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ing procedure via three experiments in which adult participants
attempted to learn the meanings of nonce words cross-situationally
under varying degrees of referential uncertainty. The findings, using
both explicit (referent selection) and implicit (eye movement) mea-
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1. Introduction

Common sense tells us that when children learn the meanings of some initial set of words in their
language, they must be relying heavily on their observation of the immediately co-occurring context;
it must be that the presence of cats when /kæt/ is uttered plays a dominant causal role in establishing
that /kæt/ means ‘cat’ in English. Similarly, adults who find themselves immersed in an unfamiliar lan-
guage community must at least initially rely on similar observational evidence to break into the lan-
guage. Despite the inevitability of this idea about the conditions for early word learning, it has been
remarkably difficult to specify how such a procedure of contextualized observation might work in
practice. Arguably the biggest hurdle is that words are necessarily uttered in complex situational envi-
ronments, and thus are subject to a wide variety of alternative plausible interpretations. How, then,
could learners determine what the interlocutor is referring to? Even if the intended referent for a word
can be effectively recovered, the speaker’s intended conceptual characterization of that referent often
remains ambiguous, yet it is this characterization that should determine a word’s meaning (Chomsky,
1957; Fodor, 1983; Gleitman, 1990; Quine, 1960; inter alia).

Experimental research on this topic has shown that learners possess conceptual and referential
biases that redress some of these problems, allowing learners significant narrowing of the hypothesis
space of plausible word-meaning mappings. For instance, both toddlers and adults are more likely to
assume that a new word refers to a whole object in view than to its parts (Markman, 1989) and more
likely to categorize it by its shape than its size or color (Landau, L. Smith, & Jones, 1988). Moreover,
research over the past 40 years documents that, after an initial ‘‘true novice’’ stage, observational cues
do not operate within a stand-alone procedure, but are supplemented and coordinated with multiple
linguistic and social cues (e.g., Gleitman, Cassidy, Nappa, Papafragou, & Trueswell, 2005). These
include phonetic (e.g., Gervain, Nespor, Mazuka, Horie, & Mehler, 2008), syntactic (Arunachalam &
Waxman, 2010; Fisher, Hall, Rakowitz, & Gleitman, 1994; Landau & Gleitman, 1985; Naigles, 1990;
Snedeker & Gleitman, 2004; Trueswell & Gleitman, 2007; Yuan & Fisher, 2009), distributional (Carey,
1978; Maratsos & Chalkley, 1981; Newport & Aslin, 2004; Saffran, Aslin, & Newport, 1996) and social-
attentive properties (e.g., Baldwin, 1991; Baldwin, 1993; Gillette, Gleitman, Gleitman, & Lederer, 1999;
Jaswal, 2010; Nappa, Wessell, McEldoon, Gleitman, & Trueswell, 2009; Papafragou, Cassidy, &
Gleitman, 2007) of the situations in which conversation takes place.

Nevertheless, every known theory of vocabulary growth posits an initial novice stage during which
observation of the passing scene is the primary, even sole, source of information about a new word’s
meaning. The priority of observation as a learning cue follows from the fact that a true novice cannot –
without prior learning based on observation – exploit syntactic or distributional cues that may be
present in the input situation. Without some knowledge of the specifics of the exposure language
to provide a zoom lens highlighting the perspective the speaker is adopting, the situational context
often remains surprisingly indeterminate. Rampant indeterminacy during this initial novice stage
has been illustrated in the laboratory in both adults and young children by degrading the participants’
input such that observation of context is the only available cue (e.g., Gillette et al., 1999; Medina,
Snedeker, Trueswell, & Gleitman, 2011; Piccin & Waxman, 2007; Snedeker & Gleitman, 2004). In this
procedure (known as the Human Simulation Paradigm, HSP), participants watch videotaped segments
(approximately one minute in duration) of parents in everyday contexts speaking to their 15–
18 month old offspring, using the most common words in a sample of maternal corpora. The sound
is turned off in the video, and only a beep or a nonsense word indicates the moment at which a par-
ticular word had been uttered. Participants’ task is to guess these ‘‘mystery words’’ from this social and
visual information alone, effectively placing them in the position of true novices in this initial stage of
word learning. Participants in these tasks fail rather strikingly at determining the words that parents
uttered to their toddlers in these videotaped natural interactions. For example, Medina et al. (2011)
found that participants achieve accuracy scores of over 50% for only 7% of a set of randomly chosen
items and instances, even though all test words were among the most frequently occurring nouns
and verbs in maternal speech to infants. Children performing this same HSP task show strikingly sim-
ilar difficulty in identifying intended referents, even though they might be expected to be better
versed in identifying parental cues to reference (Medina et al., 2011; Piccin & Waxman, 2007).

Given the documented difficulty of learning word-referent pairings from a single observation, how
can the indeterminacy problem be overcome? The solution most frequently offered by researchers is
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that a learning mechanism that compares multiple learning instances for a given word can mitigate or
even erase the indeterminacy of any single instance. Indeed, there have been numerous experimental
demonstrations that, even with referentially ambiguous learning instances, toddlers, children and
adults are quite good at converging on the intended referent for a word across learning instances
(e.g., K. Smith, A. Smith, & Blythe, 2011; Yu & L. Smith, 2007, 2011). Here we examine in detail the
mechanism that supports this learning. As we discuss below, the common assumption is that learners
achieve cross-situational learning by keeping track of multiple hypotheses about a word’s meaning
across successive learning instances, and gradually converge on the correct meaning via an intersec-
tive statistical process. Yet, contrary to this assumption, we report below that when learners are
placed in the initial novice state of identifying word-to-referent mappings across learning instances,
evidence for such a multiple hypothesis tracking procedure is strikingly absent. ‘‘Cross-situational’’
learning appears to be less cross-situational than has usually been conjectured.

1.1. Cross-situational comparison

Plausibly, listeners who appreciate the indeterminacy of observation will not jump to a conclusion
about word meaning on first observation, but rather will hold the choice in abeyance until evidence
from further exposures has accumulated. On most accounts, learners pursue such a strategy by storing
the multiple conjectures generated on each observation of a word in its situational context, and then
comparing among these conjecture-situation lists. Over time and exposures, there will presumably be
increasing co-occurrence between a word and its target meaning and decreasing co-occurrence be-
tween the word and other potential meanings (e.g., Frank, Goodman, & Tenenbaum, 2009; Osgood,
Suci, & Tannenbaum, 1957; Siskind, 1996; Xu & Tenenbaum, 2007; Yu & L. Smith, 2007; Yu, 2008). In-
deed, extant video corpora of parent–child discourse (e.g., Gillette et al., 1999; Medina et al., 2011)
seem to make such a procedure available. For example, in the Medina et al. (2011) corpus, a book is
present in all of several randomly selected video clips in which the parent uttered ‘‘book’’, while bowls
and dogs and spoons, etc., were visible in only one or two of them. The key to all current models of
cross-situational word learning is that they capitalize on such repeated co-occurrences of a word
and its referent by formulating an associative learning process that tracks the frequencies of potential
referents across all of the contexts in which the word is used.

The recent literature tries to operationalize this cross-situational learning procedure and test it in
controlled experimental settings. To achieve some experimental control over the saliency and size of
the conjecture set for a word, most studies use a set of artificial stimuli and a fixed number of expo-
sures, but vary the degree of indeterminacy within and across trials. For example, in Yu and L. Smith
(2007), participants heard a list of nonsense words (2–4 words) and simultaneously viewed a small set
of photographic images (2–4 pictures of objects) on a computer screen. Participants knew that the
spoken nonsense words labeled each object on the screen (e.g., with four objects one might hear ‘‘mi-
pen, dax, moop, blang’’), but otherwise were not informed about the experimenter’s intended pairings
of words and referents. Here referential ambiguity exists on each trial, and the only way of solving the
mapping problem is to retain and compare information across trials.

The central finding in this and related experiments was that participants’ mapping success was a
function of the co-occurrence statistics for each word. Specifically, after the learning trials were com-
plete, participants were tested on their understanding of the nonsense words using a 4-alternative
forced choice paradigm in which they heard a nonsense word paired with the target referent and three
distracters. Group performance was well above chance and a function of the referential ambiguity
present during learning: items learned under higher degrees of referential ambiguity showed lower,
albeit above chance, performance as compared to items learned under conditions of lower referential
ambiguity. Subsequent studies have found similar high rates of successful cross-situational learning
under conditions of referential ambiguity (e.g., Ichinco, Frank, & Saxe, 2009; Kachergis, Yu, & Shiffrin,
2010; Klein & Yu, 2009).

Yu and L. Smith (2007) concluded that although a range of learning procedures could explain
their results, any such model would need to include the simultaneous consideration of multiple
word-to-meaning hypotheses, either through (a) a large association network connecting forms to
meanings; (b) a more complex network that includes inhibition among competing associations; or
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(c) statistical learning that explicitly compares alternative hypotheses (p. 419). Yu (2008) developed
an associative computational model of early word learning that simulates the results of Yu and
L. Smith (2007) in which multiple referential alternatives were tracked for each word across learning
instances. Relatedly, Frank, Tenenbaum, and colleagues have developed Bayesian models of
cross-situational word learning that simultaneously consider all possible word-meaning mappings
to capture other cross-situational word-learning findings (e.g., Frank, Tenenbaum, & Fernald, in
press; Frank et al., 2009).
1.2. Propose but verify: Single conjectures from multiple exposures

There is an alternative way that the learner could capitalize on repeated co-occurrences of a word
and its referent without having to keep track of co-occurrence frequencies of multiple potential refer-
ents from each of the contexts in which the word occurs. The learner could make a single conjecture
upon hearing the word used in context and carry that conjecture forward to be evaluated for consis-
tency with the next observed context. If the guess is ‘‘confirmed’’ by consistency with the succeeding
observation, the learner will further solidify the word meaning in memory. If the guess is inconsistent
with the succeeding observation, the learning machinery will abandon this interpretation and postu-
late a new one – which can be carried forward, in its turn, for subsequent confirmation or rejection. It
follows from this account that the more consistent the co-occurrence statistics are in the input, the
more likely the learner is to make a correct conjecture at some point and then to confirm it. (If some
malign parent alternates by uttering ‘‘rhinoceros’’ on one exposure and ‘‘elephant’’ on the next, learn-
ing will not occur.) Notice that this hypothetical learner, unlike the hypothetical associative learner,
need not actually track the cross-trial statistics in order to build the correct mappings between words
and referents. We will call this learning strategy propose-but-verify, reflecting the need for the learner
to maintain a single hypothesized meaning that is then tested at the next learning instance for that
word.

