
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

A Fast Markov Decision Process based Algorithm
for Collision Avoidance in Urban Air Mobility

Josh Bertram, Student Member, IEEE, Peng Wei, Member, IEEE and Joseph Zambreno, Senior Member, IEEE

Abstract—Multiple aircraft collision avoidance is a challenging
problem due to a stochastic environment and uncertainty in
the intent of other aircraft. Traditionally a layered approach
to collision avoidance has been employed using a centralized air
traffic control system, established rules of the road, separation
assurance, and last minute pairwise collision avoidance. With the
advent of Urban Air Mobility (air taxis), the expected increase
in traffic density in urban environments, short time scales, and
small distances between aircraft favor decentralized decision
making on-board the aircraft. In this paper, we present a Markov
Decision Process (MDP) based method, named FastMDP, which
can solve a certain subclass of MDPs quickly, and demonstrate
using the algorithm online to safely maintain separation and
avoid collisions with multiple aircraft (1-on-n) while remaining
computationally efficient. We compare the FastMDP algorithm’s
performance against two online collision avoidance algorithms
that have been shown to be both efficient and scale to large
numbers of aircraft: Optimal Reciprocal Collision Avoidance
(ORCA) and Monte Carlo Tree Search (MCTS). Our simulation
results show that under the assumption that aircraft do not have
perfect knowledge of other aircraft intent FastMDP outperforms
ORCA and MCTS in collision avoidance behavior in terms
of loss of separation and near mid-air collisions while being
more computationally efficient. We further show that in our
simulation FastMDP behaves nearly as well as MCTS with
perfect knowledge of other aircraft intent. Our results show that
FastMDP is a promising algorithm for collision avoidance that
is also computationally efficient.

Index Terms—Collision avoidance, Markov Decision Process.

I. INTRODUCTION

Unmanned aircraft concepts have developed over the past
decade from hobbyist drones with limited capabilities into
autonomous vehicles capable of travelling beyond line-of-
sight with significant range and payload capabilities, and soon
unmanned air taxis carrying passengers known as Urban Air
Mobility (UAM) [1]–[5] or Advanced Air Mobility (AAM)
[6] will be a reality. UAM aircraft will be scheduled in an on-
demand basis by passengers using phone-based applications
like today’s ride-sharing services. This ad hoc demand will
be significantly different than today’s structured airspace for
commercial air traffic. The air taxis will depart from and land
at vertical take-off and landing (VTOL) airports known as
vertiports and will need to avoid collisions with other aircraft
(manned and unmanned), avoid hazards such as terrain and
buildings, and respect airspace restrictions such as temporary

J. Bertram and J. Zambreno are with the Department of Electrical and
Computer Engineering, Iowa State University, Ames, IA, 50011 USA e-mail:
bertram1@iastate.edu, zambreno@iastate.edu.

P. Wei is with George Washington University. email: pwei@gwu.edu.
Manuscript received March 1, 2021.
Revision submitted September 29, 2021.

flight restrictions and restricted flight corridors managed by
air traffic control. While it should be expected that some
types of structured airspace concepts will be applied such as
separating different types of traffic by altitude, corridors or
lanes, the unpredictable nature of UAM will result in complex
traffic patterns in urban environments that will present new
challenges for airspace management.

As compared to today’s commercial air traffic management,
the smaller scales of operation and flight times mean that the
operations tempo will be faster, where rerouting decisions need
to be made quickly and without error. Collision avoidance
will be difficult as the aircraft will be constrained to similar
altitudes, will be closer to the ground than typical commercial
traffic, and may be more routinely affected by low-altitude
hazards such as migrating birds, low-lying clouds, rain, and
other issues that high-flying aircraft can avoid for much of
the flight. While we may ultimately use a form of centralized
air traffic management in and around an urban area, when
we consider communications and surveillance faults or unpre-
dictable (or unknowable) events such as bird flocks, we must
acknowledge that some form of on-board collision avoidance
capability will be necessary. Moreover, in a layered safety
system, an on-board collision avoidance system may be used
as part of a larger system of systems designed to ensure safety
of passengers and the public.

Collision avoidance is ultimately an algorithmic issue where
many potential algorithms can be chosen which each present
tradeoffs with respect to other algorithms. Whatever algo-
rithms are chosen, they must balance completeness, optimality,
and computational efficiency. Avionics hardware is typically
not as capable as traditional hardware available for main-
stream computing. [7]–[9] Certification bodies such as the
Federal Aviation Administration (FAA) and European Union
Aviation Safety Agency (EASA) require a very high level of
assurance from computing hardware and software typically
including design artifacts from hardware manufacturers, spe-
cial design processes, and extensive verification. Like other
embedded environments, thermal, power, and size limits of
the aircraft platform also limit the hardware selected. In
computing hardware, this is most painfully felt as requiring
low-power processors which are much slower than typical
desktop class processors available for mainstream computing.
Hardware selected for aviation typically is not the latest, most
high-performing hardware available but is instead the most
reliable hardware available that fits within the size, weight
and power constraints of the platform, and this often means
that algorithms will run much more slowly on this embedded
hardware.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2

The algorithms that will be most effective for these prob-
lems will be ones that can navigate while avoiding collisions
with large numbers of aircraft and obstacles while also remain-
ing efficient enough to run on lower-powered, light-weight
embedded computing hardware used in avionics with limited
processing, memory, and storage capability.

Markov Decision Processes (MDPs) [10] have received at-
tention in Air Traffic Management literature due to recent suc-
cesses of the Airborne Collision Avoidance System X (ACAS-
X) [11], [12]. ACAS-X provides advisories to pilots about
impending 1-on-1 collisions with other aircraft and replaces
an historical rules-based system known as Traffic Collision
Avoidance Systems (TCAS) [13]–[15]. ACAS-X uses a Par-
tially Observable Markov Decision Process (POMDP) formu-
lation to describe a 1-on-1 aircraft encounter and provides the
best solution for a pilot to follow to avoid a collision. MDPs
are a powerful approach for describing sequential decision
making problems and are the mathematical foundation that
underpins Reinforcement Learning and Deep Reinforcement
Learning.

