Particle Filtering

Frank Schorfheide

University of Pennsylvania

Gerzensee Ph.D. Course on Bayesian Macroeconometrics

May 28, 2019

From Linear to Nonlinear DSGE Models

• Linear DSGE model leads to

$$egin{array}{rcl} y_t &=& \Psi_0(heta) + \Psi_1(heta)t + \Psi_2(heta)s_t + u_t, & u_t \sim \mathcal{N}(0, \Sigma_u), \ s_t &=& \Phi_1(heta)s_{t-1} + \Phi_\epsilon(heta)\epsilon_t, & \epsilon_t \sim \mathcal{N}(0, \Sigma_\epsilon). \end{array}$$

• Nonlinear DSGE model leads to

$$\begin{array}{lll} y_t &=& \Psi(s_t,t;\theta)+u_t, \quad u_t\sim F_u(\cdot;\theta) \\ s_t &=& \Phi(s_{t-1},\epsilon_t;\theta), \quad \epsilon_t\sim F_\epsilon(\cdot;\theta). \end{array}$$

- While DSGE models are inherently nonlinear, the nonlinearities are often small and decision rules are approximately linear.
- One can add certain features that generate more pronounced nonlinearities:
 - stochastic volatility;
 - markov switching coefficients;
 - asymmetric adjustment costs;
 - occasionally binding constraints.

- There are many particle filters...
- We will focus on three types:
 - Bootstrap PF
 - A generic PF
 - A conditionally-optimal PF

Filtering - General Idea

• State-space representation of linearized DSGE model

$$y_t = \Psi_0(\theta) + \Psi_1(\theta)t + \Psi_2(\theta)s_t(+u_t)$$
 measurement

$$s_t = \Phi_1(heta) s_t + \Phi_\epsilon(heta) \epsilon_t$$
 state transition

• Likelihood function:

$$p(Y_{1:T}|\theta) = \prod_{t=1}^{T} p(y_t|Y_{1:t-1},\theta)$$

- A filter generates a sequence of conditional distributions $s_t|Y_{1:t}$.
- Iterations:
 - Initialization at time t 1: $p(s_{t-1}|Y_{1:t-1}, \theta)$
 - Forecasting t given t 1:
 - **1** Transition equation: $p(s_t|Y_{1:t-1}, \theta) = \int p(s_t|s_{t-1}, Y_{1:t-1}, \theta) p(s_{t-1}|Y_{1:t-1}, \theta) ds_{t-1}$
 - 2 Measurement equation: $p(y_t|Y_{1:t-1},\theta) = \int p(y_t|s_t, Y_{1:t-1},\theta) p(s_t|Y_{1:t-1},\theta) ds_t$
 - Updating with Bayes theorem. Once y_t becomes available:

$$p(s_t|Y_{1:t},\theta) = p(s_t|y_t, Y_{1:t-1}, \theta) = \frac{p(y_t|s_t, Y_{1:t-1}, \theta)p(s_t|Y_{1:t-1}, \theta)}{p(y_t|Y_{1:t-1}, \theta)}$$

Bootstrap Particle Filter – Idea

- **1** Initialization. Draw the initial particles from the distribution $s_0^j \stackrel{iid}{\sim} p(s_0)$ and set $W_0^j = 1$, j = 1, ..., M.
- **2 Recursion.** For $t = 1, \ldots, T$:
 - **1** Forecasting s_t . Propagate the period t 1 particles $\{s_{t-1}^j, W_{t-1}^j\}$ by iterating the state-transition equation forward:

$$\tilde{s}_t^j = \Phi(s_{t-1}^j, \epsilon_t^j; \theta), \quad \epsilon_t^j \sim F_\epsilon(\cdot; \theta).$$
(1)

An approximation of $\mathbb{E}[h(s_t)|Y_{1:t-1}, \theta]$ is given by

$$\hat{h}_{t,M} = \frac{1}{M} \sum_{j=1}^{M} h(\tilde{s}_{t}^{j}) W_{t-1}^{j}.$$
(2)

Initialization.

- **2** Recursion. For $t = 1, \ldots, T$:
 - **1** Forecasting s_t .
 - **2** Forecasting y_t . Define the incremental weights

$$\tilde{w}_t^j = p(y_t | \tilde{s}_t^j, \theta). \tag{3}$$

The predictive density $p(y_t|Y_{1:t-1},\theta)$ can be approximated by

$$\hat{\rho}(y_t|Y_{1:t-1},\theta) = \frac{1}{M} \sum_{j=1}^M \tilde{w}_t^j W_{t-1}^j.$$
(4)

If the measurement errors are $N(0, \Sigma_u)$ then the incremental weights take the form

$$\tilde{w}_t^j = (2\pi)^{-n/2} |\Sigma_u|^{-1/2} \exp\left\{-\frac{1}{2} \left(y_t - \Psi(\tilde{s}_t^j, t; \theta)\right)' \Sigma_u^{-1} \left(y_t - \Psi(\tilde{s}_t^j, t; \theta)\right)\right\},\tag{5}$$

where *n* here denotes the dimension of y_t .

Initialization.

- **2** Recursion. For $t = 1, \ldots, T$:
 - **1** Forecasting *s_t*.
 - **2** Forecasting y_t . Define the incremental weights

$$\tilde{w}_t^j = p(y_t | \tilde{s}_t^j, \theta). \tag{6}$$

3 Updating. Define the normalized weights

$$\tilde{\mathcal{W}}_{t}^{j} = \frac{\tilde{w}_{t}^{j} \mathcal{W}_{t-1}^{j}}{\frac{1}{M} \sum_{j=1}^{M} \tilde{w}_{t}^{j} \mathcal{W}_{t-1}^{j}}.$$
(7)

An approximation of $\mathbb{E}[h(s_t)|Y_{1:t}, \theta]$ is given by

$$\tilde{h}_{t,M} = \frac{1}{M} \sum_{j=1}^{M} h(\tilde{s}_t^j) \tilde{W}_t^j.$$
(8)