Initial support for the propose-but-verify procedure comes from Medina et al. (2011). Here partic-
ipants attempted to learn words by watching muted video clips of parent–child interactions (i.e., the
HSP procedure of Gillette et al., 1999). This visual-contextual situation was far more complex and var-
iable, therefore, than in the cross-situational experiments discussed earlier, which had used a set of
photographic images, unvarying across trials, as the sole example of each word’s context. With these
more naturalistic stimuli, Medina et al. found that when participants guessed a word (identified as a
nonsense word such as ‘‘mipen’’ or ‘‘pilk’’) correctly in the first context in which they observed it, they
tended to maintain this interpretation in later contexts in which the word occurred. In contrast, when
participants guessed wrongly in the initial context, they rarely recovered across later learning in-
stances. Rather, they made new but still incorrect guesses for each of the subsequent learning in-
stances for that word. Crucial evidence that learners were tracking just a single word-meaning
hypothesis across learning instances came from more detailed contingent-response analyses related
to this phenomenon. Specifically, when learners had guessed incorrectly on any given learning in-
stance, mean performance on the very next learning instance was extremely poor (11% correct), with
an accuracy almost identical to the performance of other participants who had viewed the same vid-
eos in isolation and hence had no benefit of cross-situational comparison (9% correct). This suggests
that learners had no memory of the plausible alternative referents that arose on the previous learning
instance. Strikingly, this held even when the previous learning instance had been highly informative to
most other learners in the experiment. For example, for a learning instance on which the majority
(65%) of participants had guessed the correct referent, the remaining minority (35%) who had guessed
incorrectly then went on to perform quite poorly on the next trial, just as poorly as those who had no
benefit of a previous learning instance. If participants had been tracking multiple referential alterna-
tives (as e.g., Yu, 2008, and Yu & L. Smith, 2007, predict), it seems plausible that many of these incor-
rect participants would have stored the correct referential alternative that most other participants had
guessed on that same trial. But instead, no memory of this plausible alternative was observed in their
responses on the next learning instance – even though this learning instance provided evidence that
also supported this meaning.
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1.3. Comparing the accounts

We have just sketched two accounts of how learners might solve the indeterminacy problem cross-
situationally in early word learning. In the first, learners would store multiple conjectures and, in the
presence of accumulated data, implicitly compare among them via a gradual associative procedure (Yu
& L. Smith, 2007). Medina et al. (2011) suggested that such a storage-comparison process could not
work owing to the size and scope of the conjecture sets that real life would actually make available.
Learners were instead proposed to use a procedure that remembers only its current conjecture, forget-
ting the observational settings that engendered it.

The experimental findings that have been provided as support for these alternative accounts come
from studies using strikingly different test stimuli. As is so often the case, the experimental strategies
have gone in two directions: One series of studies opts for control of the size and saliency of items in
the stimulus set, but at cost of unknown oversimplification of the natural case (e.g., Ichinco et al.,
2009; Kachergis et al., 2010; Klein & Yu, 2009; Yu & L. Smith, 2007, 2011); the other series tests learn-
ing in the buzzing, blooming confusion of real parent–child interaction, but at cost of leaving unexpli-
cated the nature of visual-contextual environment leading to successful word learning (Medina et al.,
2011). Moreover, there is an observational–motivational difference between these two laboratory
situations whose influence is hard to assess; namely, in the HSP paradigm used by Medina et al. we
cannot be sure that what is salient for a participant-observer of a video is just as salient as for the child
being filmed in the video (for discussion of this objection, see L. Smith, Yu, & Pereira, 2009): perhaps
the participants in Medina et al., who were placed in the position of a third-person observer rather
than the second-person addressee of the utterance, did not actually notice the target referent in
one or more of the video clips they watched, or did not consider it salient enough to maintain in
memory as a potential referent.

Finally, and most importantly, the word learning experiments involving artificial stimuli such as Yu
and L. Smith (2007) all purport to show that multiple meaning hypotheses are stored across exposures
to a word, comparing among them along the way, and then settling on one of them at the end. Yet
none of these experiments actually examined how learning accuracy unfolded across learning in-
stances. Rather, only final performance was evaluated. As suggested by Medina et al. (2011), one must
examine the sequence of responses across learning instances to differentiate such word-learning ac-
counts from simpler ones. For instance, participants might form a single hypothesis upon some early
exposure, and then use the information in subsequent exposures only to confirm or disconfirm this
conjecture. Such a strategy could account for the same outcomes in artificial stimuli studies that
are usually described as a multiple-conjecture comparison process. Under this latter perspective,
‘‘cross situational learning’’ has become, in effect, one-trial learning with a confirmation check, as in
the propose-but-verify proposal of Medina et al.

To the best of our knowledge, only one published research project other than Medina et al. (2011)
examined learning patterns across multiple exposures to a new word. K. Smith et al. (2011) used arti-
ficial learning environments like those used by Yu, L. Smith, and colleagues (e.g., Yu & L. Smith, 2007)
and recorded word meaning accuracy after each learning instance. However, K. Smith et al. never
tested whether a propose-but-verify learning procedure would fit their data (nor offered data incon-
sistent with this procedure1) and instead only compared models that stored multiple meaning conjec-
tures for each word. K. Smith et al. allude to a propose-but-verify model but never tested it, suggesting
that such a learning procedure would only be used as a last resort, under conditions of extreme referen-
tial uncertainty; under all simpler conditions, learners would be expected to track multiple conjectures.

In sum, all but one of the cross-situational experiments that have used simplified artificial stimuli
have not examined the underlying learning procedure that gave rise to successful performance at
study end; the experiment that did (K. Smith et al., 2011) did not test if a single-hypothesis (pro-
1 We refer here to the results involving distributed learning, in which learning instances of different words were intermixed
rather than artificially grouped together by word (blocked learning). Under the more natural conditions of distributed learning, K.
Smith et al. (2011) either were unable to fit any multiple-conjecture learning model to their data, or found that a very simple
multiple-conjecture model was a better fit than a model that performed no learning at all. A propose-but-verify (single-conjecture)
model was never examined to see if it offered a better fit.
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pose-but-verify) procedure would support the patterns of learning observed across trials. It is possible
that under the simplified conditions of artificial learning stimuli, participants track multiple hypoth-
esized meanings for each word, or it could just as well be that single-hypothesis learning tracking is
the norm, observed even under simplified conditions.
1.4. The present experiments

We present here three experiments that explicitly tested whether learners take into account a set
of potential word meaning hypotheses from one learning instance to the next – to be used for cross-
situational comparison – or whether they make a single conjecture upon hearing the word used in
context and carry only that conjecture forward to be either confirmed or disconfirmed in terms of con-
sistency with the new context (propose-but-verify). The tests follow a straightforward logic, used in
Medina et al. (2011) but applied here to the artificially controlled test items, and item-to-nonse-word
pairings, that have been employed in the literature on this topic. In particular, consider a sequence of
two learning trials illustrated in Fig. 1 below, in which the correct meaning for ‘‘zud’’ happens to be
bear. If on the first learning instance, a participant has incorrectly selected door as the meaning of
‘‘zud’’, then according to the propose-but-verify strategy, the participant should not store the alterna-
tive word meanings from that instance (hand, dog, ball, and [the correct referent] bear). Thus when
encountering the next instance of ‘‘zud’’ (on the right of Fig. 1), the participant should select randomly
among the referents, even though one of the alternatives is a bear, which appeared in the previous learn-
ing instance. If on the other hand alternative hypotheses are being tracked, the participant should be
above chance at selecting the bear on this second learning instance. He or she would have memory of
past alternatives, even when not chosen. It is possible that such a simple cross-situational learning
strategy should occur only under very high levels of referential ambiguity – under simpler referential
contexts perhaps people can track multiple word-to-meaning pairings (cf. K. Smith et al., 2011). To
test this, Experiments 2 and 3 reduced referential ambiguity to the lowest extent possible – namely,
two alternatives – while still keeping the learning trials ambiguous.

A finding that learners recover from previously incorrect guesses at rates above chance would sug-
gest that they remembered the target referent from the previous learning instance even if they had not
indicated that referent as their response. However, a finding that learners remain at chance following
a previously incorrect guess would demonstrate that they did not recognize the recurrence of the tar-
get referent across contexts, as expected by the propose-but-verify learning procedure.
Fig. 1. Example sequence of two learning trials for the word ‘‘zud’’, which meant ‘bear’. In both instances, five alternatives are
displayed. Note that different examples of bears appear, that only one entity is labeled on each trial (i.e., only one nonsense
word is heard), and that other learning trials for other words intervene.
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2. Experiment 1

2.1. Introduction

Here we examine whether a series of learning instances containing a high degree of referential
uncertainty (5-referent alternatives, Fig. 1) generates a pattern of gradual learning, at least in the
aggregate. We will then use contingent-response analyses, described in Section 1.2 above, to deter-
mine whether learning, if observed, arose from a process of retaining and testing multiple hypotheses
across learning instances, or from a process in which a single hypothesis is retained and tested across
learning instances.

2.2. Method

2.2.1. Participants
Fifteen undergraduates from the University of Pennsylvania participated for course credit or $10/h.

All were native speakers of English. All provided written informed consent before participating.
Participation lasted approximately 20–30 min, including time for directions.

2.2.2. Stimuli
In order to create visual stimuli for this experiment, five different but readily identifiable photo-

graphic images were selected from clipart.com or photographed anew as example referents for each
of twelve common object labels (ball, bear, bird, book, car, cat, dog, door, eye, fish, hand, and shoe),
resulting in 60 images in total. Any background material behind the object of interest was removed
so that all objects appeared on a white background.

We then paired each category with a single nonsense word, resulting in twelve pairings (e.g.,
ball = ‘‘smick’’; bear = ‘‘zud’’). The words followed the phonological rules of English and were intended
not to be similar to common English object labels.

The visual display for each trial consisted of five image referents arranged symmetrically around a
crosshair (see Fig. 1). Henceforth learning instances with five referential alternatives are designated
‘‘Low Informative’’ (LI). Each of the five images was selected from a different category. The visual dis-
play was accompanied by a pre-recorded object-labeling utterance by a female speaker that referred
to one of the five objects, of the form ‘‘Oh look, a _____!’’, ending with a unique nonsense word (e.g.,
‘‘smick’’).

2.2.3. Apparatus
A Tobii 1750 remote eyetracking system was used for stimulus presentation and data collection.

This system performs binocular tracking using optics embedded in a flat panel monitor with a display
size of 33.5 (width) � 26.75 (height) cm (31.2 � 26.9 deg visual angle at a viewing distance of 60 cm).
Two laptop computers running the Windows XP operating system were used to control the system:
one displayed stimuli on the eyetracker screen (via E-Prime experiment software) and the other col-
lected eyegaze data from the eyetracker (via the TET-server software developed by Tobii Technology).
Both laptops were disconnected from the internet to increase timing accuracy. The data sampling rate
was a consistent 50 Hz, and the spatial resolution of the eyetracker is approximately 0.5–1.0 deg visual
angle, including corrections for head drift and small head movements. At a 60-cm viewing distance,
the Tobii 1750 has a tolerance to head motion of about 30 � 16 � 20 cm. The system recovers from
a complete eyetracking failure in <100 ms.

Each of the five referent images subtended approximately 6.1 � 6.4� visual angle. Each was located
between 4.5� and 5.4� from the central crosshair and between 1.6� and 3.4� from any neighboring ref-
erent image. This allowed for accurate discrimination of gazes to each referent image.

2.2.4. Procedure
Participants were tested individually. Each was seated approximately 60 cm from the Tobii screen,

and the experimenter adjusted the angle of the screen as necessary to obtain robust views of both
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eyes, centered in the tracker’s field of view. The Tobii ClearView default 5-point calibration scheme
was then used to obtain an accurate track of both eyes. If the calibration data did not meet the default
criteria of the ClearView software or if it was incomplete (fewer than 5 points), the calibration was
repeated. Participants typically required only one calibration.