ACAS-X solves the POMDP offline and stores the optimal
policy in memory (or a “table”) to look up the action in
real time. Multiple ACAS-X variants exist, each with their
own lookup tables on the order of 200 MB - 1 GB. Other
offline MDP-based collision avoidance approaches have been
proposed in [16]–[20] which use various MDP-based problem
formulations and all result in large (multi-megabyte) lookup
tables which are used at run time. In [16], the authors describe
a similar multi-agent collision avoidance problem based on a
multi-agent MDP formulation (MMDP) and is solved offline
with value iteration and a QMDP heuristic. While the problem
required 7 hours to solve and generated a 77 MB lookup table,
the lookup table query performed for each pair-wise encounter
is fast and results in good collision avoidance behavior. In [17],
the authors follow a similar line of investigation to examine
multi-rotor collision avoidance with a POMDP formulation
solved offline using a QMDP solution method which converts
a POMDP into an equivalent MDP which can be more easily
solved. The authors report that finding an appropriate state
discretization for the problem was possible in 11 days and
optimization of POMDP parameters was performed over 3
weeks. While runtime performance measurements are not
provided, this type of approach results in a table lookup
which should be very fast. The lookup table developed for this
approach contained approximately 9.5 million entries. Multi-
agent collision avoidance is discussed as an extension but
is not covered within the scope of the paper. In [18], the
authors use a partially observable MDP (POMDP) solved with
nominal belief-state optimization (an approximation method)
to perform UAV path planning and explores collision avoid-
ance between a small set of obstacles, including other UAVs.
Though many applications and case studies are presented,
only very vague computational performance measurements
are taken (350 ms). It is unclear if all problems take 350
ms to solve, if the problem takes 350 ms per iteration, etc,
so it is difficult to draw conclusions on performance using
this approach. In [19], the authors use a mixed-observability
MDP (MOMDP) formulation to address vehicles passing other

vehicles on roads, which is a special case of a POMDP where
certain dimensions of the belief space are assumed to be
known in order to make the POMDP tractable. The authors
use this approach to implement an agent which can safely
enter the lane of oncoming vehicle traffic in order to pass a
vehicle while avoiding collision with oncoming vehicles. The
authors sidestep the problem of solution time required for the
MOMDP and do not provide performance measurements for
solving the problem, instead referring readers to the state-of-
the-art offline POMDP solvers and indicate that performance
will improve as computing technology and POMDP solvers
improve. Nonetheless, once the problem is solved, a lookup
table approach is used to efficiently obtain the required action,
much in the way that ACAS-X operates. In [20], the problem
of optimal control of a UAV with feedback in the presence
of wind uncertainty is studied, and takes an approach that
is equivalent to an MDP (though they do not use that term
explicitly.)

In this paper, we describe an online algorithm called Fast-
MDP which performs 1-on-n collision avoidance while re-
maining computationally efficient. FastMDP differs from tradi-
tional MDP solution approaches such as those described above
by taking advantage of structure that is present in the MDP’s
value function which allows for a computationally faster way
to solve the MDP. FastMDP solves the MDP online and does
not require a large lookup table to be stored. FastMDP also
computes portions of the value function on demand, meaning
that only the portion of the value function that is needed for
the agent to take an action need be computed. These features
allow FastMDP to be used on low-power embedded hardware
at high rates of processing and can be used in a real-time
system. This performance comes at a cost though: FastMDP
can currently only operate on a restricted subset of MDPs and
is not a generic MDP solver, which we discuss in more detail
in Section III, but the restricted MDP subset is still useful
in solving problems such as aircraft collision avoidance. We
compare the FastMDP algorithm to two baseline algorithms:
Optimal Reciprocal Collision Avoidance (ORCA) [21] and
Monte Carlo Tree Search [22], [23]. We show how FastMDP
can be used to effectively perform collision avoidance and also
provide some description of how FastMDP can be tuned for
a problem such as aircraft collision avoidance.

Optimal Reciprocal Collision Avoidance (ORCA) [21] is
a popular online collision avoidance algorithm that scales to
many agents (n-body). ORCA was studied for 1-on-n aircraft
collision avoidance in [24] which we compare to FastMDP in
this paper.

Monte Carlo Tree Search (MCTS) [22], [23] is an online
sampling based approach to solving MDPs. MCTS for 1-on-n
aircraft collision avoidance has been explored in [24], [25] in
2D environments with varying strategies to keep the problem
tractable, to improve collision avoidance performance, and to
scale to large numbers of aircraft, which we also compare to
FastMDP in this paper.

The FastMDP algorithm [26] is an online approach that
solves MDPs quickly and has been applied to collision avoid-
ance (2D [27] and 3D [28]), terminal area guidance [29],
pursuit-evasion (dog fighting) [30], and pre-departure flight



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 3

planning [31] and has been shown to scale to thousands of
aircraft. While the FastMDP algorithm has shown promise, this
paper is the first extensive study of the algorithm compared to
other well known collision avoidance algorithms. This paper
sets out to answer the question of whether FastMDP is com-
petitive with state of the art collision avoidance algorithms.

The major contributions of this paper are:
� Extension of the algorithm from [26] to deterministic,

terminating MDPs.
� Extension of FastMDP with an intruder intent model.
� Characterization of collision avoidance, throughput, and

computational performance for FastMDP and two other
online collision avoidance algorithms.

� Extension of proofs from [28] to cover MDPs with
terminal positive rewards.

We provide background on MDPs and related topics in
Section II. In Section III we describe and extend the FastMDP
algorithm. Section IV describes the experimental setup and
simulation environment. In Section V, we show how this new
algorithm compares to the baseline algorithms and provide
concluding remarks in Section VI.

II. BACKGROUND

A. Markov Decision Processes

MDPs are a framework for sequential decision making with
broad applications to finance, robotics, operations research and
many other domains [32]. MDPs are formulated as the tuple
(S;A;R; T ) where st 2 S is the state at a given time t, at 2 A
is the action taken by the agent at time t as a result of the
decision process, rt = R(st; at; st+1) is the reward received
by the agent as a result of taking the action at from st and
arriving at st+1, and T (st; a; st+1) is a transition function that
describes the dynamics of the environment and captures the
probability p(st+1 j st; at) of transitioning to a state st+1 given
the action at taken from state st.

A policy � can be defined that maps each state s 2 S
to an action a 2 A. From a given policy � 2 � a value
function V �(s) can be computed that describes the expected
future reward that will be obtained within the environment by
following the policy � and can be expressed over an infinite
horizon as:

V �(s0) = E

" 1X
t=0

�

tR(st; at; st+1) j �

�#
; (1)

where s0 is the initial state, 
 is a discount factor that defines
the infinite horizon and lies in the range 0 < 
 < 1, and st+1

is sampled from the distribution described by the transition
function T (st; at; st+1). The discount factor 
 serves to bal-
ance immediate reward with future reward. Small values of 

close to zero favor immediate rewards, whereas large values
of 
 near one favor long term rewards. The value function
aggregates all of the agent’s knowledge about future expected
reward into a single metric that can then be used as an indicator
of how to obtain the best future expected reward.

