
Particle Filtering

Frank Schorfheide
University of Pennsylvania

Gerzensee Ph.D. Course on Bayesian Macroeconometrics

May 28, 2019

Frank Schorfheide Particle Filtering



From Linear to Nonlinear DSGE Models

• Linear DSGE model leads to

yt = Ψ0(θ) + Ψ1(θ)t + Ψ2(θ)st + ut , ut ∼ N(0,Σu),

st = Φ1(θ)st−1 + Φε(θ)εt , εt ∼ N(0,Σε).

• Nonlinear DSGE model leads to

yt = Ψ(st , t; θ) + ut , ut ∼ Fu(·; θ)

st = Φ(st−1, εt ; θ), εt ∼ Fε(·; θ).

Frank Schorfheide Particle Filtering



From Linear to Nonlinear DSGE Models

• While DSGE models are inherently nonlinear, the nonlinearities are often small and
decision rules are approximately linear.

• One can add certain features that generate more pronounced nonlinearities:

• stochastic volatility;

• markov switching coefficients;

• asymmetric adjustment costs;

• occasionally binding constraints.

Frank Schorfheide Particle Filtering



Particle Filters

• There are many particle filters...

• We will focus on three types:

• Bootstrap PF

• A generic PF

• A conditionally-optimal PF

Frank Schorfheide Particle Filtering



Filtering - General Idea

• State-space representation of linearized DSGE model

yt = Ψ0(θ) + Ψ1(θ)t + Ψ2(θ)st(+ut) measurement

st = Φ1(θ)st + Φε(θ)εt state transition
• Likelihood function:

p(Y1:T |θ) =
T∏
t=1

p(yt |Y1:t−1, θ)

• A filter generates a sequence of conditional distributions st |Y1:t .
• Iterations:

• Initialization at time t − 1: p(st−1|Y1:t−1, θ)
• Forecasting t given t − 1:

1 Transition equation: p(st |Y1:t−1, θ) =
∫
p(st |st−1,Y1:t−1, θ)p(st−1|Y1:t−1, θ)dst−1

2 Measurement equation: p(yt |Y1:t−1, θ) =
∫
p(yt |st ,Y1:t−1, θ)p(st |Y1:t−1, θ)dst

• Updating with Bayes theorem. Once yt becomes available:

p(st |Y1:t , θ) = p(st |yt ,Y1:t−1, θ) =
p(yt |st ,Y1:t−1, θ)p(st |Y1:t−1, θ)

p(yt |Y1:t−1, θ)

Frank Schorfheide Particle Filtering



Bootstrap Particle Filter – Idea

In the original version of the algorithm resampling is
carried out at each and every time step, in which case the

term !
ðiÞ
t�1 ¼ 1=N is a constant, which may thus be ignored.

In more sophisticated schemes, resampling is only carried

out when the distribution of the importance weights

becomes degenerate, which can be measured by monitor-

ing the changes of the coefficient of variation or the

entropy of the weight pattern over time [22], [23], [36].

A distinctive feature of the bootstrap filter is that the
incremental weight does not depend on the past trajectory

of the particles but only on the likelihood of the

observation, gð ytjxtÞ. The use of the prior kernel is popular

because sampling is often straightforward, and computing

the incremental weight simply amounts to evaluating the

conditional likelihood of the new observation given the

updated particle position.

A diagrammatic representation of the bootstrap filter in
operation is given in Fig. 5, in which the resampling

(selection) step is seen to concentrate particles (asterisks)

into the two high probability modes of the density function.

D. How to Build Better Proposals
Despite its appealing properties, the use of the state

transition density f as importance distribution can often

lead to poor performance, which is manifested in a lack of
robustness with respect to the values taken by the observed

sequence, for example when outliers occur in the data (the

observation is not informative) or on the contrary when

the variance of the observation noise is small (the obser-

vation is very informative). This results from a mismatch

between the prior predictive distribution and the posterior

distribution of the state conditioned on the new measure-

ment. In order to reduce this mismatch a natural option is
to propose the new particle position under the following

distribution:

qtðxtjxt�1; ytÞ ¼
fðxtjxt�1Þgð ytjxtÞR
fðxjxt�1Þgð ytjxÞdx

(11)

which may be recognized as the conditional distribution of

the hidden state xt given xt�1 and the current observation
yt. The normalization constant can be seen to equal the

predictive distribution of yt conditional on xt�1, i.e.,

pð ytjxt�1Þ. Below, we will refer to this kernel as the optimal
kernel, following the terminology found in the sequential

importance sampling literature. This terminology dates

back probably to [37] and [38] and is largely adopted by

authors such as [18], [20], [23], [26], and [39]. The optimal

property of this kernel is that the conditional variance of
the weights is zero, given the past history of the particles

!
ðiÞ
t / !

ðiÞ
t�1pð ytjxt�1Þ ¼ !

ðiÞ
t�1

Z
f xjxðiÞt�1

� 

gð ytjxÞdx: (12)

Fig. 5. The bootstrap filter in operation from time t to t þ 1,

nonlinear time series Example 1. Asterisks show the positions of

(a small selection of) the particles at each stage. The solid line

shows a kernel density estimate of the distributions

represented at each stage. Ten thousand particles were

used in total. Notice that resampling concentrates

particles into the region of high probability.

Cappé et al. : An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo

906 Proceedings of the IEEE | Vol. 95, No. 5, May 2007

In the original version of the algorithm resampling is
carried out at each and every time step, in which case the

term !
ðiÞ
t�1 ¼ 1=N is a constant, which may thus be ignored.

In more sophisticated schemes, resampling is only carried

out when the distribution of the importance weights

becomes degenerate, which can be measured by monitor-

ing the changes of the coefficient of variation or the

entropy of the weight pattern over time [22], [23], [36].

A distinctive feature of the bootstrap filter is that the
incremental weight does not depend on the past trajectory

of the particles but only on the likelihood of the

observation, gð ytjxtÞ. The use of the prior kernel is popular

because sampling is often straightforward, and computing

the incremental weight simply amounts to evaluating the

conditional likelihood of the new observation given the

updated particle position.

A diagrammatic representation of the bootstrap filter in
operation is given in Fig. 5, in which the resampling

(selection) step is seen to concentrate particles (asterisks)

into the two high probability modes of the density function.