The participant was then given instructions for the experiment. They were told that they would be
seeing a series of trials on which they would see one or more pictures of objects on the screen and
would hear a single ‘‘mystery’’ word. They were informed that there would be 60 trials in total, and
that over the course of the experiment they would hear 12 different mystery words, each with a dif-
ferent meaning. They were to figure out what each mystery word meant. They were instructed to
‘‘click on one of the objects that you think the word might be referring to’’. No feedback was given
to participants about the correctness of their answers. At the end of the experiment, participants were
presented with the audio of each of the nonsense words and asked to say aloud what they thought the
word meant. The experimenter then wrote down each spoken response. Along with their eye move-
ments, participants’ clicking responses, including their timing and accuracy, were logged by the com-
puter. Spoken responses from the end of the experiment are not reported below because chance
performance cannot be determined from such data. Needless to say, the vast majority of responses
(over 97% in Experiments 1 and 2 and over 95% in Experiment 3) were of basic level categories such
as ‘‘cat’’ and ‘‘door’’, and not superordinate (‘‘animal’’ or ‘‘pet’’) or subordinate categories (‘‘Manx’’ or
‘‘tabby.’’).

2.2.5. Experimental design
The twelve nonsense words (referring to the twelve object categories) occurred in five trials each,

resulting in a total of 60 trials. The co-occurrence frequency of a word and a target referent (e.g., a pic-
ture of a cat) was 100% – five out of five trials. On each of these five trials, the particular picture from
the referent category was different (e.g., a white cat, a Siamese cat).

Each of the five pictures was randomly assigned to appear in an additional four trials as a distractor
referent, for a total of 20 additional appearances of each object category over the course of the exper-
iment. Importantly, however, each object category was restricted from appearing more than twice
with a particular nonsense word as a distractor (e.g., if ‘‘smick’’ meant ball, then across the five ‘‘smick’’
trials, there was always a ball, but no more than two of those trials contained a book). Thus, the co-
occurrence frequency of a word with a distractor referent was maximally 40% – two out of five trials.

Presentation of the words was intermixed (i.e., a distributed presentation) such that each partici-
pant saw the first learning instance for each word one after the other, followed by all of the second
instances, etc. Within each round of learning instances (e.g., the group of first learning instances),
the order of the words was always the same pseudo-random order. A second presentation list was cre-
ated in which order of trials within each block was approximately reversed, such that for those words
which were selected as target words in the later experiments (eight of 12 words), the same Target–
Target–Filler presentation was preserved (see Section 3.2.3 of Experiment 2 below for further clarifi-
cation). Participants were randomly assigned to one of the two experimental lists.

2.3. Results and discussion

2.3.1. Learning curve
Fig. 2A plots the average proportion of correct clicking responses over the five learning instances,

collapsing across each word. The mean results suggest that learning was difficult but not impossible.
Indeed, a growth curve analysis, using a multi-level logit model of accuracy data, showed a reliable
increase in accuracy across instances (see Table 1).

2.3.2. Accuracy-contingent clicking responses
Given that reliable learning patterns are observed in our data, we now ask what kind of learning

underlies this pattern. As discussed in the introduction, traditional statistical word learning models
posit that participants track all word-to-referent hypotheses across learning instances. If true, partic-
ipants should show memory of the alternative correct referent even when that referent had not been
selected (clicked on) previously; that is, they should show above chance performance at selecting the
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Fig. 2. Mean proportion of correct responses. Participant means. Error bars indicate ± 95% C.I. (A) As a function of learning
instance. (B) As a function of whether the participant had been correct or incorrect on the previous learning instance for that
word. Number of participants contributing to bars from left to right: 15 out 15, 15 out of 15 (Experiment 1).

Table 1
Learning in the aggregate: Effect of learning instance on accuracy (Experiment 1).

Effect Estimate S.E. z-value p-value

Intercept �1.16 0.21 �5.51 <.0001*

Instance 0.21 0.07 3.25 .001*

Note: Results of multi-level logit model with crossed random slopes and intercepts for both Participants and Items. The lmer
function in R was used [syntax: Accuracy � 1 + Instance + (1 + Instance|Participant) + (1 + Instance | Item)]. Model was a better
fit than a corresponding model that did not include Instance as a fixed effect, based on a chi-square test of the change in �2
restricted log likelihood (v2(1) = 7.55, p = .006). Instance variable was centered.
* Statistically significant.
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correct alternative on the next learning instance since it too has the correct referent present in the dis-
play. We tested this hypothesis by calculating the average proportion of correct responses on in-
stances 2–5, split by whether the participant had been correct or incorrect on the previous learning
instance for that word (Fig. 2B). That is, for learning instance N, we graph average accuracy as a func-
tion of correctness on instance N � 1. We have collapsed across instances 2–5 rather than plotting
each separately because of the relatively low number of observations that would result from such a
division of the data (though see Experiment 3 below for such an analysis on a larger number of
subjects).

This figure plots the average of participant means, with error bars indicating a ± 95% confidence
interval. Thus, if the error bar does not touch the .20 proportion line (which in this case is 1-in-5
chance performance), then participants were found to behave above chance, as tested by a one sample
t-test (2-tailed) on participant means. The same patterns of significance were also found in tests of
item means against chance levels. We therefore discuss significance based on the error bar patterns
and do not report these other tests of chance performance.2

As can be seen in the figure, participants were above chance only after guessing correctly for a gi-
ven word. After guessing incorrectly, participants randomly selected a referent, resulting in 1 out of 5
(.20) performance. Thus, even though the Target referent (e.g., a bear) had been present the last time
participants heard the word in question (i.e., ‘‘zud’’) and it was present again on the current instance,
2 Unless otherwise noted, subject and item mean tests confirmed the error bars in all accuracy contingent analyses reported
below in Experiments 2 and 3. Also, given the nature of contingency analyses, it is possible for a subject not to contribute to a
subject mean. We therefore include in the figure caption the number of subjects out of the total that contributed to the mean in all
accuracy-contingent response figures in this paper.
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participants showed no sign of remembering this fact if they had not selected the bear previously.
Such a pattern is expected if participants remember only the current hypothesized meaning for a word
– discarding elements of the situation that engendered their hypothesis – and are seeking to verify
their single hypothesis by its relevance in the current learning instance. Learning is not perfect, how-
ever, even when the subject guesses correctly on one trial and confirms it on the next (less than 100%
correct performance in this ideal situation). This suggests that participants sometimes fail to recall
even their own hypothesized meaning.
2.3.3. Eye movements
It is possible that although participants’ clicking behavior indicated that they used only the cur-

rent hypothesized meaning to inform responses, their eye movements would reveal some implicit
memory for the alternate hypotheses. If this is the case, we would expect looks to the Target refer-
ent to exceed looks to a Competitor even when the participant had guessed incorrectly on the pre-
vious learning instance. We examined this possibility by comparing the average proportion of looks
to the Target and a randomly selected Competitor referent in response to hearing the target word.3

We compared learning instances on which the participant had responded correctly on the previous
learning instance to learning instances on which the participant had responded incorrectly on the pre-
vious learning instance (Fig. 3). Fig. 3A plots the Target and Competitor looks separately, whereas
Fig. 3B plots the difference, i.e., the Target Advantage Score (TAS), reflecting the proportion of time
spent looking at the Target minus the proportion of time spent looking at the randomly selected Com-
petitor. A positive TAS indicates a preference to look at the Target whereas a negative TAS indicates
preference to look at the Competitor.

As can be seen in the figure, Target looks exceeded Competitor looks only when the participant had
been correct on the previous instance. When the participant had been incorrect on the previous learn-
ing instance, the average proportion of Target looks and Competitor looks were very similar. This sug-
gests that participants had no implicit memory that the previous learning instance included the Target
referent. Instead participants recalled only the current working hypothesis about the word’s meaning.

These conclusions found support in multi-level linear modeling of the eye movement data. For each
trial, Target Advantage Scores (TASs) were calculated within four different time windows: (1) 0–
499 ms; (2) 500–999 ms; (3) 1000–1499 ms, and (4) 1500–1999 ms from word onset.4 For each time
window, this trial-level data was entered into two different multi-level models, both having crossed ran-
dom intercepts for Subjects and for Items (Baayen, Davidson, & Bates, 2008). The first model had no fixed
effects (i.e., the ‘null model’). The second model was the same except that a single fixed effect was added:
Previous-Instance Accuracy (Correct vs. Incorrect). Significance of Previous-Instance Accuracy was as-
sessed based on whether this second model reliably improved the fit of the data as compared to the null
model based on a chi-square test of the change in �2 restricted log likelihood (Steiger, Shapiro, &
Browne, 1985). Using this method, it was found that Previous-Instance Accuracy was reliable in the sec-
ond (v2(1) = 10.2, p = .001) and third (v2(1) = 21.9, p < .001) time windows, and marginally significant in
the fourth time window (v2(1) = 3.89, p = .05). Moreover, in the third time window the TAS was reliably
positive when the participant had been correct on the previous trial (est. mean = 1.16, SE = 0.43, t = 2.70,
p = .02) but not when the participant had been incorrect (est. mean = �0.13, SE = 0.14, t = �1.82, p = .41).5
3 For every trial for a given subject, one of the four competitor objects was randomly selected as the competitor using a random
number generator. This procedure was used, rather than averaging all four competitors together, to make sure the Target and
Competitor data matched in terms of data sample size and variance.

4 Because proportion scores are not appropriate for linear models, such as ANOVAs, we first transformed the Target and
Competitor proportions separately using an Empirical-Logit (e-logit) transform before taking the difference between the two (see,
e.g., Barr, 2008). In addition, multi-level models were used rather than ANOVAs on subject and item means because of uneven N
across conditions of Previous Accuracy.

5 Means were estimated from the intercept values calculated using two multi-level models on the subsets of the data where
Previous-Instance Accuracy was either Correct or Incorrect. In each case, the ‘null model’ was used, i.e., no fixed effects, but crossed
random intercepts for Subjects and Items. P-values for estimated means in these model subsets were calculated by generating
10,000 Markov Chain Monte Carlo samples via the pvals.fnc function in R. All subsequent reporting of estimated means for
Previous-Instance Accuracy subsets use this method.
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Fig. 3. (A) Average proportion of looks to the target referent (triangles) and a randomly selected competitor referent (circles)
plotted over time from word onset. Dark filled symbols represent instances on which the participant had been correct on the
previous instance. Light filled symbols represent instances on which the participant had been incorrect on the previous
instance. (B) Target Advantage Scores (TASs): Proportion of looks to the target minus proportion of looks to the competitor.
Smoothed Participant Means (Experiment 1).
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3. Experiment 2

3.1. Introduction

The results thus far are consistent with the propose-but-verify model of word learning, rather than
the models that track multiple meaning hypotheses for each word; when participants guessed incor-
rectly on a previous learning instance, they were at chance at selecting among alternatives during the
next learning instance. This occurred even though the correct target referent was present during both
learning instances.