The solution of an MDP is termed the optimal policy ��,
which defines the optimal action a� 2 A that can be taken from

each state s 2 S to maximize the expected future reward. From
this optimal policy �� the optimal value function V �(s) can
be computed which describes the maximum expected value
that can be obtained from each state s 2 S. For a given
MDP, the optimal value function V �(s) is unique but multiple
optimal policies ��(s) may exist which result in the same
value function V �(s).

The fundamental way to solve a MDP is by way of a relation
known as the Bellman Update Equation:

V (st) = max
a

X
st+1

T (st; a; st+1) [R(st; a; st+1) + 
V (st+1)]

(2)

which is a recursive relation that indicates that the value of the
current state is related to the value of the states it is connected
to. For the optimal value function, V �(s), the value at every
state is maximized and following this relationship results in an
optimal trajectory through the state space. The optimal value
function can be found using an iterative approach known as
Value Iteration which applies the Bellman Update Equation
across the state space at each iteration. The Value Iteration
algorithm is guaranteed to converge to the optimal value
function V �(s) down to an arbitrarily small stopping condition
� known as the Bellman residual. Value Iteration is known to
converge in polynomial time [33], [34] but this is polynomial
in the size of the state space jSj and action space jAj.

Historically, many algorithms have been devised to solve
MDPs. A fundamental problem with MDPs is that the size of
the state space jSj and the size of the action space jAj both can
grow quickly either due to high-dimensionality of the space,
or due to increasingly fine-grained discretization to approach
a continuous representation. Bellman [10] referred to this as
the the curse of dimensionality and much of the literature has
been devoted to finding ways to mitigate these effects to keep
a particular MDP tractable so that a solution may be found.
We now describe one such method known as Monte Carlo
Tree Search.

B. Monte Carlo Tree Search

MCTS [22] is a powerful approach to solve MDPs when
a model is available for simulation of future possible actions
but the state-action space is too large to represent efficiently.
MCTS was explored for aircraft collision avoidance in [24]
and we here we provide a brief summary of the main features
of the algorithm.

MCTS is an approach to solving MDPs which uses trajec-
tory sampling to arrive at a statistical representation of ex-
pected return. Starting from the current state, possible actions
are tentatively explored. Actions which seem promising are
then further expanded focusing search effort on actions which
seem to be leading to higher reward. Multiple trajectories are
sampled as the tree is built in order to develop a statistical
understanding of the expected reward of each action.

As the tree is developed, a successively better approximation
of expected reward is developed. In the limit with an infinite
number of samples, the solution provided by MCTS converges



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 4

to the true value function for the MDP. In practice, a pre-
determined finite number of samples is used by defining some
termination criteria such as a fixed number of trajectories
having been explored, or a pre-determined time budget has
elapsed. After the termination criteria is met, the best available
action is selected by examining the children of the root of
the search tree to determine which action results in the most
expected reward. This best action is then taken by the agent in
the environment. MCTS is thus an any-time algorithm where
a result can be provided at any point but can improve if
more computational time is available. MCTS can then be
used in real-time systems such as UAVs assuming enough
computational power is available to compute a meaningful
result.

III. FASTMDP
FastMDP solves a certain class of MDPs very quickly

compared to other methods by exploiting structure in the value
function. FastMDP is built upon the observation that the Bell-
man Update results in predictable peaks in the value function,
where the peaks are generated by rewards in the MDP. Given
the rewards, FastMDP determines the corresponding peaks
and is able to reconstruct the value function, leading to the
ability to solve the MDP more directly than the traditional
iterative approaches. In one sense, the Bellman Update can
be considered a performance bottleneck in determining the
solution, and FastMDP offers a way to bypass this bottleneck.
FastMDP cannot currently be applied to a general MDP and
is instead currently restricted to a subset of MDPs. This paper
covers the following subclass of MDPs: (a) deterministic tran-
sition function, (b) a state space which maps to an underlying
metric space with an available distance metric (e.g., Euclidean
distance metric), (c) a terminating MDP where upon receiving
a positive reward the MDP transitions to an absorbing state
S∅. This subclass of MDP corresponds to an agent (e.g.,
an aircraft) exploring a 2D or 3D world with deterministic
actions and dynamics where the simulation ends when the
agent reaches a goal (e.g., a vertiport). (The non-terminating
case is explored in [26].)

Formally, let us define a distance function �(s; si) as the
minimum number of actions a 2 A needed to reach state
si 2 S starting from state s 2 S.

�(s; si) = min
t
ft j T (s; a1; a2; � � � ; at = sig; (3)

where a1; a2; � � � ; at represent a sequence of actions taken at
each time step, and T (s; a1; � � � ; at) represents the transition
function applied at each time step t using the sequence of
actions starting at state s.

We define a point source reward as a positive reward of
magnitude rg that is obtained at only one state sg and zero
everywhere else:

r(s) =

(
rg > 0 if s = sg

0 otherwise:
(4)

Theorem 1. The value function for a deterministic terminating
MDP with a single positive point source reward with magni-
tude rg at state sg with MDP discount factor 0 < 
 < 1 has
the form:

V (s) = 
�(s;sg) � rg; (5)

where s 2 S.

Proof. By definition, if our initial state is sg we collect reward
with magnitude rg , whereupon the MDP terminates, resulting
in a value at state sg of V (sg) = rg .

Let us denote the set of all states k-steps from sg as Sk =
fs 2 S j �(s; sg) = kg where k � 0 is an integer, with
S0 = fsgg, S1 with all states one step from sg , etc. Let us
now assume that we start not at state sg , but at some state
s1 2 S1. As no immediate reward is collected at state s1 if
we take an optimal action a� 2 A which leads to S0, the
expected future reward is:

V (s1) = 
 � V (sg)

= 
�(s1;sg) � V (sg)

= 
�(s1;sg) � rg:
(6)

Suppose for states sk+1 2 Sk+1 and sk 2 Sk:

V (sk+1) = 
 � V (sk): (7)

Then for states s2 2 S2 and s1 2 S1:

V (s2) = 
 � V (s1)

= 
 �
h

�(s1;sg) � rg

i
= 
 � 
 � rg
= 
�(s2;sg) � rg:

(8)

Then by induction, we see that the value of any state s is
as follows, completing the proof:

V (s) = 
�(s;sg) � rg: (9)

When considering multiple positive rewards, multiple peaks
form in the value function and the resulting value function is
the max over all peaks at each state s 2 S. To prove this,
we will show equivalence to the Bellman optimality equation
V � = LV �, where L is the Bellman operator. It is well known
that the Bellman operator L is a contraction mapping over
the max norm of the functional V �(s) of all possible value
functions resulting from all possible policies � 2 �, and that
the optimal value function V � is a fixed-point solution to V =
LV due to the contraction mapping property of L [35], making
the optimal value function V � a unique solution and V �(s) �
V �(s) 8s 2 S for all policies � 2 � and it follows that
V �(s) = max�2� V

�(s); 8s 2 S.
Let S+ = fs 2 S j R(s; a) > 0g be the set of states where

positive reward is collected, and SZ = fs 2 S j R(s; a) = 0g
be the set of states where no reward is collected.