- Initialization.
- **2 Recursion.** For $t = 1, \ldots, T$:
 - **1** Forecasting s_t .
 - **2** Forecasting y_t .
 - Opdating.
 - Gelection (Optional). Resample the particles via multinomial resampling. Let {s^j_{j=1}} denote M iid draws from a multinomial distribution characterized by support points and weights {s^j_t, W^j_t} and set W^j_t = 1 for j =, 1..., M. An approximation of E[h(s_t)|Y_{1:t}, θ] is given by

$$\bar{h}_{t,M} = \frac{1}{M} \sum_{j=1}^{M} h(\boldsymbol{s}_{t}^{j}) W_{t}^{j}.$$

$$\tag{9}$$

3 Likelihood Approximation. The approximation of the log likelihood function is given by

$$\ln \hat{p}(Y_{1:T}|\theta) = \sum_{t=1}^{T} \ln \left(\frac{1}{M} \sum_{j=1}^{M} \tilde{w}_t^j W_{t-1}^j \right).$$

$$(10)$$

Asymptotics

• The convergence results can be established recursively, starting from the assumption

$$\overline{h}_{t-1,M} \stackrel{a.s.}{\longrightarrow} \mathbb{E}[h(s_{t-1})|Y_{1:t-1}],$$

$$\sqrt{M}(\overline{h}_{t-1,M} - \mathbb{E}[h(s_{t-1})|Y_{1:t-1}]) \implies N(0,\Omega_{t-1}(h)).$$

- Forward iteration: draw s_t from $g_t(s_t|s_{t-1}^j) = p(s_t|s_{t-1}^j)$.
- Decompose

$$\begin{aligned} \hat{h}_{t,M} &- \mathbb{E}[h(s_t)|Y_{1:t-1}] \\ &= \frac{1}{M} \sum_{j=1}^{M} \left(h(\tilde{s}_t^j) - \mathbb{E}_{p(\cdot|s_{t-1}^j)}[h] \right) W_{t-1}^j \\ &+ \frac{1}{M} \sum_{j=1}^{M} \left(\mathbb{E}_{p(\cdot|s_{t-1}^j)}[h] W_{t-1}^j - \mathbb{E}[h(s_t)|Y_{1:t-1}] \right) \\ &= I + II, \end{aligned}$$
(11)

• Both I and II converge to zero (and potentially satisfy CLT).

• Updating step approximates

$$\mathbb{E}[h(s_t)|Y_{1:t}] = \frac{\int h(s_t)p(y_t|s_t)p(s_t|Y_{1:t-1})ds_t}{\int p(y_t|s_t)p(s_t|Y_{1:t-1})ds_t} \approx \frac{\frac{1}{M}\sum_{j=1}^M h(\tilde{s}_t^j)\tilde{w}_t^j W_{t-1}^j}{\frac{1}{M}\sum_{j=1}^M \tilde{w}_t^j W_{t-1}^j}$$
(12)

• Define the normalized incremental weights as

$$v_t(s_t) = \frac{p(y_t|s_t)}{\int p(y_t|s_t)p(s_t|Y_{1:t-1})ds_t}.$$
(13)

• Under suitable regularity conditions, the Monte Carlo approximation satisfies a CLT of the form

$$\sqrt{M} \big(\tilde{h}_{t,M} - \mathbb{E}[h(s_t)|Y_{1:t}] \big)$$

$$\implies N \big(0, \tilde{\Omega}_t(h) \big), \quad \tilde{\Omega}_t(h) = \hat{\Omega}_t \big(v_t(s_t)(h(s_t) - \mathbb{E}[h(s_t)|Y_{1:t}]) \big).$$
(14)

• Distribution of particle weights matters for accuracy! \implies Resampling!

- Measurement errors may not be intrinsic to DSGE model.
- Bootstrap filter needs non-degenerate $p(y_t|s_t, \theta)$ for incremental weights to be well defined.
- Decreasing the measurement error variance Σ_u , holding everything else fixed, increases the variance of the particle weights, and reduces the accuracy of Monte Carlo approximation.

Generic Particle Filter

1 Initialization. Same as BS PF 2 Recursion. For t = 1, ..., T: 1 Forecasting s_t . Draw \tilde{s}_t^j from density $g_t(\tilde{s}_t|s_{t-1}^j, \theta)$ and define $\omega_t^j = \frac{p(\tilde{s}_t^j|s_{t-1}^j, \theta)}{g_t(\tilde{s}_t^j|s_{t-1}^j, \theta)}.$ (15) An approximation of $\mathbb{E}[h(s_t)|Y_{1:t-1}, \theta]$ is given by

$$\hat{h}_{t,M} = \frac{1}{M} \sum_{j=1}^{M} h(\tilde{s}_{t}^{j}) \omega_{t}^{j} W_{t-1}^{j}.$$
(16)

2 Forecasting y_t . Define the incremental weights

$$\tilde{w}_t^j = p(y_t | \tilde{s}_t^j, \theta) \omega_t^j.$$
(17)

The predictive density $p(y_t|Y_{1:t-1}, \theta)$ can be approximated by

$$\hat{\rho}(y_t|Y_{1:t-1},\theta) = \frac{1}{M} \sum_{j=1}^M \tilde{w}_t^j W_{t-1}^j.$$
(18)

3 Updating. Same as BS PF**4 Selection.** Same as BS PF

• Conditionally-optimal importance distribution:

$$g_t(\tilde{s}_t|s_{t-1}^j) = p(\tilde{s}_t|y_t,s_{t-1}^j).$$

This is the posterior of s_t given s_{t-1}^j . Typically infeasible, but a good benchmark.

- Approximately conditionally-optimal distributions: from linearize version of DSGE model or approximate nonlinear filters.
- Conditionally-linear models: do Kalman filter updating on a subvector of s_t . Example:

$$y_t = \Psi_0(m_t) + \Psi_1(m_t)t + \Psi_2(m_t)s_t + u_t, \quad u_t \sim N(0, \Sigma_u),$$

$$s_t = \Phi_0(m_t) + \Phi_1(m_t)s_{t-1} + \Phi_\epsilon(m_t)\epsilon_t, \quad \epsilon_t \sim N(0, \Sigma_\epsilon),$$

where m_t follows a discrete Markov-switching process.

More on Conditionally-Linear Models

• State-space representation is linear conditional on m_t.

• Write

$$p(m_t, s_t | Y_{1:t}) = p(m_t | Y_{1:t}) p(s_t | m_t, Y_{1:t}),$$
(19)

where

$$s_t|(m_t, Y_{1:t}) \sim N(\bar{s}_{t|t}(m_t), P_{t|t}(m_t)).$$
 (20)

- Vector of means $\bar{s}_{t|t}(m_t)$ and the covariance matrix $P_{t|t}(m)_t$ are sufficient statistics for the conditional distribution of s_t .
- Approximate $(m_t, s_t)|Y_{1:t}$ by $\{\overline{m}_t^j, \overline{s}_{t|t}^j, P_{t|t}^j, W_t^j\}_{i=1}^N$.
- The swarm of particles approximates

$$\int h(m_t, s_t) p(m_t, s_t, Y_{1:t}) d(m_t, s_t)$$

$$= \int \left[\int h(m_t, s_t) p(s_t | m_t, Y_{1:t}) ds_t \right] p(m_t | Y_{1:t}) dm_t$$

$$\approx \frac{1}{M} \sum_{i=1}^M \left[\int h(m_t^j, s_t^j) p_N(s_t | \bar{s}_{t|t}^j, P_{t|t}^j) ds_t \right] W_t^j.$$
(21)