However, it is possible that participants’ general failure to recall referential alternatives was due to
the high degree of referential ambiguity present during the previous learning instance: Participants in
Experiment 1 would likely have to remember multiple alternative referents from the previous learn-
ing instance to achieve above chance performance following an incorrect trial. Although we have
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demonstrated elsewhere that high referential ambiguity is the norm in natural word learning environ-
ments (Gillette et al., 1999; Medina et al., 2011), we felt it prudent to reexamine the contingent learn-
ing patterns from Experiment 1 in a second experiment, in which referential ambiguity was markedly
reduced. This was done by testing ‘‘High Informative’’ (HI) learning instances: those that contain only
two referents as opposed to the four LI learning instances of Experiment 1 (see Fig. 4). After guessing
incorrectly on a HI learning instance, participants need only remember one other referential alterna-
tive. Using the same accuracy-contingent analyses as above in Section 2.3.2, we can ask whether par-
ticipants can recall this single (correct) referential alternative on the next learning instance.

3.2. Method

3.2.1. Participants
An additional 29 undergraduates participated. They had the same background as those individuals

in Experiment 1.

3.2.2. Procedure
The procedure was the same as Experiment 1.

3.2.3. Stimuli and design
The stimuli were the same as in the previous experiment, with the following exceptions. On certain

learning instances we reduced the number of referent images on the screen from five down to two,
leaving just the correct target referent and one incorrect referential alternative. On these trials (hence-
forth HI learning instances) the two images appeared in positions to the left and the right of the cen-
tral fixation, with position randomized. See Fig. 4 for an example. In the two-referent trials, each image
was located approximately 6.7� from the central crosshair.

We created new experimental lists based on those used in Experiment 1. We preserved the order of
words in the list, but we selected 8 out of the 12 items (ball, bear, bird, book, car, door, fish, and hand) to
serve as target words – for these words, both 2-referent and 5-referent displays were used. Four nouns
(dog, cat, eye, and shoe) were treated as filler words – for these words, only 5-object displays were
used. We selected the target words such that two Target words were always followed by a Filler word,
and thus Target words appeared as word numbers 1, 2, 4, 5, 7, 8, 10, and 11 within each 12-item block.
Reverse lists preserved the Target–Target–Filler order, such that word order within block became 11–
10–12–8–7–9–5–4–6–2–1–3.

We created two between-participant conditions: HI First and HI Middle. In the HI First lists, we
changed the first learning instance of each Target item from a 5-alternative learning instance to a
Fig. 4. Example sequence of two learning trials for the word ‘‘zud’’, which meant ‘bear’. The first learning trial (left) is a High
Informative trial, in which only two alternatives are displayed; the second (right) is a low informative trial, in which five
alternatives are displayed. Note that different examples of bears appear, that only one entity is labeled on each trial (i.e., only
one nonsense word is heard), and that other learning trials for other words intervene.
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2-alternative learning instance, by randomly dropping 3 of the incorrect referential alternatives. The
result was that in the HI First condition, the first learning instance of each target word was a HI learn-
ing instance. All remaining learning instances were LI (Low Informative), five-alternative, instances.
We then created the HI Middle lists from the HI First lists. We did this by moving the first round of
learning (the first block) forward in the list by 2 rounds. Thus participants in the HI Middle condition
encountered two rounds of LI learning instances (rounds 2 and 3 of the HI First condition) then a round
of HI learning instances (round 1 from the HI First condition) followed by two more rounds of LI in-
stances (rounds 4 and 5 from HI First). This was done to preserve the overall word-referent statistics
across lists when one ignores order. Fifteen participants were randomly assigned to the HI First con-
dition and 14 to HI Middle.

3.3. Results and discussion

3.3.1. Learning curve
Fig. 5A plots average proportion of correct responses on target items over the five learning in-

stances split by condition. Chance performance was .20 on all learning instances except for the first
learning instance of the HI First condition and the third learning instance of the HI Middle condition
– in both of these, chance was .50.

Rather than the gradual increase in average accuracy found in Experiment 1, we see that learning is
occurring only after participants encountered a HI instance. In particular, in the HI Middle condition,
learning instances before the HI item (Instances 1 and 2, henceforth called ‘‘A instances’’) had average
accuracy near chance level (of .20) whereas learning instances after the HI item (Instances 4 and 5,
henceforth ‘‘B instances’’) were above chance, around .40. In HI First, all four LI instances occurred
after the HI instance, and indeed all means were above chance (again, around .40). For the HF condi-
tion, we can label Instances 2 and 3 as ‘‘A’’ instances and Instances 4 and 5 as ‘‘B’’ instances because,
given the experimental design, they correspond to Learning Instances 1 & 2 and 4 & 5 respectively
from the HI Middle condition. And indeed, a multi-level mixed model (Table 2) reveals a reliable inter-
action between Instance Type (A vs. B) and Condition (HF vs. HM), precisely because the accuracy of
HM instances improved when going from A to B whereas the accuracy of HF instances began and re-
mained high.

3.3.2. Accuracy-contingent clicking responses
To assess the learning mechanism responsible for the aggregate pattern reported in the previous

section, we performed the following accuracy-contingent analysis, the results of which appear in
A B

Fig. 5. Mean proportion of correct responses. Participant means. Error bars indicate ± 95% C.I. (A) As a function of learning
instance and split by position of High Informative (HI) learning instance. (B) As a function of whether the participant had been
correct or incorrect on the previous High Informative (HI) learning instance for that word. Data come from Instance 2 for HI First
and Instance 4 for HI Middle. Number of participants contributing to bars from left to right: 15 out of 15, 15 out 15, 13 out of 14,
14 out of 14 (Experiment 2).



Table 2
Learning in the aggregate: Effects of Instance Type (A vs. B) and Condition (HF vs. HM) on accuracy (Experiment 2).

Effect Estimate S.E. z-value p-value

Intercept �0.36 0.25 �1.41 .16
Instance Type (A vs. B) �0.13 0.24 �0.54 .59
Condition (HF vs. HM) �0.75 0.40 �1.88 .06
Interaction (Instance Type � Condition) 0.69 0.29 2.36 .02*

Note: Results of multi-level logit model with crossed random slopes and intercepts for both Participants and Items. The lmer
function in R was used [syntax: Accuracy � 1 + InstanceType � Condition + (1 + InstanceType|Participant) + (1 + Condi-
tion + InstanceType| Item)]. Model was a better fit than a corresponding model that did not include interaction term as fixed
effect (v2(1) = 5.23, p = .02) and a marginally better fit than a model that had no fixed effects (v2(3) = 6.95, p = .07). Instance
Type A corresponds to Instances 1 and 2 in the HM condition and 2 and 3 in the HF condition, and Instance Type B corresponds
to Instances 4 and 5 in both conditions.
* Statistically significant.
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Fig. 5B. We examined accuracy on the learning instance that immediately followed the HI instance (In-
stance 2 in HI first and Instance 4 in HI Middle), split by whether the participant had clicked on the
correct or incorrect referent on the HI instance (e.g., split by whether the participant clicked on the
bear or the door in the example in Fig. 4 above).

The pattern of responding was identical to the findings of Experiment 1, even though in the present
experiment there were only two referential alternatives present on the preceding trial. After guessing
incorrectly on a HI instance, participants randomly selected a referent, resulting in chance perfor-
mance of .20. But, after guessing correctly on a HI instance, participants were well above chance. This
was true for both the HM and the HF condition. Multi-level logit modeling revealed only an effect of
whether the participant had been correct on the previous trial, with no effects of or interaction with
Condition (Table 3).

It is especially worth noting that the benefit of guessing correctly on a preceding HI instance is
numerically quite similar to the benefit of guessing correctly on a preceding LI instance. In particular,
compare Figs. 2B–5B. After guessing correctly on a LI trial, or a HI First instance, or even a HI middle
instance, accuracy is within .46–.49 in all three cases, and well above the chance performance seen
after guessing incorrectly on such trials. This suggests that all that matters is guessing correctly on
a previous trial, not whether that previous trial had a high or low number of referential alternatives.
Such a pattern is expected if participants retain only a single hypothesis about the meaning of the
word, rather than store alternative hypotheses.

3.3.3. Eye movements
As in Experiment 1, it is possible that although participants’ clicking behaviors indicate that partic-

ipants only remember a single hypothesized meaning, their eye movements might show some implicit
memory for the alternate hypothesis. Following the procedure used in Experiment 1, we examined
this possibility by plotting the average proportion of looks to the Target and a randomly selected Com-
petitor referent, from the onset of the word. Here we are plotting only those instances that immedi-
ately followed a HI learning instance (i.e., Instance 2 in HI First and Instance 4 in HI Middle).
Table 3
Accuracy-contingent analysis. Best fitting model (Experiment 2).

Effect Estimate S.E. z-value p-value

Intercept �1.20 0.25 �4.79 <.00001*

Accuracy on Prev. Inst. (Incorr. vs. Corr.) 1.16 0.30 3.90 .00001*

Note: Results of multi-level logit model with crossed intercepts for both Participants and Items. The lmer function in R was used
[syntax: Accuracy � 1 + PreviousAccuracy + (1|Participant) + (1| Item)]. Model was a better fit than a model with fixed effects
(v2(1) = 15.15, p < .001). Models adding fixed effect of Condition or Condition � PreviousAccuracy interaction did not reliably
improve fit. Adding random slopes to null model did not improve fit.
* Statistically significant.
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As can be seen in Fig. 6, the eye movement patterns are similar to what was observed in Experi-
ment 1 (compare to Fig. 3 above). Target looks exceeded Competitor looks only when the participant
had been correct on the previous instance. When the participant had been incorrect on the previous
learning instance, the average proportion of Target looks and Competitor looks were very similar. This
again suggests that participants had no implicit memory that the previous learning instance included
the Target referent. Instead participants recalled only the current working hypothesis about the
word’s meaning.