D. How to Build Better Proposals
Despite its appealing properties, the use of the state

transition density f as importance distribution can often

lead to poor performance, which is manifested in a lack of
robustness with respect to the values taken by the observed

sequence, for example when outliers occur in the data (the

observation is not informative) or on the contrary when

the variance of the observation noise is small (the obser-

vation is very informative). This results from a mismatch

between the prior predictive distribution and the posterior

distribution of the state conditioned on the new measure-

ment. In order to reduce this mismatch a natural option is
to propose the new particle position under the following

distribution:

qtðxtjxt�1; ytÞ ¼
fðxtjxt�1Þgð ytjxtÞR
fðxjxt�1Þgð ytjxÞdx

(11)

which may be recognized as the conditional distribution of

the hidden state xt given xt�1 and the current observation
yt. The normalization constant can be seen to equal the

predictive distribution of yt conditional on xt�1, i.e.,

pð ytjxt�1Þ. Below, we will refer to this kernel as the optimal
kernel, following the terminology found in the sequential

importance sampling literature. This terminology dates

back probably to [37] and [38] and is largely adopted by

authors such as [18], [20], [23], [26], and [39]. The optimal

property of this kernel is that the conditional variance of
the weights is zero, given the past history of the particles

!
ðiÞ
t / !

ðiÞ
t�1pð ytjxt�1Þ ¼ !

ðiÞ
t�1

Z
f xjxðiÞt�1

� 

gð ytjxÞdx: (12)

Fig. 5. The bootstrap filter in operation from time t to t þ 1,

nonlinear time series Example 1. Asterisks show the positions of

(a small selection of) the particles at each stage. The solid line

shows a kernel density estimate of the distributions

represented at each stage. Ten thousand particles were

used in total. Notice that resampling concentrates

particles into the region of high probability.

Cappé et al. : An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo

906 Proceedings of the IEEE | Vol. 95, No. 5, May 2007

Frank Schorfheide Particle Filtering



Bootstrap Particle Filter

1 Initialization. Draw the initial particles from the distribution s j0
iid∼ p(s0) and set W j

0 = 1,
j = 1, . . . ,M.

2 Recursion. For t = 1, . . . ,T :

1 Forecasting st . Propagate the period t − 1 particles {s jt−1,W
j
t−1} by iterating the

state-transition equation forward:

s̃ jt = Φ(s jt−1, ε
j
t ; θ), εjt ∼ Fε(·; θ). (1)

An approximation of E[h(st)|Y1:t−1, θ] is given by

ĥt,M =
1

M

M∑
j=1

h(s̃ jt )W
j
t−1. (2)

Frank Schorfheide Particle Filtering



Bootstrap Particle Filter

1 Initialization.

2 Recursion. For t = 1, . . . ,T :

1 Forecasting st .
2 Forecasting yt . Define the incremental weights

w̃ j
t = p(yt |s̃ jt , θ). (3)

The predictive density p(yt |Y1:t−1, θ) can be approximated by

p̂(yt |Y1:t−1, θ) =
1

M

M∑
j=1

w̃ j
tW

j
t−1. (4)

If the measurement errors are N(0,Σu) then the incremental weights take the form

w̃ j
t = (2π)−n/2|Σu|−1/2 exp

{
− 1

2

(
yt −Ψ(s̃ jt , t; θ)

)′
Σ−1

u

(
yt −Ψ(s̃ jt , t; θ)

)}
, (5)

where n here denotes the dimension of yt .

Frank Schorfheide Particle Filtering



Bootstrap Particle Filter

1 Initialization.

2 Recursion. For t = 1, . . . ,T :

1 Forecasting st .
2 Forecasting yt . Define the incremental weights

w̃ j
t = p(yt |s̃ jt , θ). (6)

3 Updating. Define the normalized weights

W̃ j
t =

w̃ j
tW

j
t−1

1
M

∑M
j=1 w̃

j
tW

j
t−1

. (7)

An approximation of E[h(st)|Y1:t , θ] is given by

h̃t,M =
1

M

M∑
j=1

h(s̃ jt )W̃
j
t . (8)

Frank Schorfheide Particle Filtering



Bootstrap Particle Filter

1 Initialization.
2 Recursion. For t = 1, . . . ,T :

1 Forecasting st .
2 Forecasting yt .
3 Updating.
4 Selection (Optional). Resample the particles via multinomial resampling. Let {s jt}Mj=1

denote M iid draws from a multinomial distribution characterized by support points and
weights {s̃ jt , W̃ j

t } and set W j
t = 1 for j =, 1 . . . ,M.

An approximation of E[h(st)|Y1:t , θ] is given by

h̄t,M =
1

M

M∑
j=1

h(s jt )W
j
t . (9)

3 Likelihood Approximation. The approximation of the log likelihood function is given by

ln p̂(Y1:T |θ) =
T∑
t=1

ln

 1

M

M∑
j=1

w̃ j
tW

j
t−1

 . (10)

Frank Schorfheide Particle Filtering



Asymptotics

• The convergence results can be established recursively, starting from the assumption

h̄t−1,M
a.s.−→ E[h(st−1)|Y1:t−1],√

M
(
h̄t−1,M − E[h(st−1)|Y1:t−1]

)
=⇒ N

(
0,Ωt−1(h)

)
.

• Forward iteration: draw st from gt(st |s jt−1) = p(st |s jt−1).

• Decompose

ĥt,M − E[h(st)|Y1:t−1] (11)

=
1

M

M∑
j=1

(
h(s̃ jt )− Ep(·|s jt−1)[h]

)
W j

t−1

+
1

M

M∑
j=1

(
Ep(·|s jt−1)[h]W j

t−1 − E[h(st)|Y1:t−1]
)

= I + II ,

• Both I and II converge to zero (and potentially satisfy CLT).

Frank Schorfheide Particle Filtering



Asymptotics

• Updating step approximates

E[h(st)|Y1:t ] =

∫
h(st)p(yt |st)p(st |Y1:t−1)dst∫

p(yt |st)p(st |Y1:t−1)dst
≈

1
M

∑M
j=1 h(s̃ jt )w̃ j

tW
j
t−1

1
M

∑M
j=1 w̃

j
tW

j
t−1

(12)

• Define the normalized incremental weights as

vt(st) =
p(yt |st)∫

p(yt |st)p(st |Y1:t−1)dst
. (13)

• Under suitable regularity conditions, the Monte Carlo approximation satisfies a CLT of the
form√

M
(
h̃t,M − E[h(st)|Y1:t ]

)
(14)

=⇒ N
(
0, Ω̃t(h)

)
, Ω̃t(h) = Ω̂t

(
vt(st)(h(st)− E[h(st)|Y1:t ])

)
.