More on Conditionally-Linear Models

• We used Rao-Blackwellization to reduce variance: $\mathbb{V}[h(s_t, m_t)] = \mathbb{E}[\mathbb{V}[h(s_t, m_t)|m_t]] + \mathbb{V}[\mathbb{E}[h(s_t, m_t)|m_t]]$

ge
$$\mathbb{V}[\mathbb{E}[h(s_t, m_t)|m_t]]$$

• To forecast the states in period t, generate \tilde{m}_t^j from $g_t(\tilde{m}_t|m_{t-1}^j)$ and define:

$$\omega_t^j = \frac{p(\tilde{m}_t^j | m_{t-1}^j)}{g_t(\tilde{m}_t^j | m_{t-1}^j)}.$$
(22)

(23)

• The Kalman filter forecasting step can be used to compute:

$$\begin{split} \tilde{s}_{t|t-1}^{j} &= \Phi_{0}(\tilde{m}_{t}^{j}) + \Phi_{1}(\tilde{m}_{t}^{j}) s_{t-1}^{j} \\ P_{t|t-1}^{j} &= \Phi_{\epsilon}(\tilde{m}_{t}^{j}) \Sigma_{\epsilon}(\tilde{m}_{t}^{j}) \Phi_{\epsilon}(\tilde{m}_{t}^{j})' \\ \tilde{y}_{t|t-1}^{j} &= \Psi_{0}(\tilde{m}_{t}^{j}) + \Psi_{1}(\tilde{m}_{t}^{j}) t + \Psi_{2}(\tilde{m}_{t}^{j}) \tilde{s}_{t|t-1}^{j} \\ F_{t|t-1}^{j} &= \Psi_{2}(\tilde{m}_{t}^{j}) P_{t|t-1}^{j} \Psi_{2}(\tilde{m}_{t}^{j})' + \Sigma_{u}. \end{split}$$

More on Conditionally-Linear Models

• Then,

$$\int h(m_t, s_t) p(m_t, s_t | Y_{1:t-1}) d(m_t, s_t) = \int \left[\int h(m_t, s_t) p(s_t | m_t, Y_{1:t-1}) ds_t \right] p(m_t | Y_{1:t-1}) dm_t$$

$$\approx \frac{1}{M} \sum_{j=1}^M \left[\int h(m_t^j, s_t^j) p_N(s_t | \tilde{s}_{t|t-1}^j, P_{t|t-1}^j) ds_t \right] \omega_t^j W_{t-1}^j$$
(24)

• The likelihood approximation is based on the incremental weights

$$\tilde{w}_{t}^{j} = p_{N}(y_{t}|\tilde{y}_{t|t-1}^{j}, F_{t|t-1}^{j})\omega_{t}^{j}.$$
(25)

• Conditional on \tilde{m}_t^j we can use the Kalman filter once more to update the information about s_t in view of the current observation y_t :

$$\tilde{s}_{t|t}^{j} = \tilde{s}_{t|t-1}^{j} + P_{t|t-1}^{j} \Psi_{2}(\tilde{m}_{t}^{j})' (F_{t|t-1}^{j})^{-1} (y_{t} - \bar{y}_{t|t-1}^{j}) \\
\tilde{P}_{t|t}^{j} = P_{t|t-1}^{j} - P_{t|t-1}^{j} \Psi_{2}(\tilde{m}_{t}^{j})' (F_{t|t-1}^{j})^{-1} \Psi_{2}(\tilde{m}_{t}^{j}) P_{t|t-1}^{j}.$$
(26)

Particle Filter For Conditionally Linear Models

Initialization.

- **2 Recursion.** For $t = 1, \ldots, T$:
 - **1** Forecasting s_t . Draw \tilde{m}_t^j from density $g_t(\tilde{m}_t | m_{t-1}^j, \theta)$, calculate the importance weights ω_t^j in (22), and compute $\tilde{s}_{t|t-1}^j$ and $P_{t|t-1}^j$ according to (23). An approximation of $\mathbb{E}[h(s_t, m_t)|Y_{1:t-1}, \theta]$ is given by (25).
 - Forecasting y_t. Compute the incremental weights w̃^j_t according to (25). Approximate the predictive density p(y_t|Y_{1:t-1}, θ) by

$$\hat{\rho}(y_t|Y_{1:t-1},\theta) = \frac{1}{M} \sum_{j=1}^M \tilde{w}_t^j W_{t-1}^j.$$
(27)

3 Updating. Define the normalized weights

$$\tilde{W}_{t}^{j} = \frac{\tilde{w}_{t}^{j} W_{t-1}^{j}}{\frac{1}{M} \sum_{j=1}^{M} \tilde{w}_{t}^{j} W_{t-1}^{j}}$$
(28)

and compute $\tilde{s}_{t|t}^{j}$ and $\tilde{P}_{t|t}^{j}$ according to (26). An approximation of $\mathbb{E}[h(m_t, s_t)|Y_{1:t}, \theta]$ can be obtained from $\{\tilde{m}_t^j, \tilde{s}_{t|t}^j, \tilde{P}_{t|t}^j, \tilde{W}_t^j\}$.

- **4** Selection.
- **8** Likelihood Approximation.

Nonlinear and Partially Deterministic State Transitions

• Example:

$$s_{1,t} = \Phi_1(s_{t-1}, \epsilon_t), \quad s_{2,t} = \Phi_2(s_{t-1}), \quad \epsilon_t \sim N(0, 1).$$

• Generic filter requires evaluation of $p(s_t|s_{t-1})$.

- Define $\varsigma_t = [s'_t, \epsilon'_t]'$ and add identity $\epsilon_t = \epsilon_t$ to state transition.
- Factorize the density $p(\varsigma_t|\varsigma_{t-1})$ as

$$p(\varsigma_t|\varsigma_{t-1}) = p^{\epsilon}(\epsilon_t)p(s_{1,t}|s_{t-1},\epsilon_t)p(s_{2,t}|s_{t-1}).$$

where $p(s_{1,t}|s_{t-1}, \epsilon_t)$ and $p(s_{2,t}|s_{t-1})$ are pointmasses.

• Sample innovation ϵ_t from $g_t^{\epsilon}(\epsilon_t|s_{t-1})$.