These conclusions found support in multi-level linear modeling of the eye movement data using
the same methods as described in the Results of Experiment 1, looking at the same four 500 ms
windows. Using this method, it was found that Previous-Instance Accuracy was reliable in the third
(1000–1499 ms) time window (v2(1) = 6.26, p < .01) and fourth (1500–1999 ms) time window
(v2(1) = 5.14, p = .02). Moreover, in the third time window TAS was reliably positive when the
A
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Fig. 6. (A) Average proportion of looks to the target referent (triangles) and a randomly selected competitor referent (circles)
plotted over time from word onset. Dark filled symbols represent instances on which the participant had been correct on the
previous instance. Light filled symbols represent instances on which the participant had been incorrect on the previous
instance. Data was taken from the instance immediately following a High Informative (HI) learning instance (i.e., Instance 2 in
HI First and Instance 4 in HI Middle). (B) Target Advantage Scores (TASs): Proportion of looks to the Target minus proportion of
looks to the Competitor. Smoothed Participant Means (Experiment 2).
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participant had been correct on the previous trial (est. mean = 1.13, SE = 0.46, t = 2.46, p = .04), and
marginally in the fourth time window (est. mean = 0.88, SE = 0.38, t = 2.33, p = .08), but not when
the participant had been incorrect (third time window: est. mean = �0.17, SE = 0.44, t = �0.38,
p = .69; fourth time window: est. mean = �0.16, SE = 0.30, t = �0.55, p = .59).
3.3.4. Does clicking matter?
It is possible that requiring a response on every learning instance may have influenced the kind of

learning procedure used by the participants in the present experiments. To address this concern, ver-
sions of Experiments 1 and 2 were also run in which participants (N = 47) were not given instructions
to click on the objects until the fourth learning instance, in the conditions of HI Absent (Exp. 1), HI First
(Exp. 2), and HI Middle (Exp. 2). Average clicking accuracies on the fourth learning instance in these
‘delayed clicking’ experiments were above chance and, importantly, quite similar to the fourth learn-
ing instances in Experiments 1 and 2. For HI Absent, accuracy was 32% (as compared to 31%); for HI
First it was 37% (compared to 40%); and for HI Middle it was 43% (compared to 38%). Multilevel logit
models like those used above found no effect of experiment (Clicking vs. Delayed Clicking) within any
of these three conditions (HI Absent, HI First, or HI Middle) for the fourth learning instance, suggesting
that clicking during instances 1–3 had no effect on learning. We therefore continue to employ clicking
as a measure of word learning over time, in one final experiment that further reduces referential
uncertainty.
4. Experiment 3

4.1. Introduction

Experiment 2 demonstrated that even when the number of referential alternatives on a previous
learning instance is reduced from five to two, participants continue to use only their memory of the
referent they had selected (or, more precisely, the current hypothesis of what the word means), even
though memory demands were greatly reduced. Thus, simplifying the learning situation did not in-
duce the learner to track multiple hypotheses. Here we explore this further, by another simplification
of the learning situation. Recall from Experiment 2 that we reduced the referential alternatives on one
learning instance (either the first or third learning instance among five). Here we ask what learning is
like when multiple learning instances are highly informative: the sequence of five learning instances
now will begin with either two, three, or four HI learning instances. We also include a fourth condition
in which all five learning instances are HI. Using the contingent-response analyses, we can again ask if
participants take advantage of the alternative (unselected) referent. Perhaps under these radically
simplified learning conditions, participants switch to a learning strategy that tracks multiple hypoth-
eses for each word.
4.2. Method

4.2.1. Participants
A total of 63 undergraduates participated and had the same background as the participants in

Experiments 1 and 2.
4.2.2. Procedure
The procedure was the same as Experiments 1 and 2.
4.2.3. Stimuli and design
Four different experimental lists were created that reflected the number of HI instances to be pro-

vided to participants. In the 2-HI condition, participants received two HI learning instances follow by
three LI instances. In the 3-HI, they received three HI and then two LI. In the 4-HI, they received four HI
and then one LI. In the 5-HI, they received HI instances on all five learning instances.



142 J.C. Trueswell et al. / Cognitive Psychology 66 (2013) 126–156
These lists were created from the HI-First experimental list used in Experiment 2. For the 2-HI list,
we changed all second learning instances on target trials from being 5-alternative to 2-alternative ref-
erent choices in the manner described above in Section 3.2.3 of Experiment 2. This new list was used
to create the 3-HI list by reducing all third learning instances on target trials from 5- to 2-alternative,
and so on for the 4-HI and 5-HI lists. Note that filler items remained LI throughout all five learning
instances. Reverse lists were also created in which the order of trials within each learning instance
block was reversed such that two Targets were always followed by a Filler, in the manner described
in Experiment 2.

4.3. Results and discussion

4.3.1. Learning curve
Fig. 7A plots for each condition the average proportion of correct responses across the five learning

instances. As seen in the figure, learning is very successful in the 5-HI condition; performance gradu-
ally climbs from chance performance (.50) on Instance 1 to .90 on Instance 5. In the other three con-
ditions (2-HI, 3-HI and 4-HI), performance keeps pace with the 5-HI condition until the first LI instance
is encountered. In no cases do participants drop back down to chance performance (.20) but rather are
always above chance: .40 after 2-HIs, .57 after 3-His, and .67 after 4-HIs.

4.3.2. Accuracy-contingent clicking responses
The aggregate performance shown in Fig. 7A demonstrates that participants are clearly learning

across multiple HI learning instances. Here we explore the mechanism underlying this learning via
contingent analyses. Fig. 7B plots performance on these HI learning instances, split by whether the
participant had been correct or incorrect on the immediately previous learning instance. This is plot-
ted separately for Instances 2–5. Note that because we are only including HI instances, chance perfor-
mance is .50 on all learning instances. Also, because of the experimental design, the amount of data
contributing to means in the graph drops across learning instances, such that Instance 2 includes
all four conditions, Instance 3 includes just 3-HI, 4-HI, and 5-HI; Instance 4 includes just 4-HI and
5-HI; Instance 5 includes just the 5-HI condition.

There are two striking aspects of the graph in Fig. 7B. First, even though the learning situation has
been greatly simplified, performance remains stubbornly near chance immediately after an incorrect
learning instance, regardless of which learning instance is examined (2–4). Second, performance is
well above chance after a correct learning instance, and steadily improves across learning instances
A B

Fig. 7. Mean proportion of correct responses. Participant means. Error bars indicate ± 95% C.I. (A) As a function of learning
instance and split by number of initial High Information (HI) learning instances: either two, three, four, or five HI instances. (B)
As a function of whether the participant had been correct or incorrect on the previous High Informative (HI) learning instance
for that word. Only HI trials were included (making chance performance .50). Number of subjects contributing to bars from left
to right: Instance 2: 62 out 62, 62 out of 62; Instance 3: 46 out 47, 47 out of 47; Instance 4: 27 out of 32, 32 out of 32; Instance 5:
10 out of 16, 16 out of 16 (Experiment 3).



Table 4
Accuracy-contingent analysis. Best fitting model (Experiment 3).

Effect Estimate S.E. z-value p-value

Intercept 0.61 0.16 3.70 .0002*

Instance (2–5) 0.16 0.12 1.35 .17
Accuracy on Prev. Inst. (Incorr. vs. Corr.) 1.14 0.15 7.42 <.00001*

Interaction (Instance � Prev. Acc.) 0.41 0.16 2.52 .01*

Note: Results of multi-level logit model with crossed intercepts for both Participants and Items, plus a random slope for the
effect of Instance with Participants. The lmer function in R was used [syntax: Accuracy � 1 + Instance � PreviousAccura-
cy + (1 + Instance|Participant) + (1 | Item)]. Models with more complex random slope designs suffered from correlated random
factors; however, an analysis using random slopes for both fixed effects within both Participant and Items yielded the same
significance patterns as reported here. The above model was a better fit than a corresponding model that did not include
interaction term as fixed effect (v2(1) = 6.05, p = .01) as well as a corresponding model without any fixed effects (v2(3) = 80.3,
p < .001). Instance variable was centered.
* Statistically significant.
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(from .78 correct on Instance 2 to about .93 correct on Instance 5). Such a pattern is consistent with
the propose-but-verify learning account in that again, participants are not showing significant mem-
ory for alternative referents from previous learning instances. For example, a participant who incor-
rectly selects a door rather than a bear when hearing ‘‘zud’’ is very likely to be at chance on the
next instance of ‘‘zud’’ even though the choice is now between, e.g., a bear and a shoe.

A multi-level logit model of these data (Table 4) supports these conclusions. Accuracy was modeled
using fixed effects of Instance (2–5) and Previous Accuracy (Incorrect, Correct). As shown in the table,
there was a positive effect on Accuracy for being Previously Correct and no effect of learning Instance,
but a reliable interaction between the two factors, which presumably arose because Accuracy in-
creases with Instance only when the previous learning instance was correct (see Fig. 7B).

Note that the error bars in Fig. 7B, which represent 95% confidence intervals around participant
means, offer some (albeit weak) evidence that participants may be recalling the rejected referential
alternative from a previous learning instance. Specifically, average accuracy on Learning Instances 2
and 5 are slightly above chance when the participant had previously been incorrect for that word
(the lighter colored bars, whose error bars do not cross over the .50 chance level). We suspect that
these effects are fragile, if not completely spurious, because we do not observe similar above-chance
performance in Instances 3 or 4. Accounts that propose that multiple hypotheses are tracked across
learning instances would predict above chance performance across all four of these learning instances.
Moreover, although the error bar does not touch the .50 chance level in the Previous Incorrect
condition of Instance 5, this above-chance performance was only marginally significant in a t-test
of subject means (t(9) = 2.07, p = .07) and not significant in a t-test of item means (t(6) = 1.26, p = .26).

The current experimental design also allows us to test a further prediction of the propose-but-ver-
ify learning procedure. In particular, we can perform a slightly more complex contingent analysis,
asking what drives response accuracy more: accuracy on the immediately preceding learning in-
stance (one back), or accuracy on the learning instance that occurred two back? If learners are carry-
ing only a single hypothesis across learning instances, performance on an instance that was two-back
should have no effect on the current learning instance; only the previous learning instance (one back)
should matter. This further dividing of the data – into four possible sequences: (1) Incorrect, Incor-
rect; (2) Correct, Incorrect; (3) Incorrect, Correct; (4) Correct, Correct – is possible here because with
only two-alternative choices on each learning instance data are more evenly distributed amongst
these four possible outcomes (roughly 25% in each).6 Fig. 8 shows this analysis, plotting accuracy on
the third learning instance as a function of the accuracy pattern on the previous two learning instances.
Data were included from only the 3-HI, 4-HI, and 5-HI conditions, resulting in chance performance
being .50.
6 Five-alternative choices (used in Experiments 1 and 2) did not provide enough data in each sequence to make this additional
analysis possible.



Table 5
Accuracy-contingent analysis of HI Instance 3 (Experiment 3).

Effect Estimate S.E. z-value p-value

Intercept 0.45 0.27 1.66 .10
Accuracy on Instance 1 (Incorr. vs. Corr.) 0.24 0.29 0.83 .41
Accuracy on Instance 2 (Incorr. vs. Corr.) 1.20 0.27 4.39 .00001*

Note: Results of multi-level logit model with crossed intercepts for both Participants and Items, plus a random slope for the
effect of Accuracy on Instance 1 with Participants. The lmer function in R was used [syntax: Accuracy � 1 + Accuracy-
Inst1 + AccuracyInst2 + (1 + AccuracyInst1|Participant) + (1| Item)]. Models with more complex random slope designs suffered
from correlated random factors; however, an analysis using random slopes for both fixed effects within both Participant and
Items yielded the same significance patterns as reported here. The above model was a better fit than a corresponding model
without any fixed effects (v2(2) = 20.9, p < .001). Adding an interaction term to the above model did not reliably improve the fit
(v2(1) = 0.69, p = .41).
* Statistically significant.

Fig. 8. Mean proportion of correct responses on HI learning Instance 3, as a function of whether the participant had been correct
or incorrect on the first and second learning instances for that word. Only HI trials were included (making chance performance
.50). Error bars indicate ± 95% C.I. Number of subjects contributing to bars from left to right: 39 out of 47, 45 out of 47, 26 out of
47, 45 out of 47 (Experiment 3).
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Strikingly, the only factor that appears to influence accuracy on learning Instance 3 is accuracy on
learning Instance 2. No effect of learning Instance 1 is apparent, nor is an interaction between these
two factors. These observations were supported in a multi-level logit model (Table 5), which reveals
a reliable effect of Instance 2 on Instance 3 Accuracy, but no effect of Instance 1 on Instance 3. Adding
an interaction term did not improve the fit of this model (v2(1) = 0.69, p = .41).