Note that the value at any state si 2 S+ for a terminating
MDP is by definition known and fixed, as the state si is the
absorbing state where reward Ri with magnitude ri is collected
and no subsequent reward can be collected. The value at such



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 5

a state si is V (si) = ri. Thus what remains is to identify the
value at the other states in SZ .

Theorem 2. The maximum of the optimal value function
V �(s) occurs within S+.

Proof. We prove by contradiction. Let smax =
arg maxs2S V

�(s) and assume smax 2 SZ . From Theorem 1,
it is clear that any state s 2 SZ requires one or more
steps to reach its goal sg and is therefore in Sk where
k > 0. But for k > 0, sk+1 2 Sk+1, and sk 2 Sk,
V (sk+1) = 
 � V (sk) = 
k � V (sg) and given 0 < 
 < 1,
then V (sk+1) < V (sk) < V (sg) and implies that smax then
lies within S0 and therefore S+ which is a contradiction.

Theorem 3. States with reward of zero, SZ , are determined
from the states with non-zero reward, S+.

Proof. If we examine the recursive form of the Bellman
equation at the optimal policy �� with the (stationary) V �:

V �(s) = max
a

X
s02S

T (s; a; s0) [R(s; a) + 
V �(s0)] ; (10)

where s0 is a possible next state resulting from taking action
a from state s and note that the immediate reward R(sz; a) =
0; 8sz 2 SZ ;8a 2 A, then for sz 2 SZ the value V �(sz) is
then determined only by discounted future reward:

V �(sz) =
X
s02S

T (s; a�; s0)
V �(s0)

= 

X
s02S

T (s; a�; s0)V �( s0);
(11)

noting that
P
s02S T (s; a; s0) = 1.

Thus, for the optimal action a� 2 A:

a� = arg max
a

X
s0

T (sz; a; s
0)V �(s0); (12)

we can rewrite the Bellman equation as,

V �(sz) = 

X
s0

T (sz; a
�; s0)V �(s0) (13)

And given that the discount factor 0 < 
 < 1, we see that:

V �(sz) �
X
s0

T (sz; a
�; s0)V �(s0) (14)

Furthermore, if V �(s0) > 0, then:

V �(sz) <
X
s0

T (sz; a
�; s0)V �(s0); (15)

which is to say that V �(sz) can only be equal to V �(s0) if
both are zero.

Consider a sequence of states in SZ over n time steps,
f s(1)

z ; s
(2)
z ; � � � ; s(n)

z g and suppose that each element in the
sequence is the result of the optimal action a� 2 A at each step
that satisfies a� = arg maxa 


P
s0 T (sz; a; s

0)V �(s0). Let us
say that at time step n + 1, by taking the optimal action a�

we reach some state sp 2 S+. If we then consider sp and
s

(n)
z , we recognize that that sp 2 S0 and s

(n)
z 2 S1 and that

s
(i)
z 2 Si�(n�1). Thus by induction, all states sz 2 SZ lie

within some Sk with k > 0 and their value is therefore derived
from the value of states in S+.

Theorems 2 and 3 taken together imply that that all se-
quences starting in SZ must therefore terminate in S+. The
question is from a given state sz 2 SZ , which in which state
sp 2 S+ will the sequence terminate?

Theorem 4. For a deterministic MDP with N positive ter-
minal rewards Ri 2 fR1; � � � ; RNg with reward Ri located
at si having magnitude ri and a single point source reward
value function of Vi(s) = 
�(s; si) � ri, the MDP’s optimal
value function V �(s) is:

V �(s) =

(
ri if s = si 2 S+

maxi Vi(s) if s 2 SZ :
(16)

Proof. By definition of this MDP with terminating positive
rewards, the value at any state within S+ is known and fixed
to be V (si) = ri, as the state si is an absorbing state where
reward Ri with magnitude ri is collected and no subsequent
reward can be collected.

For all states in sz 2 SZ , the expected value of obtaining
reward Ri located at state si 2 S+ is:

Vi(sz) = 
�(sz;si) � ri: (17)

It follows that the maximum value is then obtained at each
state with:

V �(sz) = max
i
Vi(sz): (18)

By definition, all states in S+ are at a location of a reward,
and a point source reward Ri at the reward’s state si has
value of Vi(si) = ri. Therefore the maximum possible value
at each state is then V (s) = maxi Vi(s); 8s 2 S completing
the proof.

In [26] it is shown that in a deterministic MDP, negative
point source rewards do not have the same exponential decay
behavior and are confined to a single state where the negative
reward is located. The concept of a risk well is introduced
to model the exponential decay of a negative reward which
behaves similarly to the positive reward above. Risk wells can
be explicitly constructed with a finite number of negative re-
wards carefully constructed to result in the desired exponential
decay, but it was shown that this was computationally intensive
to do so. Instead, the risk well is modelled as a single negative
reward with magnitude rn centered at a state sn which decays
exponentially out to a radius Rn. With this model, a similar
algorithm used to compute positive rewards can be used to also
compute the negative risk wells. In [26], this result was not
proven and only shown to approximate the true value function
with both positive and negative rewards, and thus our solution
here is also only an approximation of the true value function
V �(s) when negative rewards are present and we leave proofs
for negative reward for future work. Figure 1 illustrates a risk
well.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 6

sn

RnRn

state

value

Fig. 1. Risk well centered at state sn with radius Rn.