• Then

$$\omega_t^j = \frac{p(\tilde{\varsigma}_t^j | \varsigma_{t-1}^j)}{g_t(\tilde{\varsigma}_t^j | \varsigma_{t-1}^j)} = \frac{p^{\epsilon}(\tilde{\epsilon}_t^j) p(\tilde{s}_{1,t}^j | s_{t-1}^j, \tilde{\epsilon}_t^j) p(\tilde{s}_{2,t}^j | s_{t-1}^j)}{g_t^{\epsilon}(\tilde{\epsilon}_t^j | s_{t-1}^j) p(\tilde{s}_{1,t}^j | s_{t-1}^j, \tilde{\epsilon}_t^j) p(\tilde{s}_{2,t}^j | s_{t-1}^j)} = \frac{p^{\epsilon}(\tilde{\epsilon}_t^j)}{g_t^{\epsilon}(\tilde{\epsilon}_t^j | s_{t-1}^j)}.$$

Degenerate Measurement Error Distributions

• Our discussion of the conditionally-optimal importance distribution suggests that in the absence of measurement errors, one has to solve the system of equations

$$y_t = \Psi ig(\Phi(s_{t-1}^j, \widetilde{\epsilon}_t^j) ig),$$

to determine $\tilde{\epsilon}_t^j$ as a function of s_{t-1}^j and the current observation y_t .

• Then define

$$\omega_t^j = p^\epsilon(ilde \epsilon_t^j) \quad ext{and} \quad ilde s_t^j = \Phi(s_{t-1}^j, ilde \epsilon_t^j).$$

- Difficulty: one has to find all solutions to a nonlinear system of equations.
- While resampling duplicates particles, the duplicated particles do not mutate, which can lead to a degeneracy.

- We will now apply PFs to linearized DSGE models.
- This allows us to compare the Monte Carlo approximation to the "truth."
- Small-scale New Keynesian DSGE model
- Smets-Wouters model

Parameter Values For Likelihood Evaluation

Parameter	θ^m	θ'	Parameter	θ^m	θ'
au	2.09	3.26	κ	0.98	0.89
ψ_1	2.25	1.88	ψ_2	0.65	0.53
$ ho_r$	0.81	0.76	$ ho_{g}$	0.98	0.98
$ ho_z$	0.93	0.89	r ^(A)	0.34	0.19
$\pi^{(A)}$	3.16	3.29	$\gamma^{(Q)}$	0.51	0.73
σ_r	0.19	0.20	σ_{g}	0.65	0.58
σ_z	0.24	0.29	$\ln p(Y heta)$	-306.5	-313.4

Likelihood Approximation

Notes: The results depicted in the figure are based on a single run of the bootstrap PF (dashed), the conditionally-optimal PF (dotted), and the Kalman filter (solid).

Notes: The results depicted in the figure are based on a single run of the bootstrap PF (dashed), the conditionally-optimal PF (dotted), and the Kalman filter (solid).

Distribution of Log-Likelihood Approximation Errors

Notes: Density estimate of $\hat{\Delta}_1 = \ln \hat{p}(Y_{1:T}|\theta) - \ln p(Y_{1:T}|\theta)$ based on $N_{run} = 100$ runs of the PF. Solid line is $\theta = \theta^m$; dashed line is $\theta = \theta^I$ (M = 40,000).

Distribution of Log-Likelihood Approximation Errors

Notes: Density estimate of $\hat{\Delta}_1 = \ln \hat{p}(Y_{1:T}|\theta) - \ln p(Y_{1:T}|\theta)$ based on $N_{run} = 100$ runs of the PF. Solid line is bootstrap particle filter (M = 40,000); dotted line is conditionally optimal particle filter (M = 400).

	Bootstrap	Cond. Opt.	Auxiliary
Number of Particles M	40,000	400	40,000
Number of Repetitions	100	100	100
High Po	sterior Density	$: \theta = \theta^m$	
Bias $\hat{\Delta}_1$	-1.39	-0.10	-2.83
$StdD\;\hat{\Delta}_1$	2.03	0.37	1.87
Bias $\hat{\Delta}_2$	0.32	-0.03	-0.74
Low Po	sterior Density	y: $\theta = \theta'$	
Bias $\hat{\Delta}_1$	-7.01	-0.11	-6.44
$StdD\;\hat{\Delta}_1$	4.68	0.44	4.19
Bias $\hat{\Delta}_2$	-0.70	-0.02	-0.50

Notes: $\hat{\Delta}_1 = \ln \hat{p}(Y_{1:T}|\theta) - \ln p(Y_{1:T}|\theta)$ and $\hat{\Delta}_2 = \exp[\ln \hat{p}(Y_{1:T}|\theta) - \ln p(Y_{1:T}|\theta)] - 1$. Results are based on $N_{run} = 100$ runs of the particle filters.

Great Recession and Beyond

Notes: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap particle filter (M = 40,000) and dotted lines correspond to conditionally-optimal particle filter (M = 400). Results are based on $N_{run} = 100$ runs of the filters.

Great Recession and Beyond

Notes: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap particle filter (M = 40,000) and dotted lines correspond to conditionally-optimal particle filter (M = 400). Results are based on $N_{run} = 100$ runs of the filters.

Great Recession and Beyond

Log Standard Dev of Log-Likelihood Increments

Notes: Solid lines represent results from Kalman filter. Dashed lines correspond to bootstrap particle filter (M = 40,000) and dotted lines correspond to conditionally-optimal particle filter (M = 400). Results are based on $N_{run} = 100$ runs of the filters.

SW Model: Distr. of Log-Likelihood Approximation Errors

Notes: Density estimates of $\hat{\Delta}_1 = \ln \hat{p}(Y|\theta) - \ln p(Y|\theta)$ based on $N_{run} = 100$. Solid densities summarize results for the bootstrap (BS) particle filter; dashed densities summarize results for the conditionally-optimal (CO) particle filter.

SW Model: Distr. of Log-Likelihood Approximation Errors

Notes: Density estimates of $\hat{\Delta}_1 = \ln \hat{p}(Y|\theta) - \ln p(Y|\theta)$ based on $N_{run} = 100$. Solid densities summarize results for the bootstrap (BS) particle filter; dashed densities summarize results for the conditionally-optimal (CO) particle filter.

	Boot	Cond	. Opt.					
Number of Particles M	40,000	400,000	4,000	40,000				
Number of Repetitions	100	100	100	100				
High Posterior Density: $\theta = \theta^m$								
Bias $\hat{\Delta}_1$	-238.49	-118.20	-8.55	-2.88				
$StdD\;\hat{\Delta}_1$	68.28	35.69	4.43	2.49				
Bias $\hat{\Delta}_2$	-1.00	-1.00	-0.87	-0.41				
Low Posterior Density: $\theta = \theta'$								
Bias $\hat{\Delta}_1$	-253.89	-128.13	-11.48	-4.91				
$StdD\;\hat{\Delta}_1$	65.57	41.25	4.98	2.75				
Bias $\hat{\Delta}_2$	-1.00	-1.00	-0.97	-0.64				

Notes: Results are based on $N_{run} = 100$.