4.3.3. Eye movements
Following the procedure used in Experiments 1 and 2, we examined whether participants consid-

ered the alternative meanings by plotting the average proportion of looks to the Target against a Com-
petitor referent, from the onset of the word, split by whether participants were Correct or Incorrect on
the previous instance (see Fig. 9). Here we plot only HI instances that immediately followed another HI
instance – that is, Instance 2 from the 2-HI condition, Instances 2 and 3 from the 3-HI, Instances 2, 3,
and 4 from the 4-HI, and Instances 2, 3, 4, and 5 from 5-HI.

As can be seen in Fig. 9, the average proportion of looks to the Target and Competitor were in gen-
eral higher than what was observed in previous experiments (compare to Figs. 3 and 6 above) – a dif-
ference that is expected because trials in the present experiment had only two potential referents on
the screen rather than the five potential referents used in the previous experiments. Under these very
simplified referential conditions – and only these – do we observe any hint that participants are
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implicitly recalling the alternative referent from the previous learning instance. Target looks greatly
exceeded Competitor looks when the participant had been correct on the previous instance, but Target
looks also exceeded Competitor looks when the participant had been incorrect on the previous in-
stance, albeit to a lesser extent. Thus there is some implicit memory of the previous referential alter-
native, although it has very little impact on overt referential choices.

These conclusions found support in multi-level linear modeling of the eye movement data using
the same methods as described in the Results of Experiment 1 and 2, looking at the same four
500 ms time windows. Using this method, it was found that Previous-Instance Accuracy was reliable
in the 0–499 ms time window (v2(1) = 5.74, p = .02), 500–999 ms time window (v2(1) = 24.9, p < .001),
1000–1499 ms time window (v2(1) = 20.4, p < .001), and 1500–1999 ms time window (v2(1) = 4.34,
p = .04). For those times when the participant had been correct on the previous instance, TAS was
found to be reliably positive in all of these time windows: 0–499 ms (est. mean = 0.53, SE = 0.16,
t = 3.32, p = .02); 500–999 ms (est. mean = 2.30, SE = 0.38, t = 6.00, p < .001); 1000–1499 ms (est.
mean = 2.47, SE = 0.34, t = 7.30, p < .001); 1500–1999 ms (est. mean = 1.35, SE = 0.26, t = 5.16,
p < .001). But unlike the first two experiments, here TAS also became reliably positive for trials on
which the participant had been incorrect on the previous instance, at least for the 1000–1499 ms win-
dow (est. mean = 1.07, SE = 0.48, t = 2.23, p = .05) and the 1500–1999 ms window (est. mean = 0.71,
SE = 0.33, t = 2.13, p = .05). This finding suggests participants did have some implicit memory of the
referential alternative present on the previous learning instance.

4.3.4. Summary of Experiment 3
Even under a greatly simplified learning situation (far simpler than that faced by a person learning

a language from the natural referent world), the response patterns of participants continue to be strik-
ingly consistent with the propose-but-verify learning procedure. The clicking response patterns sug-
gest that participants had a strong tendency to recall and use only a single hypothesized meaning of
the word, as derived from the immediately preceding learning instance, and not the alternative refer-
ent from a previous learning instance. Though the eye-movement findings suggest some implicit
memory of the alternative referent, this does not appear to influence overt responses.
5. Simulation of the results from Experiments 1–3

Although we have argued that our findings are predicted by the propose-but-verify account, it is
worth establishing that a computer-implemented version of the account can simultaneously capture
the aggregate learning effects (as seen in Figs. 2A, 5A, and 7A) as well as the response-contingent pat-
terns (as seen in Figs. 2B, 5B and 7B).7

5.1. Simulation method

We ran computer simulations of the propose-but-verify account using a simple algorithm that can
be described as:

1. Begin by guessing at chance.
2. On any additional occurrence of a word, remember the previous guess with some probability a.
3. If the remembered guess is present in the current referent set (i.e., confirmed), increase a and select

the referent; otherwise select a referent at random.

Thus a is the only free parameter in the model. We can estimate a from the experimental data as
follows. In the Experiment 1 design (i.e., five LI instances), the chance of selecting a particular ref-
erent is .20. Consider the situation in which the participant has selected the correct referent on the
7 Ongoing work (Stevens, Yang, Trueswell, & Gleitman, 2012) uses a more sophisticated version of this model to attempt to
capture the experimental findings of word learning while at the same time to compete, or in some cases outperform, wider-
coverage models of word learning derived from corpora of child-directed speech.
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Fig. 9. (A) Average proportion of looks to the target referent (triangles) and the competitor referent (circles) plotted over time
from word onset. Dark filled symbols represent instances on which the participant had been correct on the previous instance.
Light filled symbols represent instances on which the participant had been incorrect on the previous instance. Data was taken
from only the High Informative (HI) Instances that also followed a HI Instance. (B) Target Advantage Scores (TASs): Proportion of
looks to the Target minus proportion of looks to the Competitor. Smoothed Participant Means (Experiment 3).
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immediately preceding learning instance. Under this situation, correctly selecting the target again
can come about from one of two possible scenarios: (1) the participant successfully recalled the
previous response and thus selected it again, or (2) the participant failed to recall the previous re-
sponse but then happened to select the target referent at random. The first scenario occurs with a
probability of a whereas the second scenario occurs with a probability of (1 � a) times chance.
Thus, after selecting the target correctly on a learning instance, accuracy on the next learning
instance is:
accuracy ¼ aþ ð1� aÞ � chance
By solving for a we can estimate the probability of recalling a previous response:
a ¼ ðaccuracy� chanceÞ=ð1� chanceÞ
For simulations of Experiments 1 and 2, we set the initial value of a based on the average accuracy
of those LI learning instances where participants had been correct for the first time on the immedi-
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Fig. 10. Mean proportion of correct responses from 200 simulated subjects. Error bars indicate ± 95% C.I. (A) As a function of
learning instance. (B) As a function of whether the participant had been correct or incorrect on the previous learning instance
for that word (simulation of Experiment 1).
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ately preceding learning instance, i.e., correct on the previous learning instance but not correct on ear-
lier learning instances (a total of 331 trials from Experiments 1 and 2). Under these conditions, accu-
racy was 0.41,8 making a = 0.26. Because there were only 13 HI trials for which the participant had been
correct on the previous trial, we made a = 0.26 on HI trials as well.

Once a hypothesis has been confirmed, we would expect a to increase dramatically, i.e., partici-
pants should remember a confirmed hypothesis at a much greater rate. Indeed, after accurately
responding to two learning instances in a row, participants went on to have an accuracy of 0.77 on
the next instance in that sequence (a total of 235 trials), making a = 0.71. Thus, once a hypothesis
was confirmed, we raised a from 0.26 to 0.71 in simulations of Experiments 1 and 2.

The same procedure was used to set a for Experiment 3, except we used HI trials rather than LI tri-
als to determine a. That is, we used the average accuracy of those HI trials that followed a first correct
guess to determine the initial a (here a = 0.60, 391 trials), and the average accuracy of HI trials after a
confirmed guess for the increased a (a = 0.81, 399 trials). One should expect a to be higher in Exper-
iment 3 than in Experiments 1 and 2 because the reduced number of distractors on a current learning
instance (2 rather than 5) should make it easier to remember the current hypothesis for the word. It
was not possible to set a different a for LI trials in Experiment 3 because of the relatively few number
of trials on which a LI trial was preceded by a trial that was the first correct item, i.e., the first con-
firmed item. Ideally, one would want to determine empirically the relationship between the probabil-
ity of remembering a previous response (a) and the number of referential distractors present on a
current trial, but this would require a more extensive parametric manipulation of the referent set size
than was done here in the present experiments.

We ran 200 simulations (200 simulated subjects) per condition in each experiment, with 100 sim-
ulated subjects assigned to each forward- and reverse-ordered stimulus list. Thus 200 simulated sub-
jects ‘participated’ in Experiment 1, 200 each in the HI First and HI Middle conditions of Experiment 2,
and 200 in each of the four conditions of Experiment 3. The accuracy for each response was recorded,
and subject means and 95% confidence intervals were computed.
5.2. Simulation results

As can be seen in Fig. 10A, the 200 simulated subjects for Experiment 1 performed strikingly similar
to the actual subjects (compare to Fig. 2A); the numerical values of each mean were almost identical to
8 This accuracy score was quite similar when the previous learning instance had been a LI (.40) or a HI (.45), which did not differ
in a two-tailed t-test on subject means (p > .76). This lack of a difference is consistent with the notion that the only thing recalled
from a previous learning instance was the hypothesized meaning and not alternative hypotheses (see Medina et al., 2011 for a
similar finding).
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Fig. 11. Mean proportion of correct responses from 200 simulated subjects per condition. Error bars indicate ± 95% C.I. (A) As a
function of learning instance and split by position of High Informative (HI) learning instance. (B) As a function of whether the
participant had been correct or incorrect on the previous High Informative (HI) learning instance for that word (simulation of
Experiment 2).
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Fig. 12. Mean proportion of correct responses from 200 simulated subjects per condition. Error bars indicate ± 95% C.I. (A) As a
function of learning instance and split by number of initial High Information (HI) learning instances: either two, three, four, or
five HI instances. (B) As a function of whether the participant had been correct or incorrect on the previous High Informative
(HI) learning instance for that word. Only HI trials were included (making chance performance .50) (simulation of Experiment
3).
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the actual subjects and fell within the ±95% confidence intervals of actual subject performance. And
the same contingency effect was observed of being at chance if the simulated subject had been incor-
rect on the immediately preceding learning instance (Fig. 10B, compare to Fig. 2B). Finally, a multi-le-
vel model like the one found in Table 1 generated the same reliable effect of learning instance for the
simulated data (est. slope = 0.14, z = 7.61, p < .01).

As can be seen in Fig. 11A, the simulations also captured the general patterns observed in Experi-
ment 2 (compare to Fig. 5A). In particular, just like actual subjects, the simulated subjects showed
fairly flat but above-chance performance on all LI trials after encountering a HI learning instance. It
is true that the actual subjects out-performed the simulated subjects slightly, but the same overall
patterns were observed. The contingency analyses of the simulated data also generated patterns quite
like the actual subjects (compare Fig. 11B to Fig. 5B); here performance was well within the 95% Con-
fidence Intervals of actual subjects. A multi-level model like the one found in Table 2 generated the
same significance patterns on simulated subjects: a reliable effect of Condition (est. slope = 0.41,
z = �5.60, p < .01) which interacted with Instance Type (est. slope = 0.52, z = 6.42, p < .01). In the same
way, a multi-level model like the one found in Table 3 for actual subjects generated the reliable effect
of Accuracy on Previous Instance (est. slope = 1.24, z = 15.03, p < .01).
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Finally, Fig. 12A shows that the simulations also captured the general patterns observed in Exper-
iment 3 (compare to Fig. 7A). Just like actual subjects, accuracy increased across a sequence of 5 HI
learning instances (from 50% to 80% correct). And, like actual subjects, the simulated subjects’ perfor-
mance also dropped off once a LI trial was encountered in a sequence, but always remained well above
chance. There was one notable difference between the simulated and actual data: Actual subjects
tended to outperform simulated subjects on HI trials late in the sequence (i.e., instances 4 and 5).
We believe this was because our learning algorithm did not increase the probability of remembering
(i.e., a) even further when the hypothesis was confirmed for a second or third time; we simply kept it
at the same value of 0.81. Many of these later correct responses from actual subjects were from trials
when the subject had been correct on at least two preceding instances, presumably making it even
easier to remember the correct hypothesis. The contingency analyses on the simulated data of Exper-
iment 3 (Fig. 12B) also generated patterns similar to the actual subjects (Fig. 7B). Here the simulated
subjects are exactly at chance after guessing incorrectly on a previous learning instance, whereas the
actual subjects were sometimes slightly above chance, albeit inconsistently so. Finally, a multi-level
model like the one found in Table 4 generated the same significance patterns with simulated subjects:
a reliable effect of Previously Correct (est. slope = 1.64, z = 42.84, p < .01) which interacted with In-
stance (est. slope = 0.16, z = 4.13, p < .01).