For a negative reward Rj with magnitude rj at state sj , the
well P�j formed by the negative reward is:

P�j (s) = 
�(s;sj) � �rj : (19)

A positive peak P+
i is the value function formed from a

positive reward Ri with magnitude ri at state si is defined as:

P+
i (s) = 
�(s;si) � ri; (20)

The value function V + from all N+ positive reward peaks
P+ = fP1; P2; � � � ; PN

+g is the state-wise maximum over
all positive peaks:

V +(s) = max
i
P+
i (s);8i = f1; � � � ; N+g: (21)

Likewise, the value function V � for all N� negative
rewards peaks P� = fP1; P2; � � � ; PN

�g is the state-wise
minimum over all negative peaks:

V �(s) = min
j
P�j (s);8j = f1; � � � ; N�g: (22)

The resulting value function for the MDP is then the state-
wise sum of V + and V �:

V �(s) = V +(s) + V �(s): (23)

Forward projection is used to determine which states are
reachable within the state space given the allowable actions the
agent can take from the current state. The forward projection
applies an action (or actions) to the dynamics equations
(defined in Section IV) for a duration of time and returns the
resulting state(s).

Previous FastMDP approaches [26]–[28] assumed that in-
truder aircraft maintained their present heading and velocity
when performing planning. In this paper we expand on this
previous work by borrowing the roll-out concept from MCTS
to better predict intent of intruder aircraft. At each planning
step of the algorithm, we begin by computing a tree TI
for each intruder aircraft I out to a depth RW in seconds
(an experimental parameter) in steps of RK seconds (an
experimental parameter) where each intruder takes a random

action for the duration of the RK time step. We perform this
randomized action roll-out multiple times growing TI into a
tree of possible actions that the intruder may perform. The tree
overall will contain a number of nodes of order K = jAjD
nodes N = fN1; � � � ; NKg, where jAj is the number of
actions that can be taken from a given state. Here the actions
intruders can take RA are a configurable parameter. We refer to
this tree TI as the intent tree and the nodes NK 2 N as intent
nodes. As a computational optimization, we generate these
intent nodes at the beginning of the algorithm’s operation each
time it is run, running it for all aircraft. During the execution of
the algorithm when we need to know the intent of the intruders,
we filter out the ownship’s pre-computed intent nodes, leaving
only the intruders’ intent nodes. These intent nodes are then
converted into negative rewards and fed into the FastMDP
algorithm, along with a single positive reward with magnitude
200 corresponding to the ownship’s destination vertiport. Each
negative reward is assigned a magnitude of RM (a parameter)
and a radius based off the ”loss of separation” (discussed in
next section) distance DLOS times a scaling factor RS (a
parameter).

See Algorithm 1 for a description of the FastMDP algo-
rithm. Lines 2-4 set initial conditions for the algorithm, where
the actions A and limits L for the agent are provided as inputs.
Each time step of the simulation where FastMDP is invoked
(line 5), the intent tree TI is rebuilt to describe the likely future
actions of all aircraft (line 6). For each aircraft controlled
by FastMDP (line 7), we perform the core of the FastMDP
algorithm starting at line 8 where we load the current state
st of the aircraft under control (i.e., the ownship) where t
indicates the current time. Line 10 builds the positive peak(s)
associated with the ownship’s goal. Line 11 builds the negative
peak(s) associated with all intruders (from the perspective of
the ownship) using the information in the intent tree TI . Line
13 performs forward projection of the dynamics of the ownship
using the list of possible actions (and limits) which computes
a set of trajectories in the form of a set of points ∆ which
represent the reachable states from the current state st. Starting
at line 15 we begin to compute the value for these reachable
states for each state sj 2∆ (line 16). We compute the value
associated with each positive peak pi, where i is an index
identifying which positive peak, by computing distance dp
from the current state to the reward, and use it to compute
the value gained by obtaining the reward (lines 19-22), saving
off the highest value contribution (line 24) known as the
“dominant reward”. We do a similar calculation (lines 26-
32) to identify the negative value associated with the negative
rewards nk, where k is an index indicating which negative
peak, and the reward that contributes the most negative value
(line 33). Note that the term �n is a binary logical value of
0 or 1 and indicates whether the radius of the negative peak
has been exceeded (0) or not (1) and is a multiplication term
(line 31) which implements truncation of the negative value
beyond the radius rn per the definition of a risk well above. We
compute the MDP value function at state sj which identifies
the expected value of reaching state sj . The most valuable
action amax is identified and recorded (lines 37-39) so that it
can be taken in the environment. As this environment in this



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 7

paper is a simulation based environment, the action is taken in
simulation on line 42, and we note that all aircraft take their
actions in this simulation simultaneously.

Our expected usage for this algorithm is for it to run
on-board an aircraft in real-time. In this configuration, the
run time complexity of the algorithm (line 6, lines 8-39) is
O(j�j � jRj) where j�j is the number of reachable states to
consider and jRj is the number of rewards to consider. For this
problem, we compute the reachable states for each action over
a time horizon defined by a constant parameter c1 which means
that j�j = c1jAj. At any time step, the number of rewards is
jRj which is some constant c2 times the number of intruders
jIj for this problem, jRj = c2jIj. Thus the complexity of the
algorithm is O(jAj � jIj) for this problem. One cautionary
note for readers is that jAj can quickly explode and must
be carefully managed. This dependency on jAj is the reason
that the algorithm in its current form is restricted to a finite
action space A. Note that there is no dependence on the size
of the state space jSj, which is what allows the algorithm
to be used on continuous state spaces. MCTS has a similar
dependence on a finite action space but can also be used on a
continuous state space. Most algorithms based on MDPs have
some dependence on the size of the state space, which also
often grows exponentially as the fidelity of a problem increases
(i.e., Bellman’s well known “curse of dimensionality” [10].)

IV. EXPERIMENTAL SETUP

All three algorithms are evaluated in the same simulation
environment, a 2D aircraft simulation from [24], [25]. The
aircraft are represented with a continuous state space and
a discretized action selection. Uncertainty is present in the
environment in the form of Gaussian process noise: noise is
added to both the selected heading and velocity at each time
step. While the environment uses simplified aircraft dynamics,
the noise applied leads to a challenging environment within
which the agent must plan. When describing the planning, we
refer to the aircraft for which a plan is being constructed as the
“ownship” and all other aircraft as “intruders”. The simulation
operates by treating each aircraft as the ownship and at
each simulation time step all aircraft complete a planning
cycle. Within the simulation all aircraft construct their plan
simultaneously and all actions are taken simultaneously.