• Distribution of particle weights matters for accuracy! =⇒ Resampling!

Frank Schorfheide Particle Filtering



The Role of Measurement Errors

• Measurement errors may not be intrinsic to DSGE model.

• Bootstrap filter needs non-degenerate p(yt |st , θ) for incremental weights to be well
defined.

• Decreasing the measurement error variance Σu, holding everything else fixed, increases the
variance of the particle weights, and reduces the accuracy of Monte Carlo approximation.

Frank Schorfheide Particle Filtering



Generic Particle Filter

1 Initialization. Same as BS PF
2 Recursion. For t = 1, . . . ,T :

1 Forecasting st . Draw s̃ jt from density gt(s̃t |s jt−1, θ) and define

ωj
t =

p(s̃ jt |s jt−1, θ)

gt(s̃
j
t |s jt−1, θ)

. (15)

An approximation of E[h(st)|Y1:t−1, θ] is given by

ĥt,M =
1

M

M∑
j=1

h(s̃ jt )ω
j
tW

j
t−1. (16)

2 Forecasting yt . Define the incremental weights

w̃ j
t = p(yt |s̃ jt , θ)ωj

t . (17)

The predictive density p(yt |Y1:t−1, θ) can be approximated by

p̂(yt |Y1:t−1, θ) =
1

M

M∑
j=1

w̃ j
tW

j
t−1. (18)

3 Updating. Same as BS PF
4 Selection. Same as BS PF

3 Likelihood Approximation. Same as BS PFFrank Schorfheide Particle Filtering



Adapting the Generic PF

• Conditionally-optimal importance distribution:

gt(s̃t |s jt−1) = p(s̃t |yt , s jt−1).

This is the posterior of st given s jt−1. Typically infeasible, but a good benchmark.

• Approximately conditionally-optimal distributions: from linearize version of DSGE model
or approximate nonlinear filters.

• Conditionally-linear models: do Kalman filter updating on a subvector of st . Example:

yt = Ψ0(mt) + Ψ1(mt)t + Ψ2(mt)st + ut , ut ∼ N(0,Σu),

st = Φ0(mt) + Φ1(mt)st−1 + Φε(mt)εt , εt ∼ N(0,Σε),

where mt follows a discrete Markov-switching process.

Frank Schorfheide Particle Filtering



More on Conditionally-Linear Models

• State-space representation is linear conditional on mt .

• Write

p(mt , st |Y1:t) = p(mt |Y1:t)p(st |mt ,Y1:t), (19)

where

st |(mt ,Y1:t) ∼ N
(
s̄t|t(mt),Pt|t(mt)

)
. (20)

• Vector of means s̄t|t(mt) and the covariance matrix Pt|t(m)t are sufficient statistics for
the conditional distribution of st .

• Approximate (mt , st)|Y1:t by {mj
t , s̄

j
t|t ,P

j
t|t ,W

j
t }Ni=1.

• The swarm of particles approximates∫
h(mt , st)p(mt , st ,Y1:t)d(mt , st) (21)

=

∫ [∫
h(mt , st)p(st |mt ,Y1:t)dst

]
p(mt |Y1:t)dmt

≈ 1

M

M∑
j=1

[∫
h(mj

t , s
j
t )pN

(
st |s̄ jt|t ,P

j
t|t
)
dst

]
W j

t .

Frank Schorfheide Particle Filtering



More on Conditionally-Linear Models

• We used Rao-Blackwellization to reduce variance:

V[h(st ,mt)] = E
[
V[h(st ,mt)|mt ]

]
+ V

[
E[h(st ,mt)|mt ]

]
ge V

[
E[h(st ,mt)|mt ]

]
• To forecast the states in period t, generate m̃j

t from gt(m̃t |mj
t−1) and define:

ωj
t =

p(m̃j
t |mj

t−1)

gt(m̃
j
t |mj

t−1)
. (22)

• The Kalman filter forecasting step can be used to compute:

s̃ jt|t−1 = Φ0(m̃j
t) + Φ1(m̃j

t)s
j
t−1

P j
t|t−1 = Φε(m̃

j
t)Σε(m̃

j
t)Φε(m̃

j
t)
′

ỹ j
t|t−1 = Ψ0(m̃j

t) + Ψ1(m̃j
t)t + Ψ2(m̃j

t)s̃
j
t|t−1

F j
t|t−1 = Ψ2(m̃j

t)P
j
t|t−1Ψ2(m̃j

t)
′ + Σu.

(23)

Frank Schorfheide Particle Filtering



More on Conditionally-Linear Models

• Then,∫
h(mt , st)p(mt , st |Y1:t−1)d(mt , st) (24)

=

∫ [∫
h(mt , st)p(st |mt ,Y1:t−1)dst

]
p(mt |Y1:t−1)dmt

≈ 1

M

M∑
j=1

[∫
h(mj

t , s
j
t )pN

(
st |s̃ jt|t−1,P

j
t|t−1

)
dst

]
ωj
tW

j
t−1

• The likelihood approximation is based on the incremental weights

w̃ j
t = pN

(
yt |ỹ j

t|t−1,F
j
t|t−1

)
ωj
t . (25)

• Conditional on m̃j
t we can use the Kalman filter once more to update the information

about st in view of the current observation yt :

s̃ jt|t = s̃ jt|t−1 + P j
t|t−1Ψ2(m̃j

t)
′(F j

t|t−1

)−1
(yt − ȳ j

t|t−1)

P̃ j
t|t = P j

t|t−1 − P j
t|t−1Ψ2(m̃j

t)
′(F j

t|t−1

)−1
Ψ2(m̃j

t)P
j
t|t−1.

(26)

Frank Schorfheide Particle Filtering



Particle Filter For Conditionally Linear Models

1 Initialization.
2 Recursion. For t = 1, . . . ,T :

1 Forecasting st . Draw m̃j
t from density gt(m̃t |mj

t−1, θ), calculate the importance weights ωj
t

in (22), and compute s̃ jt|t−1 and P j
t|t−1 according to (23). An approximation of

E[h(st ,mt)|Y1:t−1, θ] is given by (25).
2 Forecasting yt . Compute the incremental weights w̃ j

t according to (25). Approximate the
predictive density p(yt |Y1:t−1, θ) by

p̂(yt |Y1:t−1, θ) =
1

M

M∑
j=1

w̃ j
tW

j
t−1. (27)

3 Updating. Define the normalized weights

W̃ j
t =

w̃ j
tW

j
t−1

1
M

∑M
j=1 w̃

j
tW

j
t−1

(28)

and compute s̃ jt|t and P̃ j
t|t according to (26). An approximation of E[h(mt , st)|Y1:t , θ] can be

obtained from {m̃j
t , s̃

j
t|t , P̃

j
t|t , W̃

j
t }.