In sum, the resulting behavior of a very simple propose-but-verify model, with just one free param-
eter (a, the probability of remembering), captured both the average learning curves and the contin-
gency patterns found in Experiments 1–3.
6. General discussion

6.1. Summary and key observations

In three studies of cross-situational word learning, participants rarely, if ever, retained multiple
alternative hypotheses to a word’s meaning across learning instances, even under conditions of low
referential ambiguity. When participants guessed incorrectly on a learning instance, they were at
chance when selecting among referents on the very next learning instance for that word, even though
the target referent was present on both learning instances. This occurred under conditions where both
learning instances contained five potential referents (Experiment 1, Fig. 2B) and where the first of the
two learning instances contained only two potential referents (Experiment 2, Fig. 5B). The implicit
measure, of tracking participants’ eye movements to alternative referents, yielded a strongly support-
ive result: There were no indications in the eye movement data that participants remembered the ref-
erential alternative from the immediately preceding learning instance (Figs. 3 and 6). In Experiment 3
we reduced the learning task to its barest (and admittedly least realistic) variant by presenting partic-
ipants with only two alternative referents to choose between on all relevant trials. Even in these least
taxing circumstances, participant choices across trials were sensitive to the individual’s hypothesis
from the immediately preceding trial (Figs. 7B and 8), though in this one case there was a fragile sug-
gestion in the eye-tracking data of memory for the competing referent in the preceding trial (Fig. 9).
Finally, a simple computer simulation of the propose-but-verify procedure quite precisely captured
the response patterns of our participants (see Figs. 10–12).
6.2. The present findings within the literature of word learning

Our results, and the results from Medina et al. (2011), are largely consistent with findings on vocab-
ulary learning that have accumulated during the past three decades of research and theoretical com-
mentary. Notably in this regard, both children and adults exhibit a striking ability to seize upon the
correct meaning of a word upon first encounter, especially when the situational context is highly
informative and constraining (e.g., Carey, 1978; Carey & Bartlett, 1978; Heibeck & Markman, 1987)
with children sometimes using additional information to constrain meaning (e.g., Booth & Waxman,
2002; Fisher, Gertner, Scott, & Yuan, 2008; Gropen, Pinker, Hollander, & Goldberg, 1991; Nappa
et al., 2009; Soja, Carey, & Spelke, 1991). Our results exhibit a similar pattern, but speak also to
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how such a fast mapping procedure works under less informative situations across multiple learning
instances. Participants seize upon (or even stumble upon) a single hypothesized meaning and bring
this forward for confirmation, or rejection, on the very next learning instance. The situational statistics
make it much more likely that a correct hypothesis, when selected, will be confirmed when the word
is heard again.

Yet, the results also seem to raise a paradox. They show that one-trial learning with cross-trial ver-
ification is a slow and laborious way of building a lexicon. Learning from sequences of the typical, rel-
atively low informative learning instances found in natural contexts (Medina et al., 2011) or our
artificially generated contexts with high referential uncertainty (Experiment 1 above), yield very slow
learning patterns in the aggregate (e.g., Fig. 2A). This appears to contradict what is known about child
vocabulary growth, where children are estimated to be acquiring close to a word every couple of
waking hours throughout the toddler and school years, with striking referential success (Bloom,
2002; Carey, 1978).

This apparent paradox falls away however when we consider the kind of contextual evidence of-
fered to the participants here and in Medina et al. (2011) to perform cross-situational confirmation.
In Medina et al. (2011), we stripped away all cues to a word’s meaning, except for the buzzing-bloom-
ing visual referent world of the child; recall that Medina et al. eliminated all linguistic cues to word
meaning by muting the videos, and providing just a single nonsense word at the occurrence of the
‘mystery word’. This ‘simulates’ the contextual evidence that is available to the very early language
learner who has not yet constructed a database of linguistic knowledge (of the meanings of other
words, sentential syntax, etc.) – an assumption that has been given strong empirical support from
other studies using the human simulation paradigm (Gillette et al., 1999; Snedeker & Gleitman,
2004). Likewise, in the present studies we have given adult learners a referent world to work from,
but not much more, and have made it, appropriately so, referentially underdetermined (especially
in Experiment 1).

Thus the slow growth of vocabulary is understandable if we are ‘simulating’ here the earliest stages
of word learning, where a child knows just a few or even no additional words. Indeed, infant word
learning appears to be a slow laborious process during this initial stage. For instance, the McArthur
CDI infant scale of parent self-report routinely finds average production vocabulary going from 0 or
1 word at 8 months to just 20–25 words six months later at 14 months (e.g., Bates, Dale, & Thal,
1995), with measures of comprehension vocabulary also moving sluggishly from about 35 words to
140 words over this same six month period. Laboratory studies of comprehension show a similar pat-
tern, starting with a small set of interpretable vocabulary items at six months moving to a slightly lar-
ger, but still quite small, set at 12–14 months (e.g., Bergelson & Swingley, 2012, and references therein).

It is only at 14-months when vocabulary growth begins its sharp climb, reaching about 12,000
words by age 6 years (e.g., Anglin, 1993; see also Bloom, 2002; Snedeker, 2009). What accounts for this
rise? As we have argued elsewhere (Gillette et al., 1999; Gleitman, 1990), the acquisition of syntax and
other linguistic knowledge by toddlers and young preschoolers during this time period provides a rich
database of additional constraints that permit the learning of many additional words, both referential
and non-referential. Indeed, these linguistic sources of evidence, when combined with the referent
world, have been found to almost over-determine the meaning of many words (Gillette et al., 1999;
Snedeker & Gleitman, 2004), dramatically increasing the rate of highly informative learning instances,
which in turn, trigger additional sudden insightful learning on an item-by-item basis. Although we
have not presented direct evidence here, it is quite plausible that a propose-but-verify word learning
procedure is at work all along the course of word learning throughout most of the lifecycle (for word
learning continues at a very high rate at least through the early years of adulthood, see Bloom, 2002).
But as linguistic sophistication proceeds, the learner increasingly turns many low informative learning
instances into highly informative ones by adding distributional, syntactic, and pragmatic information
to that supplied by the observed world (Gleitman et al., 2005).

Plausibility aside, however, it is important to consider why and how the results just adduced seem
so sharply variant with recent findings on statistical language learning. One could argue that statistical
learning of vocabulary looks plausible too, perhaps more so than sudden, relatively insightful, learn-
ing. After all, there is no doubt that humans can track the statistical regularities associated with
perceptual input, including input that is linguistic in nature (e.g., Aslin & Newport, 2008; Gebhart,
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Newport, & Aslin, 2009; Gómez & Gerken, 2000; Saffran et al., 1996). Moreover adults, when compre-
hending their native language, show exquisite sensitivity to the frequency of alternative structures
and alternative meanings associated with ambiguous words (e.g., Duffy, Morris, & Rayner, 1988; Simp-
son & Burgess, 1985; Trueswell, 1996). Yet we have shown here that the patterns of cross-situational
word learning tend not to show a similar probabilistic profile, even under fairly low degrees of refer-
ential uncertainty. And we have obtained similar results when using highly naturalistic stimuli
(namely, the actual usage of parents speaking to 12- to 15-month olds as presented in HSP) that
contain a high degree of referential uncertainty akin to what is faced by the child language learner
(Medina et al., 2011).

There are two major issues that seem to lie behind these disparities of effect and implied theory.
The first is simply methodological, having to do with how past data have been analyzed and reported,
specifically, whether the evolving learning pattern within an individual, rather than just the aggre-
gated end-state of learning, is assessed. The second potential disparity is more substantive. It arises
from the artificiality of the stimulus situation that obtains in relevant laboratory studies – including
our own as reported in the present paper – that purport to link with the in vivo facts about child vocab-
ulary growth. We now take up these two issues in turn here.

6.2.1. The cross-trial evolution of vocabulary learning
As emphasized throughout the present paper, our ambition has been to measure participants’

evolving lexical representations across exposures to new words in context, rather than solely to record
final attainment. This is why we assessed our participants’ conjectures after each learning trial, using
both an explicit measure (their stated conjecture) and an implicit one (the movement of their eyes
across the visually-present alternatives). The statistical word learning literature has, instead, typically
reported solely or primarily on the presumed end point of learning by seeing whether participants are,
as a group, above chance on guessing after all learning trials have been presented (Frank et al., 2009;
Frank et al., in press; Xu & Tenenbaum, 2007; Yu & L. Smith, 2007).

These aggregate measures of final attainment leave unmeasured the participants’ behavior on in-
terim trials, simply presupposing that there is gradual (cross-trial) improvement as alternative conjec-
tures rise or fall in probability as a function of changing cross-trial co-occurrence statistics. But this is
not clear at all. If learning is characteristically abrupt, due to sudden insight on a single learning in-
stance, and if these insights happen on different trials, across individuals, average performance will
look gradual over that period of time.

This important methodological-analytic point has been noted again and again in the learning liter-
ature for at least the last half-century (see also Gillette et al., 1999, for evidence and discussion in the
context of observational word learning). For example, Rock (1957) and Bower (1961) offered evidence
that paired-associate learning, which in the aggregate looks like gradual learning, may instead pro-
duce a correct response ‘‘in an all-or-none fashion, and that prior to this conditioning event the par-
ticipant guesses responses at random to an unlearned item’’ (p. 255, Bower, 1961). Likewise, Rock
(1957) concluded from his own work that ‘‘in the classical multiple-item learning situation, associa-
tions are formed in one trial’’ (p. 190). And, as noted in Gallistel, Balsam, and Fairhurst (2004), a large
number of other early memory researchers were well aware that average performance across partic-
ipants can generate misconceptions about how learning is operating within the individual, citing, e.g.,
the work of Lashley (1942) and Estes (1956, 2002).

Indeed, Gallistel et al. (2004) show in a series of learning experiments that ‘‘in most subjects, in
most paradigms, the transition from a low level of responding to an asymptotic level is abrupt’’ (p.
13124). The act of averaging across individuals who make this transition at different points in a learn-
ing sequence generates a gradual learning profile, exactly like that shown in Fig. 2A of the present pa-
per. And our conditional analyses (e.g., Fig. 2B) suggest that cross-situational word learning is yet
another example of this phenomenon. These outcomes suggest that the kind of ‘‘statistical learning’’
reported recently in the language learning literature actually belongs within this class as well, learning
that is abrupt and solidified by confirmation.