Embedding PF Likelihoods into Posterior Samplers

- Likelihood functions for nonlinear DSGE models can be approximated by the PF.
- We will now embed the likelihood approximation into a posterior sampler:
 - PFMH Algorithm (a special case of PMCMC)
 - *SMC*²

- Distinguish between:
 - $\{p(Y|\theta), p(\theta|Y), p(Y)\}$, which are related according to:

$$p(heta|Y) = rac{p(Y| heta)p(heta)}{p(Y)}, \quad p(Y) = \int p(Y| heta)p(heta)d heta$$

• $\{\hat{p}(Y|\theta), \hat{p}(\theta|Y), \hat{p}(Y)\}$, which are related according to:

$$\hat{\rho}(heta|Y) = rac{\hat{
ho}(Y| heta) p(heta)}{\hat{
ho}(Y)}, \quad \hat{
ho}(Y) = \int \hat{
ho}(Y| heta) p(heta) d heta.$$

• Surprising result (Andrieu, Docet, and Holenstein, 2010): under certain conditions we can replace $p(Y|\theta)$ by $\hat{p}(Y|\theta)$ and still obtain draws from $p(\theta|Y)$.

For i = 1 to N:

- **1** Draw ϑ from a density $q(\vartheta|\theta^{i-1})$.
- **2** Set $\theta^i = \vartheta$ with probability

$$\alpha(\vartheta|\theta^{i-1}) = \min\left\{1, \frac{\hat{\rho}(Y|\vartheta)\rho(\vartheta)/q(\vartheta|\theta^{i-1})}{\hat{\rho}(Y|\theta^{j-1})\rho(\theta^{i-1})/q(\theta^{i-1}|\vartheta)}\right\}$$

and $\theta^i = \theta^{i-1}$ otherwise. The likelihood approximation $\hat{p}(Y|\vartheta)$ is computed using a particle filter.

- At each iteration the filter generates draws \tilde{s}_t^j from the proposal distribution $g_t(\cdot|s_{t-1}^j)$.
- Let $\tilde{S}_t = (\tilde{s}_t^1, \dots, \tilde{s}_t^M)'$ and denote the entire sequence of draws by $\tilde{S}_{1:T}^{1:M}$.
- Selection step: define a random variable A^j_t that contains this ancestry information. For instance, suppose that during the resampling particle j = 1 was assigned the value s¹⁰_t then A¹_t = 10. Let A_t = (A¹_t,...,A^N_t) and use A_{1:T} to denote the sequence of A_t's.
- PFMH operates on an enlarged probability space: θ , $\tilde{S}_{1:T}$ and $A_{1:T}$.

Why Does the PFMH Work?

- Use $U_{1:T}$ to denote random vectors for $\tilde{S}_{1:T}$ and $A_{1:T}$. $U_{1:T}$ is an array of *iid* uniform random numbers.
- The transformation of $U_{1:T}$ into $(\tilde{S}_{1:T}, A_{1:T})$ typically depends on θ and $Y_{1:T}$, because the proposal distribution $g_t(\tilde{s}_t|s_{t-1}^j)$ depends both on the current observation y_t as well as the parameter vector θ .
- E.g., implementation of conditionally-optimal PF requires sampling from a $N(\bar{s}_{t|t}^{j}, P_{t|t})$ distribution for each particle *j*. Can be done using a prob integral transform of uniform random variables.
- We can express the particle filter approximation of the likelihood function as

 $\hat{p}(Y_{1:T}|\theta) = g(Y_{1:T}|\theta, U_{1:T}).$

where

$$U_{1:T} \sim p(U_{1:T}) = \prod_{t=1}^{T} p(U_t).$$

• Define the joint distribution

 $p_g(Y_{1:T}, \theta, U_{1:T}) = g(Y_{1:T}|\theta, U_{1:T})p(U_{1:T})p(\theta).$

• The PFMH algorithm samples from the joint posterior

 $p_g(heta, U_{1:T}|Y_{1:T}) \propto g(Y| heta, U_{1:T}) p(U_{1:T}) p(heta)$

and discards the draws of $(U_{1:T})$.

• For this procedure to be valid, it needs to be the case that PF approximation is unbiased:

$$\mathbb{E}[\hat{p}(Y_{1:T}|\theta)] = \int g(Y_{1:T}|\theta, U_{1:T}) p(U_{1:T}) d\theta = p(Y_{1:T}|\theta).$$

- We can express acceptance probability directly in terms of $\hat{p}(Y_{1:T}|\theta)$.
- Need to generate a proposed draw for both θ and $U_{1:T}$: ϑ and $U_{1:T}^*$.
- The proposal distribution for $(\vartheta, U_{1:T}^*)$ in the MH algorithm is given by $q(\vartheta|\theta^{(i-1)})p(U_{1:T}^*)$.
- No need to keep track of the draws $(U_{1:T}^*)$.
- MH acceptance probability:

$$\begin{aligned} \alpha(\vartheta|\theta^{i-1}) &= \min\left\{1, \frac{\frac{g(Y|\vartheta, U^*)p(U^*)p(\vartheta)}{q(\vartheta|\theta^{(i-1)})p(U^*)}}{\frac{g(Y|\vartheta^{(i-1)})p(U^{(i-1)})p(U^{(i-1)})}{q(\theta^{(i-1)}|\theta^*)p(U^{(i-1)})}}\right\} \\ &= \min\left\{1, \frac{\hat{p}(Y|\vartheta)p(\vartheta)/q(\vartheta|\theta^{(i-1)})}{\hat{p}(Y|\theta^{(i-1)})p(\theta^{(i-1)})/q(\theta^{(i-1)}|\vartheta)}\right\}\end{aligned}$$

Small-Scale DSGE: Accuracy of MH Approximations

- Results are based on $N_{run} = 20$ runs of the PF-RWMH-V algorithm.
- Each run of the algorithm generates N = 100,000 draws and the first $N_0 = 50,000$ are discarded.
- The likelihood function is computed with the Kalman filter (KF), bootstrap particle filter (BS-PF, M = 40,000) or conditionally-optimal particle filter (CO-PF, M = 400).
- "Pooled" means that we are pooling the draws from the $N_{run} = 20$ runs to compute posterior statistics.