4 Selection.

3 Likelihood Approximation.

Frank Schorfheide Particle Filtering



Nonlinear and Partially Deterministic State Transitions

• Example:

s1,t = Φ1(st−1, εt), s2,t = Φ2(st−1), εt ∼ N(0, 1).

• Generic filter requires evaluation of p(st |st−1).

• Define ςt = [s ′t , ε
′
t ]
′ and add identity εt = εt to state transition.

• Factorize the density p(ςt |ςt−1) as

p(ςt |ςt−1) = pε(εt)p(s1,t |st−1, εt)p(s2,t |st−1).

where p(s1,t |st−1, εt) and p(s2,t |st−1) are pointmasses.

• Sample innovation εt from g εt (εt |st−1).

• Then

ωj
t =

p(ς̃ jt |ς jt−1)

gt(ς̃
j
t |ς jt−1)

=
pε(ε̃jt)p(s̃ j1,t |s jt−1, ε̃

j
t)p(s̃ j2,t |s jt−1)

g εt (ε̃jt |s jt−1)p(s̃ j1,t |s jt−1, ε̃
j
t)p(s̃ j2,t |s jt−1)

=
pε(ε̃jt)

g εt (ε̃jt |s jt−1)
.

Frank Schorfheide Particle Filtering



Degenerate Measurement Error Distributions

• Our discussion of the conditionally-optimal importance distribution suggests that in the
absence of measurement errors, one has to solve the system of equations

yt = Ψ
(
Φ(s jt−1, ε̃

j
t)
)
,

to determine ε̃jt as a function of s jt−1 and the current observation yt .

• Then define

ωj
t = pε(ε̃jt) and s̃ jt = Φ(s jt−1, ε̃

j
t).

• Difficulty: one has to find all solutions to a nonlinear system of equations.

• While resampling duplicates particles, the duplicated particles do not mutate, which can
lead to a degeneracy.

Frank Schorfheide Particle Filtering



Next Steps

• We will now apply PFs to linearized DSGE models.

• This allows us to compare the Monte Carlo approximation to the “truth.”

• Small-scale New Keynesian DSGE model

• Smets-Wouters model

Frank Schorfheide Particle Filtering



Illustration 1: Small-Scale DSGE Model

Parameter Values For Likelihood Evaluation

Parameter θm θl Parameter θm θl

τ 2.09 3.26 κ 0.98 0.89
ψ1 2.25 1.88 ψ2 0.65 0.53
ρr 0.81 0.76 ρg 0.98 0.98
ρz 0.93 0.89 r (A) 0.34 0.19
π(A) 3.16 3.29 γ(Q) 0.51 0.73
σr 0.19 0.20 σg 0.65 0.58
σz 0.24 0.29 ln p(Y |θ) -306.5 -313.4

Frank Schorfheide Particle Filtering



Likelihood Approximation

ln p̂(yt |Y1:t−1, θ
m) vs. ln p(yt |Y1:t−1, θ

m)

1984 1989 1994 1999
−12

−10

−8

−6

−4

−2

Notes: The results depicted in the figure are based on a single run of the bootstrap PF
(dashed), the conditionally-optimal PF (dotted), and the Kalman filter (solid).

Frank Schorfheide Particle Filtering



Filtered State

Ê[ĝt |Y1:t , θ
m] vs. E[gt |Y1:t , θ

m]

1984 1989 1994 1999
−10

−8

−6

−4

−2

0

2

Notes: The results depicted in the figure are based on a single run of the bootstrap PF
(dashed), the conditionally-optimal PF (dotted), and the Kalman filter (solid).

Frank Schorfheide Particle Filtering



Distribution of Log-Likelihood Approximation Errors

Bootstrap PF: θm vs. θl

−40 −30 −20 −10 0 10 20
0.00

0.05

0.10

0.15

0.20

0.25

Notes: Density estimate of ∆̂1 = ln p̂(Y1:T |θ)− ln p(Y1:T |θ) based on Nrun = 100 runs of the
PF. Solid line is θ = θm; dashed line is θ = θl (M = 40, 000).

Frank Schorfheide Particle Filtering



Distribution of Log-Likelihood Approximation Errors

θm: Bootstrap vs. Cond. Opt. PF

−15 −10 −5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Notes: Density estimate of ∆̂1 = ln p̂(Y1:T |θ)− ln p(Y1:T |θ) based on Nrun = 100 runs of the
PF. Solid line is bootstrap particle filter (M = 40, 000); dotted line is conditionally optimal
particle filter (M = 400).

Frank Schorfheide Particle Filtering



Summary Statistics for Particle Filters

Bootstrap Cond. Opt. Auxiliary
Number of Particles M 40,000 400 40,000
Number of Repetitions 100 100 100

High Posterior Density: θ = θm

Bias ∆̂1 -1.39 -0.10 -2.83

StdD ∆̂1 2.03 0.37 1.87

Bias ∆̂2 0.32 -0.03 -0.74
Low Posterior Density: θ = θl

Bias ∆̂1 -7.01 -0.11 -6.44

StdD ∆̂1 4.68 0.44 4.19

Bias ∆̂2 -0.70 -0.02 -0.50

Notes: ∆̂1 = ln p̂(Y1:T |θ)− ln p(Y1:T |θ) and ∆̂2 = exp[ln p̂(Y1:T |θ)− ln p(Y1:T |θ)]− 1. Results
are based on Nrun = 100 runs of the particle filters.

Frank Schorfheide Particle Filtering



Great Recession and Beyond

Mean of Log-likelihood Increments ln p̂(yt |Y1:t−1, θ
m)

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
−300

−250

−200

−150

−100

−50

0

Notes: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap
particle filter (M = 40, 000) and dotted lines correspond to conditionally-optimal particle filter
(M = 400). Results are based on Nrun = 100 runs of the filters.