The aircraft dynamics model used in this simulation is:

_v = av + �v (24)
_� = a� + � _� (25)

_ =
g tan�

v
(26)

_x = v cos (27)
_y = v sin (28)

where av is the commanded change in airspeed and a� is
the commanded change in bank angle. At each step Gaussian
process noise is inserted into the velocity �v and at the bank
angle � _�. Of the formulations used in [24], [25], we use the
3-action version of the simulation which selects only changes

Algorithm 1 FastMDP algorithm.
1: procedure FASTMDP
2: S initial aircraft states
3: A aircraft actions (a priori)
4: L aircraft limits (a priori)
5: while aircraft remain do
6: TI  (re)build intent tree for intruders
7: for each aircraft do
8: st  S[aircraft]

9: // Build peaks
10: P+  pos reward for destination vertiport
11: P−  neg rewards from TI

12: // Perform forward projection of aircraft dynamics
13: ∆ fwdProject(st;A;L)

14: // Compute the value at each reachable state
15: V∗  allocate space for each reachable state
16: for sj 2∆ do
17: // First for positive peaks
18: for pi 2 P+ do
19: dp  ksj � location(pi)k2 . distance
20: rp  reward(pi)
21: 
p  discount(pi)

22: V+(pi) jrpj � 

dp
p

23: end for
24: V +

max  max
pi

V+

25: // Next for negative peaks
26: for nk 2 P− do
27: dn  ksj � location(nk)k2 . distance
28: �n  dn < radius(nk) . within radius
29: rn  reward(nk)
30: 
n  discount(nk)
31: V−(nk) �n � jrnj � 
dn

n

32: end for
33: V −

max  max
nk

V−

34: V∗[sj ] V +
max � V −

max

35: end for
36: // Identify the most valuable action
37: amax  arg max

a
(V∗) per method FM (parameter)

38: // Record each aircraft’s action
39: A∗

t+1[aircraft] amax

40: end for
41: // Now that all aircraft have selected an action, apply it
42: S = SimulationUpdate(A∗

t+1)
43: end while
44: end procedure

in bank angle and always selects no commanded change in
airspeed (though noise is still applied at each step). This form
is a challenging enough environment that collision avoidance
can be tested without needing to use the 9-action version which
is slower.

In the environment, there are a number of vertiports which
agents must navigate to. The vertiports are arranged such
that they generate conflict so that collision avoidance can
be effectively measured. There are two levels of collision,
with terminology taken from the aviation community: a “loss
of separation” conflict (LOS) and a “near mid-air collision”
(NMAC). Within this simulation taken from [24], a LOS
occurs when two aircraft are within 926 meters, and an NMAC
occurs when two aircraft are within 150 meters. The simulation
maintains a record of reward earned over time (only used for
training MCTS, not required for FastMDP.) Positive reward of
1 is provided to the agent if the agent reaches its destination



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 8

vertiport. Negative reward of -1 is provided to the agent if
an NMAC event occurs and -0.5 if a LOS event occurs. At
each time step, a -0.001 fuel penalty is applied. An agent
then obtains reward by navigating its aircraft to the destination
vertiport while avoiding collisions with other agents.

We assess performance of the algorithms along three
dimensions: computational performance, collision avoidance
performance, and throughput. Computational performance is
measured as the time that is required to perform one planning
cycle for an agent on the computing hardware. Collision
avoidance performance is measured by counting the number
of LOS and NMAC events that occur per hour of simulated
time. Throughput is measured by the number of aircraft
that reach their destination vertiport per hour of simulated
time. As a summary metric, the reward received over time is
also instructive in comparing the algorithms. Simulations are
performed over 120000 seconds (approx. 33 hrs) of simulated
time with 10 random seeds to obtain a statistical mean and
standard deviation of the performance of the algorithms over
different random seeds. Simulations were performed on a
compute cluster with Intel(R) Xeon(R) CPU X5650 cores
running at 2.67GHz. Each run was confined to a single CPU
core and is implemented single-threaded to isolate multicore
effects from the algorithms’ performance.

Simulation begins with a single aircraft spawned at a
randomly selected vertiport. New aircraft are spawned at
randomly selected times as the simulation progresses, until a
pre-specified number of aircraft (10,000) have been spawned,
at which point no new aircraft are generated. Aircraft are
removed from the simulation when they reach their vertiport. If
NMACs occur, the aircraft involved are temporarily removed
from simulation and reintroduced in the simulation at a later
time in order to continue to obtain useful encounters despite
an NMAC occurring. (The purpose of the simulation is to
generate as wide a variety of encounters as possible in order
to best evaluate the algorithm.) The algorithms all cause
aircraft to navigate to the vertiports and generally reach a
steady state of approximately 30-40 aircraft in the air at any
one time. Simulation terminates when all aircraft reach their
destinations.

A. Intruder Intent
To study the effects of intent, we examine three variations of

MCTS. In the first variation which we will refer to as MCTS-
perfect, following [24] we provide MCTS with perfect knowl-
edge of the intruders’ actions as they are developed. Consider
a planning horizon with time steps W = fw1; w2; � � � ; wNg.
At each time step wi, all agents are informed of all other
agents decisions at time step wi�1. For this to be possible for
real aircraft, the agents would require perfect communications
with zero latency and zero packet loss, and the agents would
need to operate on a common clock so that the decision
time steps f� � � ; wi; wi+1; � � � g occur simultaneously so that
all agents decisions from wi are available to all agents at
wi+1. In practice, these assumptions would not hold for
real systems but serves as useful upper bound on collision
avoidance performance as perfect knowledge should always
perform better than imperfect knowledge.

We define two variations of MCTS which are fully decen-
tralized and have no intent messages from intruders. First
we define a variant MCTS-straight which assumes that all
intruders continue on their present course. Second we define
a variant MCTS-random which assumes that all intruders take
random actions over the planning window W .

We additionally include the ORCA algorithm as a well
known algorithm that is not based on an MDP formula-
tion. In this implementation from [24], the n-body ORCA
algorithm has no knowledge of the intruders’ intent. The
ORCA algorithm inherently plans such that the agents take
actions which are designed not to conflict with possible actions
of other agents and in the absence of uncertainty should
generate conflict free trajectories. Due to ORCA’s inherent
design, in these simulations ORCA not only has heading
control but also is allowed speed control and therefore has
better control authority in the simulations than the other two
algorithms. Within the simulation, for all algorithms equivalent
Gaussian noise is injected into the heading and speed after the
commanded heading and speed changes are applied leading
to all algorithms being evaluated under uncertainty in the
following simulations.