Small-Scale DSGE: Accuracy of MH Approximations

	Posterior Mean (Pooled)			Inef	ficiency Fa	actors	Std Dev of Means		
	KF	CO-PF	BS-PF	KF	CO-PF	BS-PF	KF	CO-PF	BS-PF
τ	2.63	2.62	2.64	66.17	126.76	1360.22	0.020	0.028	0.091
κ	0.82	0.81	0.82	128.00	97.11	1887.37	0.007	0.006	0.026
ψ_1	1.88	1.88	1.87	113.46	159.53	749.22	0.011	0.013	0.029
ψ_2	0.64	0.64	0.63	61.28	56.10	681.85	0.011	0.010	0.036
ρ_r	0.75	0.75	0.75	108.46	134.01	1535.34	0.002	0.002	0.007
ρ_g	0.98	0.98	0.98	94.10	88.48	1613.77	0.001	0.001	0.002
ρ_z	0.88	0.88	0.88	124.24	118.74	1518.66	0.001	0.001	0.005
$r^{(A)}$	0.44	0.44	0.44	148.46	151.81	1115.74	0.016	0.016	0.044
$\pi^{(A)}$	3.32	3.33	3.32	152.08	141.62	1057.90	0.017	0.016	0.045
$\gamma^{(Q)}$	0.59	0.59	0.59	106.68	142.37	899.34	0.006	0.007	0.018
σ_r	0.24	0.24	0.24	35.21	179.15	1105.99	0.001	0.002	0.004
σ_{g}	0.68	0.68	0.67	98.22	64.18	1490.81	0.003	0.002	0.011
σ_z	0.32	0.32	0.32	84.77	61.55	575.90	0.001	0.001	0.003
$\ln \hat{p}(Y)$	-357.14	-357.17	-358.32				0.040	0.038	0.949

Autocorrelation of PFMH Draws

Notes: The figure depicts autocorrelation functions computed from the output of the 1 Block RWMH-V algorithm based on the Kalman filter (solid), the conditionally-optimal particle filter (dashed) and the bootstrap particle filter (solid with dots).

- Results are based on $N_{run} = 20$ runs of the PF-RWMH-V algorithm.
- Each run of the algorithm generates N = 10,000 draws.
- The likelihood function is computed with the Kalman filter (KF) or conditionally-optimal particle filter (CO-PF).
- "Pooled" means that we are pooling the draws from the $N_{run} = 20$ runs to compute posterior statistics. The CO-PF uses M = 40,000 particles to compute the likelihood.

SW Model: Accuracy of MH Approximations

	Post. Mean (Pooled)		Ine	eff. Factors	Std Dev of Means		
	KF	CO-PF	KF	CO-PF	KF	CO-PF	
$(100 eta^{-1} - 1)$	0.14	0.14	172.58	3732.90	0.007	0.034	
$\overline{\pi}$	0.73	0.74	185.99	4343.83	0.016	0.079	
Ī	0.51	0.37	174.39	3133.89	0.130	0.552	
α	0.19	0.20	149.77	5244.47	0.003	0.015	
σ_c	1.49	1.45	86.27	3557.81	0.013	0.086	
Φ	1.47	1.45	134.34	4930.55	0.009	0.056	
φ	5.34	5.35	138.54	3210.16	0.131	0.628	
h	0.70	0.72	277.64	3058.26	0.008	0.027	
ξw	0.75	0.75	343.89	2594.43	0.012	0.034	
σ_{I}	2.28	2.31	162.09	4426.89	0.091	0.477	
ξ_P	0.72	0.72	182.47	6777.88	0.008	0.051	
Lw	0.54	0.53	241.80	4984.35	0.016	0.073	
lp	0.48	0.50	205.27	5487.34	0.015	0.078	
$\dot{\psi}$	0.45	0.44	248.15	3598.14	0.020	0.078	
r_{π}	2.09	2.09	98.32	3302.07	0.020	0.116	
ρ	0.80	0.80	241.63	4896.54	0.006	0.025	
ry	0.13	0.13	243.85	4755.65	0.005	0.023	
$r_{\Delta y}$	0.21	0.21	101.94	5324.19	0.003	0.022	

SW Model: Accuracy of MH Approximations

	Post.	Post. Mean (Pooled)		eff. Factors	Std De	Std Dev of Means		
	KF	CO-PF	KF	CO-PF	KF	CO-PF		
ρ_a	0.96	0.96	153.46	1358.87	0.002	0.005		
ρ_{b}	0.22	0.21	325.98	4468.10	0.018	0.068		
ρ_g	0.97	0.97	57.08	2687.56	0.002	0.011		
ρ_i	0.71	0.70	219.11	4735.33	0.009	0.044		
ρ_r	0.54	0.54	194.73	4184.04	0.020	0.094		
ρ_{P}	0.80	0.81	338.69	2527.79	0.022	0.061		
ρ_w	0.94	0.94	135.83	4851.01	0.003	0.019		
ρ_{ga}	0.41	0.37	196.38	5621.86	0.025	0.133		
μ_{P}	0.66	0.66	300.29	3552.33	0.025	0.087		
μ_w	0.82	0.81	218.43	5074.31	0.011	0.052		
σ_{a}	0.34	0.34	128.00	5096.75	0.005	0.034		
σ_b	0.24	0.24	186.13	3494.71	0.004	0.016		
σ_{g}	0.51	0.49	208.14	2945.02	0.006	0.021		
σ_i	0.43	0.44	115.42	6093.72	0.006	0.043		
σ_r	0.14	0.14	193.37	3408.01	0.004	0.016		
σ_{p}	0.13	0.13	194.22	4587.76	0.003	0.013		
σ_w	0.22	0.22	211.80	2256.19	0.004	0.012		
$\ln \hat{p}(Y)$	-964.44	-1017.94			0.298	9.139		

- We implement the PFMH algorithm on a single machine, utilizing up to twelve cores.
- For the small-scale DSGE model it takes 30:20:33 [hh:mm:ss] hours to generate 100,000 parameter draws using the bootstrap PF with 40,000 particles. Under the conditionally-optimal filter we only use 400 particles, which reduces the run time to 00:39:20 minutes.
- For the SW model it took 05:14:20:00 [dd:hh:mm:ss] days to generate 10,000 draws using the conditionally-optimal PF with 40,000 particles.