Frank Schorfheide Particle Filtering



Great Recession and Beyond

Mean of Log-likelihood Increments ln p̂(yt |Y1:t−1, θ
m)

2010 2011 2012 2013
−7.0

−6.5

−6.0

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

Notes: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap
particle filter (M = 40, 000) and dotted lines correspond to conditionally-optimal particle filter
(M = 400). Results are based on Nrun = 100 runs of the filters.

Frank Schorfheide Particle Filtering



Great Recession and Beyond

Log Standard Dev of Log-Likelihood Increments

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
−5

−4

−3

−2

−1

0

1

2

3

4

Notes: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap
particle filter (M = 40, 000) and dotted lines correspond to conditionally-optimal particle filter
(M = 400). Results are based on Nrun = 100 runs of the filters.

Frank Schorfheide Particle Filtering



SW Model: Distr. of Log-Likelihood Approximation Errors

BS (M = 40, 000) versus CO (M = 4, 000)

−600 −500 −400 −300 −200 −100 0 100
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Notes: Density estimates of ∆̂1 = ln p̂(Y |θ)− ln p(Y |θ) based on Nrun = 100. Solid densities
summarize results for the bootstrap (BS) particle filter; dashed densities summarize results for
the conditionally-optimal (CO) particle filter.

Frank Schorfheide Particle Filtering



SW Model: Distr. of Log-Likelihood Approximation Errors

BS (M = 400, 000) versus CO (M = 4, 000)

−350−300−250−200−150−100 −50 0 50
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Notes: Density estimates of ∆̂1 = ln p̂(Y |θ)− ln p(Y |θ) based on Nrun = 100. Solid densities
summarize results for the bootstrap (BS) particle filter; dashed densities summarize results for
the conditionally-optimal (CO) particle filter.

Frank Schorfheide Particle Filtering



SW Model: Summary Statistics for Particle Filters

Bootstrap Cond. Opt.
Number of Particles M 40,000 400,000 4,000 40,000
Number of Repetitions 100 100 100 100

High Posterior Density: θ = θm

Bias ∆̂1 -238.49 -118.20 -8.55 -2.88

StdD ∆̂1 68.28 35.69 4.43 2.49

Bias ∆̂2 -1.00 -1.00 -0.87 -0.41
Low Posterior Density: θ = θl

Bias ∆̂1 -253.89 -128.13 -11.48 -4.91

StdD ∆̂1 65.57 41.25 4.98 2.75

Bias ∆̂2 -1.00 -1.00 -0.97 -0.64

Notes: Results are based on Nrun = 100.

Frank Schorfheide Particle Filtering



Embedding PF Likelihoods into Posterior Samplers

• Likelihood functions for nonlinear DSGE models can be approximated by the PF.

• We will now embed the likelihood approximation into a posterior sampler:

• PFMH Algorithm (a special case of PMCMC)

• SMC 2

Frank Schorfheide Particle Filtering



• Distinguish between:
• {p(Y |θ), p(θ|Y ), p(Y )}, which are related according to:

p(θ|Y ) =
p(Y |θ)p(θ)

p(Y )
, p(Y ) =

∫
p(Y |θ)p(θ)dθ

• {p̂(Y |θ), p̂(θ|Y ), p̂(Y )}, which are related according to:

p̂(θ|Y ) =
p̂(Y |θ)p(θ)

p̂(Y )
, p̂(Y ) =

∫
p̂(Y |θ)p(θ)dθ.

• Surprising result (Andrieu, Docet, and Holenstein, 2010): under certain conditions we can
replace p(Y |θ) by p̂(Y |θ) and still obtain draws from p(θ|Y ).

Frank Schorfheide Particle Filtering



PFMH Algorithm

For i = 1 to N:

1 Draw ϑ from a density q(ϑ|θi−1).

2 Set θi = ϑ with probability

α(ϑ|θi−1) = min

{
1,

p̂(Y |ϑ)p(ϑ)/q(ϑ|θi−1)

p̂(Y |θj−1)p(θi−1)/q(θi−1|ϑ)

}
and θi = θi−1 otherwise. The likelihood approximation p̂(Y |ϑ) is computed using a
particle filter.

Frank Schorfheide Particle Filtering



Why Does the PFMH Work?

• At each iteration the filter generates draws s̃ jt from the proposal distribution gt(·|s jt−1).

• Let S̃t =
(
s̃1
t , . . . , s̃

M
t

)′
and denote the entire sequence of draws by S̃1:M

1:T .

• Selection step: define a random variable Aj
t that contains this ancestry information. For

instance, suppose that during the resampling particle j = 1 was assigned the value s̃10
t

then A1
t = 10. Let At =

(
A1
t , . . . ,A

N
t

)
and use A1:T to denote the sequence of At ’s.

• PFMH operates on an enlarged probability space: θ, S̃1:T and A1:T .

Frank Schorfheide Particle Filtering



Why Does the PFMH Work?

• Use U1:T to denote random vectors for S̃1:T and A1:T . U1:T is an array of iid uniform
random numbers.

• The transformation of U1:T into (S̃1:T ,A1:T ) typically depends on θ and Y1:T , because the

proposal distribution gt(s̃t |s jt−1) depends both on the current observation yt as well as the
parameter vector θ.

• E.g., implementation of conditionally-optimal PF requires sampling from a N(s̄ jt|t ,Pt|t)

distribution for each particle j . Can be done using a prob integral transform of uniform
random variables.

• We can express the particle filter approximation of the likelihood function as

p̂(Y1:T |θ) = g(Y1:T |θ,U1:T ).

where

U1:T ∼ p(U1:T ) =
T∏
t=1

p(Ut).

Frank Schorfheide Particle Filtering



Why Does the PFMH Work?

• Define the joint distribution

pg
(
Y1:T , θ,U1:T

)
= g(Y1:T |θ,U1:T )p

(
U1:T

)
p(θ).

• The PFMH algorithm samples from the joint posterior

pg
(
θ,U1:T |Y1:T

)
∝ g(Y |θ,U1:T )p

(
U1:T

)
p(θ)

and discards the draws of
(
U1:T

)
.

• For this procedure to be valid, it needs to be the case that PF approximation is unbiased:

E[p̂(Y1:T |θ)] =

∫
g(Y1:T |θ,U1:T )p

(
U1:T

)
dθ = p(Y1:T |θ).

Frank Schorfheide Particle Filtering



Why Does the PFMH Work?

• We can express acceptance probability directly in terms of p̂(Y1:T |θ).