B. Experiment Design

In this section we describe experiments performed on the
FastMDP algorithm, both to identify the best performing
variation of FastMDP and to understand what aspects of
the problem are most relevant for safety. We also include
a description of this procedure to illustrate how to perform
tuning of the FastMDP algorithm for problems of interest
to future readers. We define experimental parameters which
may be numerical values inherent in the algorithm (e.g., MDP
discount factor 
) sometimes referred to as hyperparameters,
or may be parameters that capture hypotheses on the best
problem formulation (e.g., how to express intruder intent).
Our intent here is optimization for a specific problem (i.e.,
collision avoidance) but not good behavior over a range of
problems (e.g., landing, takeoff). Note that the MCTS baseline
[24], [25] we compare to had a similar investigation performed
in defining the best performing MCTS and experimental
parameters and our intent is to measure against that published
work.

For a problem of interest to a reader, there is no simple
way to describe how to choose what parameters to study for a
given problem. However, the authors suggest the geometry
of positive and negative rewards be selected to be of an
appropriate size for the agent’s dynamic constraints (e.g.,
minimum turn radius) and several possible geometries be
considered (such as how we have examined the intruder roll-
out in this paper.) We also suggest that for a problem with
distances of the scale used in this problem, the distance metric
used will also affect the value of the MDP discount factor 

used. In this problem, we measure distance with meters and
found that we needed to use a relatively high value of 
. If
other units were used (such as kilometers), it may be that a
lower value of 
 may be needed (i.e., perhaps 0.8 or 0.9.)
The parameter 
 here defines the rate of exponential decay



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 9

of the rewards and the most important aspect of 
 is that
it is chosen to provide an identifiable gradient to the agent
over the expected range of the reachable points that will be
sampled by the algorithm. The parameter 
 must be chosen
so that the expected distances are not too far out on the tails
of the exponential decay so that two closely sampled states
have a detectable difference (i.e., larger than the order of
magnitude of the smallest numbers representable by floating
point numbers in computer hardware.) When using single-
precision floating point, this can be a problem but typically
is not an issue with double-precision floating point. Note
that this choice of the value of 
 is inherent in any MDP
formulation and any algorithm used to solve the MDP and the
selection of 
 is a commonly reported problem in the literature.
FastMDP offers insight into why certain values of 
 may work
for a problem while others may not as 
 defines the rate of
exponential decay of peaks in the value function.

Multiple possible influencing factors were identified and
isolated into configuration variables. Test runs using a single
random seed were performed initially altering one variable at a
time from a baseline setting. Promising settings from the first
round of testing were combined into mixtures of parameters
until the best performing candidates were identified. Final
candidates were evaluated with multiple random seeds using
the same procedure as the baseline algorithms to develop a sta-
tistical characterization over the multiple random seeds. In all,
34 runs were performed, and 2 final candidates were selected
for multiple random seed runs. To differentiate between the
runs, we evaluated each run for the number of NMAC events,
LOS events, throughput, and computational performance to
try to strike a balance between them, generally favoring
lower NMACs and LOS over throughput and computational
performance.

Table I identifies the factors that we hypothesized may
affect the FastMDP algorithms performance. Table II defines
the experiments that were performed. The default parameters
that form the baseline were RS = 1:0, RW = 20, RA =
f�5;�2:5; 0; 2:5; 5g, RK = 5, RM = 1000, RF = True,
FW = 60, FM = mean. Experiments 1-26 tested one change
at a time from the defaults, and only parameter values that
differ from these defaults are called out in the experiment
definitions due to space considerations. Experiments 27-34
were a second round of experiments formed by combining
promising results from experiments 1-26 in the hope of
identifying synergies between factors.

V. RESULTS

We first discuss the experiment results for FastMDP and
then compare the best candidates with the baseline algorithms
ORCA and MCTS.

A. Experiment results

Table III summarizes the experiment results for the ex-
periments we conducted. Experiments 1-3 examine the ef-
fect of the rollout scale parameter RS and do not show a
strong preference for any of the values. We therefore should
generally favor a smaller value of RS as larger values will

TABLE I
HYPOTHESIZED INFLUENCING FACTORS FOR EXPERIMENTATION.

Factor Description
RS Scale of negative rewards formed around intruder

roll-out positions
RW Intruder roll-out window length in seconds
RA Actions taken by intruder during roll-out
RA Actions taken by intruder during roll-out
RK Time-step delta between intruder positions during

roll-out
RM Magnitude of negative rewards formed around in-

truder roll-out positions
RF Whether to apply a filter on the intruder positions

during roll-out which favors intruder positions clos-
est to the intruder’s goal

FW FastMDP’s forward projection window length in
seconds

FM Method FastMDP uses to select the best action; one
of f mean, sum, max g.

from these results unnecessarily reserve a larger portion of
the airspace with higher values. Experiments 4-7 evaluate
the rollout window length RW parameter and show that
values above 45 seconds appear to have a negative effect in
this problem while also reducing computational performance.
Experiments 8-10 study the effect of the intruder’s actions
parameter RA when performing the intruder roll-out. The
results here appear to be inconclusive and do not seem to
significantly favor higher or lower fidelity action definition
of the intruders during roll-out, though we can observe that
higher fidelity actions appear to provide a throughput boost.
Experiments 11-13 study the effect of the roll-out time step
parameter RK and indicate that smaller values appear to per-
form much better in terms of avoiding NMACs. Interestingly,
we also see that with smaller RK we also appear to receive
a throughput boost at the expense of significantly increasing
computational cost. Experiments 14-17 examine the impact
of the magnitude of the negative rewards formed at each
intruder position computed during roll-out. From these runs
it is difficult to understand if there is a significant difference
here but we can observe that lower values at or below the
value of positive reward magnitude of 200 appear to provide
a modest benefit. We observe that low values of 100 appear to
provide improved throughput, reduced computational demand,
but at an expense of more conflicts. This can be explained as
the reduced negative penalty as providing more wiggle room
for the agent to cut corners during conflict. This more risky
behavior provides a benefit near congested vertiports where
multiple agents wish to land, resulting in higher throughput
(and therefore reduced average number of aircraft in flight at
any one time.) Given the potential safety impacts however,
we feel that this increased risk taking is not a desirable
characteristic of the agent and therefore will favor RM values
of 200 or 500. Experiments 18-19 study the effect of a filtering
mechanism that we hypothesized would lead to improve agent
behavior. We expected that behavior would be improved with
RF = True, but the data suggests otherwise showing a
clear preference for RF = False. The effect of this filter
is to remove approximately half of the intruder’s roll-out



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 10

TABLE II
EXPERIMENT DEFINITIONS.

