0.4 o
0.2 04 03
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
0, Y Vo
10 £ 1.0 L 10
g 09 0.9
0.9 ! o \
0.8 i X 08 \
- - D
0.7 oo 0.7 D
0.7 - D
0.6 S 0.6 AN
0.6 S .
b 05 o o5 AN
0.5 0.4 04 te
0.4 03 03
05 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

Notes: The figure depicts autocorrelation functions computed from the output of the 1 Block
RWMH-V algorithm based on the Kalman filter (solid), the conditionally-optimal particle filter
(dashed) and the bootstrap particle filter (solid with dots).
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SW Model: Accuracy of MH Approximations

® Results are based on N,,, = 20 runs of the PF-RWMH-V algorithm.
® Each run of the algorithm generates N = 10,000 draws.

® The likelihood function is computed with the Kalman filter (KF) or conditionally-optimal
particle filter (CO-PF).

® "“Pooled” means that we are pooling the draws from the N,,, = 20 runs to compute
posterior statistics. The CO-PF uses M = 40,000 particles to compute the likelihood.
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SW Model: Accuracy of MH Approximations

Post. Mean (Pooled) Ineff. Factors Std Dev of Means

KF CO-PF KF CO-PF KF CO-PF
(100871 -1) 0.14 0.14 172.58 3732.90 0.007 0.034
T 0.73 0.74 185.99 4343.83 0.016 0.079
T 0.51 0.37 174.39 3133.89 0.130 0.552
«a 0.19 0.20 149.77  5244.47 0.003 0.015
oc 1.49 1.45 86.27  3557.81 0.013 0.086
[ 1.47 1.45 134.34  4930.55 0.009 0.056
© 5.34 5.35 138.54 3210.16 0.131 0.628
h 0.70 0.72 277.64 3058.26 0.008 0.027
Ew 0.75 0.75 343.89 2594.43 0.012 0.034
oy 2.28 2.31 162.09 4426.89 0.091 0.477
& 0.72 0.72 182.47 6777.88 0.008 0.051
lw 0.54 0.53 241.80 4984.35 0.016 0.073
lp 0.48 0.50 205.27 5487.34 0.015 0.078
) 0.45 0.44 248.15 3598.14 0.020 0.078
e 2.09 2.09 98.32  3302.07 0.020 0.116
P 0.80 0.80 241.63 4896.54 0.006 0.025
ry 0.13 0.13 243.85 4755.65 0.005 0.023
ray 0.21 0.21 101.94 5324.19 0.003 0.022
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SW Model: Accuracy of MH Approximations

Post. Mean (Pooled) Ineff. Factors Std Dev of Means

KF CO-PF KF CO-PF KF CO-PF
Pa 0.96 0.96 153.46 1358.87 0.002 0.005
Pb 0.22 0.21 325.98 4468.10 0.018 0.068
Pg 0.97 0.97 57.08 2687.56 0.002 0.011
pi 0.71 0.70 219.11 4735.33 0.009 0.044
pr 0.54 0.54 194.73 4184.04 0.020 0.094
Pp 0.80 0.81 338.69 2527.79 0.022 0.061
Pw 0.94 0.94 135.83 4851.01 0.003 0.019
Pga 0.41 0.37 196.38 5621.86 0.025 0.133
p 0.66 0.66 300.29 3552.33 0.025 0.087
fw 0.82 0.81 218.43 5074.31 0.011 0.052
04 0.34 0.34 128.00 5096.75 0.005 0.034
Op 0.24 0.24 186.13 3494.71 0.004 0.016
og 0.51 0.49 208.14  2945.02 0.006 0.021
oj 0.43 0.44 115.42  6093.72 0.006 0.043
o, 0.14 0.14 193.37 3408.01 0.004 0.016
op 0.13 0.13 194.22  4587.76 0.003 0.013
Ow 0.22 0.22 211.80 2256.19 0.004 0.012
Inp(Y) -964.44  -1017.94 0298 9139
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Computational Considerations

® We implement the PFMH algorithm on a single machine, utilizing up to twelve cores.

® For the small-scale DSGE model it takes 30:20:33 [hh:mm:ss] hours to generate 100,000
parameter draws using the bootstrap PF with 40,000 particles. Under the

conditionally-optimal filter we only use 400 particles, which reduces the run time to
00:39:20 minutes.

® For the SW model it took 05:14:20:00 [dd:hh:mm:ss] days to generate 10,000 draws using
the conditionally-optimal PF with 40,000 particles.
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® Start from SMC algorithm...
® Data tempering instead of likelihood tempering: 72(0) = p(6|Y1.:,),
® Particle filter can deliver an unbiased estimate of the incremental weight p(Y:, ,+1:¢,]6).