• Need to generate a proposed draw for both θ and U1:T : ϑ and U∗1:T .

• The proposal distribution for (ϑ,U∗1:T ) in the MH algorithm is given by
q(ϑ|θ(i−1))p(U∗1:T ).

• No need to keep track of the draws (U∗1:T ).

• MH acceptance probability:

α(ϑ|θi−1) = min

1,

g(Y |ϑ,U∗)p(U∗)p(ϑ)
q(ϑ|θ(i−1))p(U∗)

g(Y |θ(i−1),U(i−1))p(U(i−1))p(θ(i−1))
q(θ(i−1)|θ∗)p(U(i−1))


= min

{
1,

p̂(Y |ϑ)p(ϑ)
/
q(ϑ|θ(i−1))

p̂(Y |θ(i−1))p(θ(i−1))
/
q(θ(i−1)|ϑ)

}
.

Frank Schorfheide Particle Filtering



Small-Scale DSGE: Accuracy of MH Approximations

• Results are based on Nrun = 20 runs of the PF-RWMH-V algorithm.

• Each run of the algorithm generates N = 100, 000 draws and the first N0 = 50, 000 are
discarded.

• The likelihood function is computed with the Kalman filter (KF), bootstrap particle filter
(BS-PF, M = 40, 000) or conditionally-optimal particle filter (CO-PF, M = 400).

• “Pooled” means that we are pooling the draws from the Nrun = 20 runs to compute
posterior statistics.

Frank Schorfheide Particle Filtering



Small-Scale DSGE: Accuracy of MH Approximations

Posterior Mean (Pooled) Inefficiency Factors Std Dev of Means
KF CO-PF BS-PF KF CO-PF BS-PF KF CO-PF BS-PF

τ 2.63 2.62 2.64 66.17 126.76 1360.22 0.020 0.028 0.091
κ 0.82 0.81 0.82 128.00 97.11 1887.37 0.007 0.006 0.026
ψ1 1.88 1.88 1.87 113.46 159.53 749.22 0.011 0.013 0.029
ψ2 0.64 0.64 0.63 61.28 56.10 681.85 0.011 0.010 0.036
ρr 0.75 0.75 0.75 108.46 134.01 1535.34 0.002 0.002 0.007
ρg 0.98 0.98 0.98 94.10 88.48 1613.77 0.001 0.001 0.002
ρz 0.88 0.88 0.88 124.24 118.74 1518.66 0.001 0.001 0.005
r (A) 0.44 0.44 0.44 148.46 151.81 1115.74 0.016 0.016 0.044
π(A) 3.32 3.33 3.32 152.08 141.62 1057.90 0.017 0.016 0.045
γ(Q) 0.59 0.59 0.59 106.68 142.37 899.34 0.006 0.007 0.018
σr 0.24 0.24 0.24 35.21 179.15 1105.99 0.001 0.002 0.004
σg 0.68 0.68 0.67 98.22 64.18 1490.81 0.003 0.002 0.011
σz 0.32 0.32 0.32 84.77 61.55 575.90 0.001 0.001 0.003
ln p̂(Y ) -357.14 -357.17 -358.32 0.040 0.038 0.949

Frank Schorfheide Particle Filtering



Autocorrelation of PFMH Draws

0 5 10 15 20 25 30 35 40
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
τ

0 5 10 15 20 25 30 35 40
0.4

0.5

0.6

0.7

0.8

0.9

1.0
κ

0 5 10 15 20 25 30 35 40
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
σr

0 5 10 15 20 25 30 35 40
0.4

0.5

0.6

0.7

0.8

0.9

1.0
ρr

0 5 10 15 20 25 30 35 40
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
ψ1

0 5 10 15 20 25 30 35 40
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
ψ2

Notes: The figure depicts autocorrelation functions computed from the output of the 1 Block
RWMH-V algorithm based on the Kalman filter (solid), the conditionally-optimal particle filter
(dashed) and the bootstrap particle filter (solid with dots).

Frank Schorfheide Particle Filtering



SW Model: Accuracy of MH Approximations

• Results are based on Nrun = 20 runs of the PF-RWMH-V algorithm.

• Each run of the algorithm generates N = 10, 000 draws.

• The likelihood function is computed with the Kalman filter (KF) or conditionally-optimal
particle filter (CO-PF).

• “Pooled” means that we are pooling the draws from the Nrun = 20 runs to compute
posterior statistics. The CO-PF uses M = 40, 000 particles to compute the likelihood.

Frank Schorfheide Particle Filtering



SW Model: Accuracy of MH Approximations

Post. Mean (Pooled) Ineff. Factors Std Dev of Means
KF CO-PF KF CO-PF KF CO-PF

(100β−1 − 1) 0.14 0.14 172.58 3732.90 0.007 0.034
π̄ 0.73 0.74 185.99 4343.83 0.016 0.079
l̄ 0.51 0.37 174.39 3133.89 0.130 0.552
α 0.19 0.20 149.77 5244.47 0.003 0.015
σc 1.49 1.45 86.27 3557.81 0.013 0.086
Φ 1.47 1.45 134.34 4930.55 0.009 0.056
ϕ 5.34 5.35 138.54 3210.16 0.131 0.628
h 0.70 0.72 277.64 3058.26 0.008 0.027
ξw 0.75 0.75 343.89 2594.43 0.012 0.034
σl 2.28 2.31 162.09 4426.89 0.091 0.477
ξp 0.72 0.72 182.47 6777.88 0.008 0.051
ιw 0.54 0.53 241.80 4984.35 0.016 0.073
ιp 0.48 0.50 205.27 5487.34 0.015 0.078
ψ 0.45 0.44 248.15 3598.14 0.020 0.078
rπ 2.09 2.09 98.32 3302.07 0.020 0.116
ρ 0.80 0.80 241.63 4896.54 0.006 0.025
ry 0.13 0.13 243.85 4755.65 0.005 0.023
r∆y 0.21 0.21 101.94 5324.19 0.003 0.022