- Start from SMC algorithm...
- Data tempering instead of likelihood tempering: $\pi_n^D(\theta) = p(\theta|Y_{1:t_n})$,
- Particle filter can deliver an unbiased estimate of the incremental weight $p(Y_{t_{n-1}+1:t_n}|\theta)$.
- Evaluate PF approximation of likelihood instead of true likelihood in the correction and mutation steps of SMC algorithm.
- Write:

$$\hat{\rho}(y_{t_{n-1}+1:t_n}|Y_{1:t_{n-1}},\theta) = g(y_{t_{n-1}+1:t_n}|Y_{1:t_{n-1}},\theta,U_{1:t_n}) \hat{\rho}(Y_{1:t_n}|\theta_n) = g(Y_{1:t_n}|\theta_n,U_{1:t_n}).$$

• $U_{1:t_n}$ is an array of *iid* uniform random variables generated by the particle filter with density $p(U_{1:t_n})$. Likelihood increments depend on entire $U_{1:t_n}$. Factorization:

$$p(U_{1:t_n}) = p(U_{1:t_1})p(U_{t_1+1:t_2})\cdots p(U_{t_{n-1}+1:t_n}).$$

Particle System for SMC^2 Sampler After Stage n

Parameter		State		
(θ_n^1, W_n^1)	$(s_{t_n}^{1,1},\mathcal{W}_{t_n}^{1,1})$	$(s_{t_o}^{1,2}, \mathcal{W}_{t_o}^{1,2})$		$(s_{t_n}^{1,M},\mathcal{W}_{t_n}^{1,M})$
(θ_n^2, W_n^2)	$(s_{t_n}^{2,1}, \mathcal{W}_{t_n}^{2,1})$	$(s_{t_n}^{2,2}, \mathcal{W}_{t_n}^{2,2})$	• • •	$(s^{2,M}_{t_n},\mathcal{W}^{2,M}_{t_n})$
	:	:	·	:
(θ_n^N, W_n^N)	$(s_{t_n}^{\mathcal{N},1},\mathcal{W}_{t_n}^{\mathcal{N},1})$	$(s_{t_n}^{\mathcal{N},2},\mathcal{W}_{t_n}^{\mathcal{N},2})$		$(s_{t_n}^{\mathcal{N},\mathcal{M}},\mathcal{W}_{t_n}^{\mathcal{N},\mathcal{M}})$

SMC^2

- **1** Initialization. Draw the initial particles from the prior: $\theta_0^i \stackrel{iid}{\sim} p(\theta)$ and $W_0^i = 1$, i = 1, ..., N.
- **2** Recursion. For $t = 1, \ldots, T$,
 - **①** Correction. Reweight the particles from stage t 1 by defining the incremental weights

$$\tilde{w}_{t}^{i} = \hat{p}(y_{t}|Y_{1:t-1}, \theta_{t-1}^{i}) = g(y_{t}|Y_{1:t-1}, \theta_{t-1}^{i}, U_{1:t}^{i})$$
(29)

and the normalized weights

$$\tilde{W}_{t}^{i} = \frac{\tilde{w}_{i}^{i} W_{t-1}^{i}}{\frac{1}{N} \sum_{i=1}^{N} \tilde{w}_{t}^{i} W_{t-1}^{i}}, \quad i = 1, \dots, N.$$
(30)

An approximation of $\mathbb{E}_{\pi_t}[h(\theta)]$ is given by

$$\tilde{h}_{t,N} = \frac{1}{N} \sum_{i=1}^{N} \tilde{W}_t^i h(\theta_{t-1}^i).$$
(31)

SMC^2

Initialization.

- **2** Recursion. For $t = 1, \ldots, T$,
 - 1 Correction.
 - **2** Selection. Resample the particles via multinomial resampling. Let $\{\hat{\theta}_t^i\}_{i=1}^M$ denote M iid draws from a multinomial distribution characterized by support points and weights $\{\theta_{t-1}^i, \tilde{W}_t^i\}_{j=1}^M$ and set $W_t^i = 1$. Define the vector of ancestors \mathcal{A}_t with elements \mathcal{A}_t^i by setting $\mathcal{A}_t^i = k$ if the ancestor of resampled particle *i* is particle *k*, that is, $\hat{\theta}_t^i = \theta_{t-1}^k$. An approximation of $\mathbb{E}_{\pi_t}[h(\theta)]$ is given by

$$\hat{h}_{t,N} = \frac{1}{N} \sum_{j=1}^{N} W_t^j h(\hat{\theta}_t^j).$$
(32)

SMC^2

- Initialization.
- **2** Recursion. For $t = 1, \ldots, T$,
 - 1 Correction.
 - Selection.
 - **Mutation.** Propagate the particles { \u03c6_tⁱ, W_tⁱ } via 1 step of an MH algorithm. The proposal distribution is given by

$$q(\vartheta_t^i|\hat{\theta}_t^i)\rho(U_{1:t}^{*i})$$
(33)

and the acceptance ratio can be expressed as

$$\alpha(\vartheta_t^i | \hat{\theta}_t^i) = \min \left\{ 1, \ \frac{\hat{\rho}(Y_{1:t} | \vartheta_t^i) \rho(\vartheta_t^i) / q(\vartheta_t^i | \hat{\theta}_t^i)}{\hat{\rho}(Y_{1:t} | \hat{\theta}_t^i) \rho(\hat{\theta}_t^i) / q(\hat{\theta}_t^i | \vartheta_t^i)} \right\}.$$
(34)

An approximation of $\mathbb{E}_{\pi_t}[h(\theta)]$ is given by

$$\bar{h}_{t,N} = \frac{1}{N} \sum_{i=1}^{N} h(\theta_t^i) W_t^i.$$
(35)

3 Approximation of $\mathbb{E}_{\pi}[h(\theta)]$ is given by $\bar{h}_{T,N} = \sum_{i=1}^{N} h(\theta_{T}^{i}) W_{T}^{i}$.

- At the end of iteration t 1:
 - Particles $\{\theta_{t-1}^i, W_{t-1}^i\}_{i=1}^N$.
 - For each parameter value θ_{t-1}^{i} there is PF approx of the likelihood: $\hat{p}(Y_{1:t-1}|\theta_{t-1}^{i})$.
 - Swarm of particles $\{s_{t-1}^{i,j}, W_{t-1}^{i,j}\}_{j=1}^M$ that represents the distribution $p(s_{t-1}|Y_{1:t-1}, \theta_{t-1}^i)$.
 - Sequence of random vectors $U_{1:t-1}^{i}$ that underlies the simulation approximation of the particle filter.
- Focus on the triplets $\{\theta_{t-1}^{i}, U_{1:t-1}^{i}, W_{t-1}^{i}\}_{i=1}^{N}$: $\int \int h(\theta, U_{1:t-1}) p(U_{1:t-1}) p(\theta|Y_{1:t-1}) dU_{1:t-1} d\theta$ $\approx \frac{1}{N} \sum_{i=1}^{N} h(\theta_{t-1}^{i}, U_{1:t-1}^{i}) W_{t-1}^{i}.$

• The particle filter approximation of the likelihood increment can be written as

$$\hat{p}(y_t|Y_{1:t-1}, \theta_{t-1}^i) = g(y_t|Y_{1:t-1}, U_{1:t}^i, \theta_{t-1}^i).$$

• The value of the likelihood function for $Y_{1:t}$ can be tracked recursively as follows: $\hat{p}(Y_{1:t}|\theta_{t-1}^{i}) = \hat{p}(y_{t}|Y_{1:t-1}, \theta_{t-1}^{i})\hat{p}(Y_{1:t-1}|\theta_{t-1}^{i})$ $= g(y_{t}|Y_{1:t}, U_{1:t}^{i}, \theta_{t-1}^{i})g(Y_{1:t-1}|U_{1:t-1}^{i}, \theta_{t-1}^{i})$ $= g(Y_{1:t}|U_{1:t}^{i}, \theta_{t-1}^{i}).$ (36)

The last equality follows because conditioning $g(Y_{1:t-1}|U_{1:t-1}^{i}, \theta_{t-1}^{i})$ also on U_t does not change the particle filter approximation of the likelihood function for $Y_{1:t-1}$.