It is worth highlighting, however, that a one-trial learning account of paired associative learning is
a minority position in the current learning literature, yet it is unclear whether there is convincing
experimental evidence to reject it in favor of a ‘gradualist’ learning position. This observation was
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most recently made in a historical review by Roediger and Arnold (2012), entitled ‘‘The One-Trial
Learning Controversy and its Aftermath: Remembering Rock (1957)’’, which focused on how Rock’s
(1957) evidence for one-trial learning was dismissed, albeit with less than convincing evidence from
opponents. As stated by the authors:

Rock’s conclusions rocked the world of verbal learning, because all theories followed a gradualist
assumption. However, Estes (1960) published research that led him to the same conclusion shortly
thereafter. Our paper. . .discusses how the verbal learning establishment rose up to smite down
these new ideas, with particular ferocity directed at Rock. Echoing G.A. Miller (1963), we conclude
with a note of sympathy for Rock’s and Estes’ positions and muse about why their work was so
summarily dismissed. The important question they raised – the nature of how associations are
learned – remains unanswered. (p. 2, Roediger & Arnold, 2012)

A one-trial learning account fits quite well with the fast-mapping literature on vocabulary learning
that we have cited above (e.g., Heibeck & Markman, 1987). In this work, which tends not to focus on
cross-situational evidence gathering, but rather the evidence present on a single learning instance, it
has been found that word learning characteristically happens on just one trial. Analogous fast-map-
ping is also observed in other tasks that do not involve word learning (e.g., Markson & Bloom,
1997). This latter point comports well with the observations that sudden learning is more the norm
than exception across a range of paradigms, learning problems, and participant groups, including
other species (Gallistel et al., 2004).

One-trial learning does conflict with the views expressed by most researchers currently studying
cross-situational learning, who largely adopt a gradualist position in which multiple associations be-
tween a word and its possible referents are tracked over time eventually converging on a single, most
likely association. We reiterate here that the particular findings from this literature (e.g., Yu & L. Smith,
2007) are not at odds with our propose-but-verify account, as those findings come from final tests of
learning rather than unfolding learning patterns. And there is no reason to suspect that a propose-but-
verify learning procedure could not capture the final attainment patterns observed in that work.9 In-
deed, our experiments generate quite similar aggregate results: On average, people are more accurate on
learning instance five than they were on learning instance one. And like Yu and L. Smith’s findings, par-
ticipants on instance five perform better after a series of highly informative trials as compared to a series
of low informative trials. But these pooled scores are of little interest here because they leave unad-
dressed the learning mechanism that generated them.

Nevertheless some may wish to examine the differences between the present methods and those
used by Yu and L. Smith (2007), the most well known of these cross-situational studies. Unlike the
present method, Yu and L. Smith offered labels for visually presented referents on every trial. Labeling
all referents no doubt speeds learning as it introduces the opportunity for reduction of referential
uncertainty through a strategy of mutual-exclusivity (i.e., ‘‘moop’’ is confirmed by the presence of a
bear, so ‘‘mipen’’ must be referring to the door). But this is an orthogonal issue to the one examined
here, as it does not speak to how ‘‘moop’’ was learned in the first place. Second, one might argue that
Yu and L. Smith’s instructions were vague enough to encourage one-to-many mappings between word
and referents. They do indeed say that subjects ‘‘were not told that there was one referent per word.’’
Yet, they go on to say subjects ‘‘were told that multiple words and pictures would co-occur on each
trial and that their task was to figure out across trials which word went with which picture’’
(p. 416, Yu & L. Smith, 2007). Thus the instructions implied that each word had a unique meaning.
It is also true that Yu and L. Smith did not use carrier phrases such as ‘‘Look! A ___ !’’, as done in
the present studies; we suppose the absence of these phrases could encourage the listener to infer that
9 Very recently Yu and L. Smith (2012) have tested several learning models against their original (2007) data. Though, as they
report, various versions of the models they investigated fulfilled different desiderata, the single-hypothesis-testing model, one
much like our own, fit their human data most closely though, to be sure, other models could be adjusted in certain parameters so
as to come close to the performance of this one. It of course remains true that in this work Yu and L. Smith had only final
attainment data, i.e., they did not have any trial-by-trial data against which to test the evolution of learning under their models.
This means that a central property of our model – the ‘‘verify’’ trial that succeeds the ‘‘propose’’ trial – cannot be evaluated there.
Nonetheless, the new studies are a welcome further documentation of how single hypothesis machinery can and does work.
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the words in the study were not referential in nature and instead, e.g., exclamatory (Fennell &
Waxman, 2010; Fulkerson & Waxman, 2007; Namy & Waxman, 2000), but if true, this would under-
mine the claims of Yu and L. Smith that they were studying word referent-pairings under conditions of
referential uncertainty. Finally, the passive nature of Yu and L. Smith’s task, of not selecting referents
on each trial, could have encouraged multiple referent tracking. Yet, our own comparisons of clicking
and not clicking on referents suggest that this has little or no effect on learning (see Section 3.3.4
above).
6.2.2. The world is so full of a number of things
Psychology through its history has benefited from examining radically simplified situations as con-

trollable, thus testable, stand-ins for the blooming buzzing confusion of real life. With this truism
acknowledged, a symmetrical truism is that the simplifications can, covertly or not, introduce distor-
tions. For example, our current experiments, in company with many other laboratory studies that pur-
port to expose the core problem of word learning, are at best studies of paired association between a
speech sound and a small closed set of carefully cropped images devoid of their typical context – i.e.,
their rich, three-dimensional, moving, interactive, environmental context. We do not know whether,
or to what degree, items so acquired generalize across the significant cognitive categories that are usu-
ally and necessarily triggered by these more complex contexts. In the real world, we must learn that
=dAg= means ‘dog’ even though every observed dog is a different one, seen more or less darkly, barking
more or less loudly, and so forth. As is just as well known, and more problematical by far, practically
speaking there is no known limit to the number of representations under which any single word-sit-
uation pair may be regarded and categorized (cf. Chomsky, 1957; Quine, 1960). As measured in the
laboratory, meaning identification is deemed ‘‘successful’’ if the subject has clicked on the correct ref-
erent picture, but this engages only part of the problem, as meaning is actually determined by how
that referent is intended to be characterized by the speaker.

These considerations suggest that learning a word meaning is unlikely to be a process of statistical
elimination of a few competing hypotheses. We can refer to this as the ‘open set’ problem. Word learn-
ing (even, we believe, at its earliest stages) is a mapping problem in which a relatively small set of to-
kens (words) must systematically connect to a near infinite (open) set of categories. Indeed, it is quite
striking that even in such simplified laboratory settings, again and again we see our subjects seizing
willy-nilly on a single hypothesis, revising it only if its viability is specifically countermanded by the
very next observation. It may very well be that gradualist parallel tracking of associations occurs only
within closed or small problem spaces, such as form-to-form mappings within the linguistic system
(e.g., syllable co-occurrences, verb subcategorization preferences, etc.). Yet to date, hypotheses have
not been adequately tested regarding how these associations are learned in the first place (Roediger
& Arnold, 2012).
6.3. Limitations and further questions

There are of course several important issues left unresolved about our propose-but-verify account
of word learning. Perhaps the most pressing is whether such a cross-situational learning procedure is
also present in infants and young children. There is good reason to suspect that it is, given the striking
continuity observed thus far in word learning abilities across children and adults (Gillette et al., 1999),
and the cross-species and cross-task observations of one-trial learning just discussed. It is true that in
the present word learning procedure (and the procedures used by most others), adult participants are
told explicitly how to approach the problem – e.g., they are told that the spoken nonsense words label
objects on the screen. Infant participants do not have this benefit, but crucially when linguistic
information is provided that such words are referential (e.g., syntactic evidence), infants readily treat
the words as referential and face the same challenges associated with referential ambiguity (Fennell &
Waxman, 2010; Fulkerson & Waxman, 2007; Namy & Waxman, 2000). Moreover, to the extent that it
has been studied, children and adults behave quite similarly in the Human Simulation Paradigm
(Medina et al., 2011; Piccin & Waxman, 2007) and even in the artificial referent worlds more typically
used in cross-situational word learning studies (L. Smith & Yu, 2008; Yu & L. Smith, 2011).



154 J.C. Trueswell et al. / Cognitive Psychology 66 (2013) 126–156
It is also important to consider further the conditions under which language learners do indeed
track multiple hypotheses simultaneously for a word. We suspect, and the current evidence suggests
(K. Smith et al., 2011), that multiple-hypothesis tracking occurs under conditions of massed learning,
i.e., a series of immediately adjacent encounters with a word in different referential contexts; evidence
is also presented in Gillette et al., 1999, who in their first HSP experiments presented all exemplars for
each word, rather than (as in later studies) distributed across the full learning set. Immediately-repet-
itive uses of words do of course sometimes occur in natural speech, e.g. in moments of instruction
(‘‘There’s a bird! There’s another bird!’’), and in the so-called ‘‘repetition sequences’’ observed in par-
ents of very young children (‘‘Go get the bird, that’s right, the bird, yes, pick up the bird. . .’’). Further
work will be needed to see (a) how such repetitions operate in natural child-directed speech and (b)
the extent to which multiple-hypothesis tracking under these conditions, if observed, is a reflection of
a statistical-associative learning mechanism or simply short-term storage in working memory.

We also suspect that when a confirmed (and even re-confirmed) hypothesis for a word is then not
supported by a later context, the learner would actively search memory for past rejected hypotheses,
and may even establish a second meaning for the word. Such a mechanism would be needed for the
learning of homophones, for example. The establishment of a second meaning would most likely occur
when the referential context of a later learning instance does not support a confirmed word meaning
and instead unambiguously supports a different meaning (see Vouloumanos, 2008).

Finally, we do not wish to leave the reader with the impression that propose-but-verify is a com-
plete model of word learning. Rather it reveals the early stages of the meaning discovery process.
The learning of most other vocabulary items (i.e., words that are not concrete count nouns) requires
the use of a much broader database of linguistic and nonlinguistic evidence for their accurate discov-
ery. Although one-trial learning may underpin the word-to-meaning discovery for these words as
well, such a procedure does not speak to the issue of how information is integrated across linguistic
and nonlinguistic domains.

6.4. Closing comments

In partial response to the difficulty of understanding the word learning process, given the twin
problems of gaining stimulus control (that is, of devising some situation simple enough to measure
at all) and establishing that the situation has some plausible link with reality (that is, addressing
the many-to-many mapping problem), we have tried to make some progress by varying these factors
across three experiments. In a companion piece to the present one (Medina et al., 2011), we examined
cross-situational learning with naturalistic stimuli (40-s muted videos of parent-to-infant speech, in
context), thus maintaining some of the real complexity of the child’s learning environment. In that sit-
uation, participants seemed almost totally unable to remember anything about past learning situa-
tions, employing instead the propose-and-verify procedure that requires no tracking of past
contexts. The present studies, by reducing this complexity, allowed us to see if something resembling
word learning will become cumulative and statistical-associative if reduced to new labeling of image
to nonsense word pairings. As we showed, even in this situation, and even though the participant-
observers are cognitively mature adults who are familiar with the lexical categories we used, they
propose, but verify.
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