Frank Schorfheide Particle Filtering



SW Model: Accuracy of MH Approximations

Post. Mean (Pooled) Ineff. Factors Std Dev of Means
KF CO-PF KF CO-PF KF CO-PF

ρa 0.96 0.96 153.46 1358.87 0.002 0.005
ρb 0.22 0.21 325.98 4468.10 0.018 0.068
ρg 0.97 0.97 57.08 2687.56 0.002 0.011
ρi 0.71 0.70 219.11 4735.33 0.009 0.044
ρr 0.54 0.54 194.73 4184.04 0.020 0.094
ρp 0.80 0.81 338.69 2527.79 0.022 0.061
ρw 0.94 0.94 135.83 4851.01 0.003 0.019
ρga 0.41 0.37 196.38 5621.86 0.025 0.133
µp 0.66 0.66 300.29 3552.33 0.025 0.087
µw 0.82 0.81 218.43 5074.31 0.011 0.052
σa 0.34 0.34 128.00 5096.75 0.005 0.034
σb 0.24 0.24 186.13 3494.71 0.004 0.016
σg 0.51 0.49 208.14 2945.02 0.006 0.021
σi 0.43 0.44 115.42 6093.72 0.006 0.043
σr 0.14 0.14 193.37 3408.01 0.004 0.016
σp 0.13 0.13 194.22 4587.76 0.003 0.013
σw 0.22 0.22 211.80 2256.19 0.004 0.012
ln p̂(Y ) -964.44 -1017.94 0.298 9.139

Frank Schorfheide Particle Filtering



Computational Considerations

• We implement the PFMH algorithm on a single machine, utilizing up to twelve cores.

• For the small-scale DSGE model it takes 30:20:33 [hh:mm:ss] hours to generate 100,000
parameter draws using the bootstrap PF with 40,000 particles. Under the
conditionally-optimal filter we only use 400 particles, which reduces the run time to
00:39:20 minutes.

• For the SW model it took 05:14:20:00 [dd:hh:mm:ss] days to generate 10,000 draws using
the conditionally-optimal PF with 40,000 particles.

Frank Schorfheide Particle Filtering



SMC 2

• Start from SMC algorithm...

• Data tempering instead of likelihood tempering: πD
n (θ) = p(θ|Y1:tn),

• Particle filter can deliver an unbiased estimate of the incremental weight p(Ytn−1+1:tn |θ).

• Evaluate PF approximation of likelihood instead of true likelihood in the correction and
mutation steps of SMC algorithm.

• Write:

p̂(ytn−1+1:tn |Y1:tn−1 , θ) = g(ytn−1+1:tn |Y1:tn−1 , θ,U1:tn)

p̂(Y1:tn |θn) = g(Y1:tn |θn,U1:tn).
• U1:tn is an array of iid uniform random variables generated by the particle filter with

density p(U1:tn). Likelihood increments depend on entire U1:tn . Factorization:

p(U1:tn) = p(U1:t1 )p(Ut1+1:t2 ) · · · p(Utn−1+1:tn).

Frank Schorfheide Particle Filtering



Particle System for SMC 2 Sampler After Stage n

Parameter State

(θ1
n,W

1
n ) (s1,1

tn ,W
1,1
tn ) (s1,2

tn ,W
1,2
tn ) · · · (s1,M

tn ,W1,M
tn )

(θ2
n,W

2
n ) (s2,1

tn ,W
2,1
tn ) (s2,2

tn ,W
2,2
tn ) · · · (s2,M

tn ,W2,M
tn )

...
...

...
. . .

...

(θNn ,W
N
n ) (sN,1tn ,WN,1

tn ) (sN,2tn ,WN,2
tn ) · · · (sN,Mtn ,WN,M

tn )

Frank Schorfheide Particle Filtering



SMC 2

1 Initialization. Draw the initial particles from the prior: θi0
iid∼ p(θ) and W i

0 = 1,
i = 1, . . . ,N.

2 Recursion. For t = 1, . . . ,T ,

1 Correction. Reweight the particles from stage t − 1 by defining the incremental weights

w̃ i
t = p̂(yt |Y1:t−1, θ

i
t−1) = g(yt |Y1:t−1, θ

i
t−1,U

i
1:t) (29)

and the normalized weights

W̃ i
t =

w̃ i
nW

i
t−1

1
N

∑N
i=1 w̃

i
tW

i
t−1

, i = 1, . . . ,N. (30)

An approximation of Eπt [h(θ)] is given by

h̃t,N =
1

N

N∑
i=1

W̃ i
t h(θit−1). (31)

Frank Schorfheide Particle Filtering



SMC 2

1 Initialization.

2 Recursion. For t = 1, . . . ,T ,

1 Correction.
2 Selection. Resample the particles via multinomial resampling. Let {θ̂it}Mi=1 denote M iid

draws from a multinomial distribution characterized by support points and weights
{θit−1, W̃

i
t }Mj=1 and set W i

t = 1. Define the vector of ancestors At with elements Ai
t by

setting Ai
t = k if the ancestor of resampled particle i is particle k, that is, θ̂it = θkt−1.

An approximation of Eπt [h(θ)] is given by

ĥt,N =
1

N

N∑
j=1

W i
t h(θ̂it). (32)

Frank Schorfheide Particle Filtering



SMC 2

1 Initialization.
2 Recursion. For t = 1, . . . ,T ,

1 Correction.
2 Selection.
3 Mutation. Propagate the particles {θ̂it ,W i

t } via 1 step of an MH algorithm. The proposal
distribution is given by

q(ϑi
t |θ̂it)p(U∗i1:t) (33)

and the acceptance ratio can be expressed as

α(ϑi
t |θ̂it) = min

{
1,

p̂(Y1:t |ϑi
t)p(ϑi

t)/q(ϑi
t |θ̂it)

p̂(Y1:t |θ̂it)p(θ̂it)/q(θ̂it |ϑi
t)

}
. (34)

An approximation of Eπt [h(θ)] is given by

h̄t,N =
1

N

N∑
i=1

h(θit)W
i
t . (35)

3 Approximation of Eπ[h(θ)] is given by h̄T ,N =
∑N

i=1 h(θiT )W i
T .

Frank Schorfheide Particle Filtering



Why Does SMC 2 Work?

• At the end of iteration t − 1:

• Particles {θit−1,W
i
t−1}Ni=1.

• For each parameter value θit−1 there is PF approx of the likelihood: p̂(Y1:t−1|θit−1).

• Swarm of particles {s i,jt−1,W
i,j
t−1}

M
j=1 that represents the distribution p(st−1|Y1:t−1, θ

i
t−1).

• Sequence of random vectors U i
1:t−1 that underlies the simulation approximation of the

particle filter.

• Focus on the triplets {θit−1,U
i
1:t−1,W

i
t−1}Ni=1:∫ ∫

h(θ,U1:t−1)p(U1:t−1)p(θ|Y1:t−1)dU1:t−1dθ

≈ 1

N

N∑
i=1

h(θit−1,U
i
1:t−1)W i

t−1.