• By induction, we can deduce that $\frac{1}{N} \sum_{i=1}^{N} h(\theta_{t-1}^{i}) \tilde{w}_{t}^{i} W_{t-1}^{i}$ approximates the following integral

$$\int \int h(\theta) g(y_t | Y_{1:t-1}, U_{1:t}, \theta) p(U_{1:t}) p(\theta | Y_{1:t-1}) dU_{1:t} d\theta$$

= $\int h(\theta) \left[\int g(y_t | Y_{1:t-1}, U_{1:t}, \theta) p(U_{1:t}) dU_{1:t} \right] p(\theta | Y_{1:t-1}) d\theta.$

• Provided that the particle filter approximation of the likelihood increment is unbiased, that is,

$$\int g(y_t|Y_{1:t-1}, U_{1:t}, \theta) p(U_{1:t}) dU_{1:t} = p(y_t|Y_{1:t-1}, \theta)$$

for each θ , we deduce that $\tilde{h}_{t,N}$ is a consistent estimator of $\mathbb{E}_{\pi_t}[h(\theta)]$.

- Similar to regular SMC.
- We resample in every period for expositional purposes.
- We are keeping track of the ancestry information in the vector \mathcal{A}_t . This is important, because for each resampled particle *i* we not only need to know its value $\hat{\theta}_t^i$ but we also want to track the corresponding value of the likelihood function $\hat{p}(Y_{1:t}|\hat{\theta}_t^i)$ as well as the particle approximation of the state, given by $\{s_t^{i,j}, W_t^{i,j}\}$, and the set of random numbers $U_{1:t}^i$.
- In the implementation, the likelihood values are needed for the mutation step and the state particles are useful for a quick evaluation of the incremental likelihood in the subsequent correction step.
- The $U_{1:t}^{i}$'s are not required for the actual implementation of the algorithm but are useful to provide a heuristic explanation for the validity of the algorithm.

- Essentially one iteration of PFMH algorithm.
- For each particle *i*:
 - a proposed value ϑ_t^i ,
 - an associated particle filter approximation $\hat{p}(Y_{1:t}|\vartheta_t^i)$ of the likelihood,
 - and a sequence of random vectors $U_{1:t}^*$ drawn from the distribution $p(U_{1:t})$.
- The densities $p(U_{1:t}^i)$ and $p(U_{1:t}^*)$ cancel from the formula for the acceptance probability $\alpha(\vartheta_t^i | \hat{\theta}_t^i)$.

- Results are based on $N_{run} = 20$ runs of the SMC^2 algorithm with N = 4,000 particles.
- D is data tempering and L is likelihood tempering.
- KF is Kalman filter, CO-PF is conditionally-optimal PF with M = 400, BS-PF is bootstrap PF with M = 40,000. CO-PF and BS-PF use data tempering.

	Posterior Mean (Pooled)				Inefficiency Factors				Std Dev of Means			
	KF(L)	KF(D)	CO-PF	BS-PF	KF(L)	KF(D)	CO-PF	BS-PF	KF(L)	KF(D)	CO-PF	BS-PF
τ	2.65	2.67	2.68	2.53	1.51	10.41	47.60	6570	0.01	0.03	0.07	0.76
κ	0.81	0.81	0.81	0.70	1.40	8.36	40.60	7223	0.00	0.01	0.01	0.18
ψ_1	1.87	1.88	1.87	1.89	3.29	18.27	22.56	4785	0.01	0.02	0.02	0.27
ψ_2	0.66	0.66	0.67	0.65	2.72	10.02	43.30	4197	0.01	0.02	0.03	0.34
ρ_r	0.75	0.75	0.75	0.72	1.31	11.39	60.18	14979	0.00	0.00	0.01	0.08
ρ_g	0.98	0.98	0.98	0.95	1.32	4.28	250.34	21736	0.00	0.00	0.00	0.04
ρ_z	0.88	0.88	0.88	0.84	3.16	15.06	35.35	10802	0.00	0.00	0.00	0.05
$r^{(A)}$	0.45	0.46	0.44	0.46	1.09	26.58	73.78	7971	0.00	0.02	0.04	0.42
$\pi^{(A)}$	3.32	3.31	3.31	3.56	2.15	40.45	158.64	6529	0.01	0.03	0.06	0.40
$\gamma^{(Q)}$	0.59	0.59	0.59	0.64	2.35	32.35	133.25	5296	0.00	0.01	0.03	0.16
σ_r	0.24	0.24	0.24	0.26	0.75	7.29	43.96	16084	0.00	0.00	0.00	0.06
σ_{g}	0.68	0.68	0.68	0.73	1.30	1.48	20.20	5098	0.00	0.00	0.00	0.08
σ_z	0.32	0.32	0.32	0.42	2.32	3.63	26.98	41284	0.00	0.00	0.00	0.11
$\ln p(Y)$	-358.75	-357.34	-356.33	-340.47					0.120	1.191	4.374	14.49

- The SMC² results are obtained by utilizing 40 processors.
- We parallelized the likelihood evaluations $\hat{p}(Y_{1:t}|\theta_t^i)$ for the θ_t^i particles rather than the particle filter computations for the swarms $\{s_t^{i,j}, W_t^{i,j}\}_{i=1}^M$.
- The run time for the SMC^2 with conditionally-optimal PF (N = 4,000, M = 400) is 23:24 [mm:ss] minutes, where as the algorithm with bootstrap PF (N = 4,000 and M = 40,000) runs for 08:05:35 [hh:mm:ss] hours.
- Due to memory constraints we re-computed the entire likelihood for $Y_{1:t}$ in each iteration.
- Our sequential (data-tempering) implementation of the *SMC*² algorithm suffers from particle degeneracy in the intial stages, i.e., for small sample sizes.