® Evaluate PF approximation of likelihood instead of true likelihood in the correction and
mutation steps of SMC algorithm.
® Write:
ﬁ(ytn71+l:tn|yl:t,,,179) = g(}/t,,,1+1:t,,|Y1:tn,1,9, Ul:t,,)
ﬁ(yl:t"|0n) = g(Yl:tnwn; Ul:tn)~

® Uy, is an array of iid uniform random variables generated by the particle filter with
density p(Us.t,). Likelihood increments depend on entire U;.;,. Factorization:

p(Ul:tn) = p(Ul:tl)p( Ut1+1:t2) s P(Ut,,,1+1:tn)~
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Particle System for SMC? Sampler After Stage n

Parameter State

TI 40,1 T2 1.2 T,M 1 LM
(erlwW,}) (5t217Wt2nl) (5t2,,27Wt2n2) (S§M7Wt2"M)
(02, W7) (s We) (se W) - (st W)

Oy wh) (sl sk (s oM
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@ Initialization. Draw the initial particles from the prior: 96 § p(#) and Woi =1,
i=1,...,N.
® Recursion. Fort=1,..., T,
@ Correction. Reweight the particles from stage t — 1 by defining the incremental weights

il = p(ye| Yiieo1,01-1) = g(ye| Vi1, 011, Ui) (29)
and the normalized weights

~ivasi
2 w, We_1

t = T <N =~
1 N~ i
N D W,

An approximation of E, [h(0)] is given by

i=1,...,N. (30)

N
7 1 A i
hen = N ; +h(0¢—1). (31)
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@ Initialization.
® Recursion. Fort=1,..., T,
@ Correction.
@® Selection. Resample the particles via multinomial resampling. Let {é;},’\il denote M Jid
draws from a multinomial distribution characterized by support points and weights
{6i_4, VNVt’}J'\il and set W, = 1. Define the vector of ancestors A; with elements A/ by
setting A} = k if the ancestor of resampled particle i is particle k, that is, HA’t =0k,
An approximation of E,[h(6)] is given by

i Win(d)). )

2 \

Frank Schorfheide Particle Filtering



@ Initialization.
® Recursion. Fort=1,..., T,
@ Correction.
® Selection.
© Mutation. Propagate the particles {9;, Wt’} via 1 step of an MH algorithm. The proposal
distribution is given by

q(9:101)p(UrY) (33)
and the acceptance ratio can be expressed as
a(04[8}) = min {1, ﬁ%’i%)P(??)/q(?”é?)}. (34)
P(Y1:410;)p(0%)/ q(6:]9%)
An approximation of E,[h(6)] is given by
Fow =+ i CAVA (35)
s N t t-

i=1

© Approximation of E.[h(0)] is given by hr y = Z,N:l h(0%- )W



Why Does SMC? Work?

® At the end of iteration t — 1:
® Particles {92_1, Wti_l},’-\’:l.
® For each parameter value 6;_; there is PF approx of the likelihood: p(Y1.t—1|6i_1).
® Swarm of particles {s;’,,W;? }), that represents the distribution p(s;—1|Y1.c—1,0} 1).
® Sequence of random vectors Uj.._; that underlies the simulation approximation of the
particle filter.
® Focus on the triplets {0 _;, Ui.,_, W/} :

//h(ea Ul:t—l)P(U1:r—1)P(9|Y1:t—1)dU1:t—1d9

1 N

~ Nzh( iflv U{:tfl) i‘ifl'

i=1
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Correction Step

® The particle filter approximation of the likelihood increment can be written as

Blye| Yiie—1,0;_1) = g(ve| Yie—1, Ui, 0i_y).

® The value of the likelihood function for Yi.; can be tracked recursively as follows:
A(Yiel0p 1) = Byel Yie—1,01 1)B(Yi:e-110; 1) (36)
g(yelYie, Ure, 07 _1)8(Yee1|Uf 1,07 1)
= g(Y1e|Upt, 0 1)-

The last equality follows because conditioning g(Y1.:—1|Ui., 1,0 ;) also on U; does not
change the particle filter approximation of the likelihood function for Y7.;—1.
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Correction Step

e By induction, we can deduce that % SN | h(8i_, )W W,_, approximates the following
integral

/ / h(O)g (vl o1, Uses 0)p(Us.e)p(6] Yie—1)dUs.d0

= /h(g) |:/g(Yt|Y1:t—1; Ul:tae)p(Ul:t)dUI:t P(H‘let—l)d&

® Provided that the particle filter approximation of the likelihood increment is unbiased, that
is,

/g(ytIYm—h Ui.t, o)p(Ul:t)dUI:t = P(}/t|Y1:t—1»9)

for each 6, we deduce that hyy is a consistent estimator of E,[h(8)].
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Selection Step

® Similar to regular SMC.
® We resample in every period for expositional purposes.