Frank Schorfheide Particle Filtering



Correction Step

• The particle filter approximation of the likelihood increment can be written as

p̂(yt |Y1:t−1, θ
i
t−1) = g(yt |Y1:t−1,U

i
1:t , θ

i
t−1).

• The value of the likelihood function for Y1:t can be tracked recursively as follows:

p̂(Y1:t |θit−1) = p̂(yt |Y1:t−1, θ
i
t−1)p̂(Y1:t−1|θit−1) (36)

= g(yt |Y1:t ,U
i
1:t , θ

i
t−1)g(Y1:t−1|U i

1:t−1, θ
i
t−1)

= g(Y1:t |U i
1:t , θ

i
t−1).

The last equality follows because conditioning g(Y1:t−1|U i
1:t−1, θ

i
t−1) also on Ut does not

change the particle filter approximation of the likelihood function for Y1:t−1.

Frank Schorfheide Particle Filtering



Correction Step

• By induction, we can deduce that 1
N

∑N
i=1 h(θit−1)w̃ i

tW
i
t−1 approximates the following

integral∫ ∫
h(θ)g(yt |Y1:t−1,U1:t , θ)p(U1:t)p(θ|Y1:t−1)dU1:tdθ

=

∫
h(θ)

[∫
g(yt |Y1:t−1,U1:t , θ)p(U1:t)dU1:t

]
p(θ|Y1:t−1)dθ.

• Provided that the particle filter approximation of the likelihood increment is unbiased, that
is, ∫

g(yt |Y1:t−1,U1:t , θ)p(U1:t)dU1:t = p(yt |Y1:t−1, θ)

for each θ, we deduce that h̃t,N is a consistent estimator of Eπt [h(θ)].

Frank Schorfheide Particle Filtering



Selection Step

• Similar to regular SMC.

• We resample in every period for expositional purposes.

• We are keeping track of the ancestry information in the vector At . This is important,
because for each resampled particle i we not only need to know its value θ̂it but we also
want to track the corresponding value of the likelihood function p̂(Y1:t |θ̂it) as well as the

particle approximation of the state, given by {s i,jt ,W
i,j
t }, and the set of random numbers

U i
1:t .

• In the implementation, the likelihood values are needed for the mutation step and the
state particles are useful for a quick evaluation of the incremental likelihood in the
subsequent correction step.

• The U i
1:t ’s are not required for the actual implementation of the algorithm but are useful

to provide a heuristic explanation for the validity of the algorithm.

Frank Schorfheide Particle Filtering



Mutation Step

• Essentially one iteration of PFMH algorithm.

• For each particle i :

• a proposed value ϑi
t ,

• an associated particle filter approximation p̂(Y1:t |ϑi
t) of the likelihood,

• and a sequence of random vectors U∗1:t drawn from the distribution p(U1:t).

• The densities p(U i
1:t) and p(U∗1:t) cancel from the formula for the acceptance probability

α(ϑit |θ̂it).

Frank Schorfheide Particle Filtering



Application to Small-Scale DSGE Model

• Results are based on Nrun = 20 runs of the SMC 2 algorithm with N = 4, 000 particles.

• D is data tempering and L is likelihood tempering.

• KF is Kalman filter, CO-PF is conditionally-optimal PF with M = 400, BS-PF is bootstrap
PF with M = 40, 000. CO-PF and BS-PF use data tempering.

Frank Schorfheide Particle Filtering



Accuracy of SMC 2 Approximations

Posterior Mean (Pooled) Inefficiency Factors Std Dev of Means
KF(L) KF(D) CO-PF BS-PF KF(L) KF(D) CO-PF BS-PF KF(L) KF(D) CO-PF BS-PF

τ 2.65 2.67 2.68 2.53 1.51 10.41 47.60 6570 0.01 0.03 0.07 0.76
κ 0.81 0.81 0.81 0.70 1.40 8.36 40.60 7223 0.00 0.01 0.01 0.18
ψ1 1.87 1.88 1.87 1.89 3.29 18.27 22.56 4785 0.01 0.02 0.02 0.27
ψ2 0.66 0.66 0.67 0.65 2.72 10.02 43.30 4197 0.01 0.02 0.03 0.34
ρr 0.75 0.75 0.75 0.72 1.31 11.39 60.18 14979 0.00 0.00 0.01 0.08
ρg 0.98 0.98 0.98 0.95 1.32 4.28 250.34 21736 0.00 0.00 0.00 0.04
ρz 0.88 0.88 0.88 0.84 3.16 15.06 35.35 10802 0.00 0.00 0.00 0.05
r (A) 0.45 0.46 0.44 0.46 1.09 26.58 73.78 7971 0.00 0.02 0.04 0.42
π(A) 3.32 3.31 3.31 3.56 2.15 40.45 158.64 6529 0.01 0.03 0.06 0.40
γ(Q) 0.59 0.59 0.59 0.64 2.35 32.35 133.25 5296 0.00 0.01 0.03 0.16
σr 0.24 0.24 0.24 0.26 0.75 7.29 43.96 16084 0.00 0.00 0.00 0.06
σg 0.68 0.68 0.68 0.73 1.30 1.48 20.20 5098 0.00 0.00 0.00 0.08
σz 0.32 0.32 0.32 0.42 2.32 3.63 26.98 41284 0.00 0.00 0.00 0.11
ln p(Y ) -358.75 -357.34 -356.33 -340.47 0.120 1.191 4.374 14.49

Frank Schorfheide Particle Filtering



Computational Considerations

• The SMC 2 results are obtained by utilizing 40 processors.

• We parallelized the likelihood evaluations p̂(Y1:t |θit) for the θit particles rather than the

particle filter computations for the swarms {s i,jt ,W i,j
t }Mj=1.

• The run time for the SMC 2 with conditionally-optimal PF (N = 4, 000, M = 400) is 23:24
[mm:ss] minutes, where as the algorithm with bootstrap PF (N = 4, 000 and
M = 40, 000) runs for 08:05:35 [hh:mm:ss] hours.

• Due to memory constraints we re-computed the entire likelihood for Y1:t in each iteration.

• Our sequential (data-tempering) implementation of the SMC 2 algorithm suffers from
particle degeneracy in the intial stages, i.e., for small sample sizes.

Frank Schorfheide Particle Filtering