® We are keeping track of the ancestry information in the vector A;. This is important,
because for each resampled particle i we not only need to know its value é’t but we also
want to track the corresponding value of the likelihood function p( Y1;t|9A£) as well as the
particle approximation of the state, given by {s;”, W,”}, and the set of random numbers
U{:t'

® In the implementation, the likelihood values are needed for the mutation step and the
state particles are useful for a quick evaluation of the incremental likelihood in the
subsequent correction step.

® The Uj.,'s are not required for the actual implementation of the algorithm but are useful
to provide a heuristic explanation for the validity of the algorithm.
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® Essentially one iteration of PFMH algorithm.
® For each particle i:

® a proposed value ¥},
® an associated particle filter approximation p(Yi.¢[#}) of the likelihood,

® and a sequence of random vectors Uy, drawn from the distribution p(Us.¢).

® The densities p(Ui.,) and p(U;.,) cancel from the formula for the acceptance probability
o 9;16}).
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Application to Small-Scale DSGE Model

® Results are based on N,,, = 20 runs of the SMC? algorithm with N = 4,000 particles.
® D is data tempering and L is likelihood tempering.

e KF is Kalman filter, CO-PF is conditionally-optimal PF with M = 400, BS-PF is bootstrap
PF with M = 40,000. CO-PF and BS-PF use data tempering.
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Accuracy of SMC? Approximations

Posterior Mean (Pooled) Inefficiency Factors Std Dev of Means

KF(L) KF(D) CO-PF BS-PF KF(L) KF(D) CO-PF BS-PF KF(L) KF(D) CO-PF BS-PF
T 2.65 2.67 2.68 2.53 1.51 10.41 47.60 6570 0.01 0.03 0.07 0.76
K 0.81 0.81 0.81 0.70 1.40 8.36 40.60 7223 0.00 0.01 0.01 0.18
Py 1.87 1.88 1.87 1.89 3.29 18.27 22.56 4785 0.01 0.02 0.02 0.27
[ 0.66 0.66 0.67 0.65 2.72 10.02 43.30 4197 0.01 0.02 0.03 0.34
Pr 0.75 0.75 0.75 0.72 131 1139  60.18 14979 0.00 0.00 0.01 0.08
Peg 0.98 0.98 0.98 0.95 1.32 428  250.34 21736 0.00 0.00 0.00 0.04
Pz 0.88 0.88 0.88 0.84 316 1506 3535 10802 0.00 0.00 0.00 0.05
r® 0.45 0.46 0.4 0.46 109 2658 7378 7971 000 002 004 042
A 3.32 331 331 3.56 2.15 40.45 158.64 6529 0.01 0.03 0.06 0.40
7@ 0.59 0.59 0.59 0.64 2.35 3235 133.25 5296 0.00 0.01 0.03 0.16
oy 0.24 0.24 0.24 0.26 0.75 7.29 43.96 16084 0.00 0.00 0.00 0.06
g 0.68 0.68 0.68 0.73 1.30 1.48 20.20 5098 0.00 0.00 0.00 0.08
[ 0.32 0.32 0.32 0.42 2.32 3.63 26.98 41284 0.00 0.00 0.00 0.11
Inp(Y) -358.75 -357.34 -356.33 -340.47 0.120 1.191 4.374 14.49
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Computational Considerations

® The SMC? results are obtained by utilizing 40 processors.

® We parallelized the likelihood evaluations j( Y.1;.t|9£) for the 0! particles rather than the

particle filter computations for the swarms {s:¥ W} j"il.

® The run time for the SMC? with conditionally-optimal PF (N = 4,000, M = 400) is 23:24
[mm:ss] minutes, where as the algorithm with bootstrap PF (N = 4,000 and
M = 40,000) runs for 08:05:35 [hh:mm:ss] hours.

® Due to memory constraints we re-computed the entire likelihood for Yi.; in each iteration.

® Qur sequential (data-tempering) implementation of the SMC? algorithm suffers from
particle degeneracy in the intial stages, i.e., for small sample sizes.
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