Exp
Num

Description

1 RS = 1:25
2 RS = 1:50
3 RS = 2:00
4 RW = 25 sec
5 RW = 30 sec
6 RW = 45 sec
7 RW = 60 sec
8 RA = f�5; 0; 5g deg
9 RA = f�5;�2:5; 0; 2:5; 5g deg
10 RA = f�5;�4;�3;�2;�1; 0; 1; 2; 3; 4; 5g deg
11 RK = 5 sec
12 RK = 2 sec
13 RK = 1 sec
14 RM = 1000
15 RM = 500
16 RM = 200
17 RM = 100
18 RF = True
19 RF = False
20 FW = 60 sec
21 FW = 75 sec
22 FW = 45 sec
23 FW = 30 sec
24 FM = mean
25 FM = sum
26 FM = max

27

RS = 1, RW = 45,
RA = f�5;�4;�3;�2;�1; 0; 1; 2; 3; 4; 5g,
RK = 1, RM = 100, RF = False,
FW = 30, FM = sum

28

RS = 1, RW = 45,
RA = f�5;�4;�3;�2;�1; 0; 1; 2; 3; 4; 5g,
RK = 1, RM = 200, RF = False,
FW = 30, FM = sum

29

RS = 1, RW = 45,
RA = f�5;�2:5; 0; 2:5; 5g,
RK = 1, RM = 200, RF = False,
FW = 45, FM = sum

30

RS = 1, RW = 30,
RA = f�5;�2:5; 0; 2:5; 5g,
RK = 2, RM = 500, RF = False,
FW = 45, FM = sum

31

RS = 1, RW = 30,
RA = f�5;�2:5; 0; 2:5; 5g,
RK = 1, RM = 500, RF = False,
FW = 45, FM = sum

32

RS = 1, RW = 30,
RA = f�5;�2:5; 0; 2:5; 5g,
RK = 1, RM = 500, RF = False,
FW = 30, FM = sum

33

RS = 1, RW = 30,
RA = f�5;�2:5; 0; 2:5; 5g,
RK = 2, RM = 500, RF = False,
FW = 45, FM = sum

34

RS = 1:25, RW = 30,
RA = f�5;�2:5; 0; 2:5; 5g,
RK = 2, RM = 500, RF = False,
FW = 45, FM = sum

TABLE III
EXPERIMENT RESULTS.

Exp Num Through-put Perf (ms) NMACs LOSs
1 166.22 20.37 9 92
2 167.64 20.45 9 87
3 167.57 18.70 8 94
4 166.15 22.18 4 69
5 166.76 18.60 7 59
6 164.47 20.50 3 67
7 161.53 44.08 33 318
8 166.26 23.82 9 91
9 165.92 22.48 12 95
10 210.06 30.27 5 124
11 165.70 21.88 10 85
12 166.92 19.73 7 87
13 212.78 58.22 1 79
14 166.88 21.11 7 107
15 166.24 21.23 10 106
16 166.26 21.92 4 109
17 211.99 12.23 3 149
18 165.06 19.45 3 22
19 212.74 37.77 1 38
20 166.54 22.80 11 88
21 166.35 19.70 4 88
22 168.41 19.30 6 40
23 216.00 7.04 2 124
24 168.85 22.59 2 35
25 166.81 18.35 13 93
26 206.82 26.21 582 7403
27 187.01 255.99 35 245
28 185.68 217.39 43 241
29 170.65 250.66 4 31
30 194.54 21.41 3 31
31 192.58 16.03 1 19
32 192.03 234.25 2 26
33 194.75 42.10 4 37
34 176.81 79.23 4 29

positions by determining the mean distance of all of the roll-
out positions to the intruder’s destination vertiport, and only
keeping those points which were below the mean distance.
It was hypothesized that among all of the possible randomly
generated roll-out positions, the intruder would tend to favor
those positions which were closest to the vertiport. Removing
the unimportant positions was hypothesized to improve per-
formance by not having to consider positions that are unlikely
to be visited. In reality, however, inspection of simulation
runs showed that due to the congestion in this environment,
agents must often turn away from their destination vertiports
in order to avoid collisions. Therefore we favor RF = False
for this problem. Experiments 20-23 explore the effect of
the length of the FastMDP algorithm’s forward projection
window. We expected that a longer forward projection window
would result in better performance, but the data suggests that
shorter windows result in better performance and we therefore
favor values of 30 or 45 seconds. Experiments 24-26 examine
the mechanism used by FastMDP to determine which action
is the best action. The “mean” and “sum” actions are not
that significantly different but the “max” method is clearly
inferior. Experiments 27-34 are used to explore mixtures of
promising parameters from the earlier experiments in order
to identify possible synergies between parameters. Through
a process of iterative examination of results, we ultimately
selected experiments 19 and 31 for performing more extensive



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 11

tests. These runs had good NMAC performance (our highest-
weighted consideration), reasonable LOS performance, and
reasonable throughput values. In subsequent sections, we label
these runs as FastMDP-19 and FastMDP-31 in the plots.

B. FastMDP comparison with Baseline Algorithms

0 20000 40000 60000 80000 100000 120000 140000 160000
Simulated time step

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ne
ar

 M
id

-A
ir 

Co
llis

io
ns

 (N
M

AC
s)

 p
er

 si
m

ul
at

io
n 

ho
ur MCTS-perfect

MCTS-random
MCTS-straight
ORCA
FastMDP-19
FastMDP-31

Fig. 2. Near Mid-Air Collision (NMAC) events per hour of simulated time.

0 20000 40000 60000 80000 100000 120000 140000 160000
Simulated time step

2

0

2

4

6

8

Nu
m

be
r o

f C
on

fli
ct

s p
er

 si
m

ul
at

io
n 

ho
ur

MCTS-perfect
MCTS-random
MCTS-straight
ORCA
FastMDP-19
FastMDP-31

Fig. 3. Loss of Separation (LOS) events per hour of simulated time.

We now present the two candidate tunings of the FastMDP
for this problem against the baseline algorithms.

From the experiment definition section, recall that we ex-
amine three versions of the MCTS algorithm: MCTS-perfect,
MCTS-straight, and MCTS-random. MCTS-perfect has per-
fect knowledge of intruder intent (an unrealistic assumption for
a real-world problem, but a useful bound on what we should
expect as a best case for collision avoidance performance).
MCTS-random assumes intruders select random actions during
MCTS roll-out, and MCTS-straight assumes intruders main-
tain current heading during MCTS roll-out. We also compare
to the ORCA algorithm, a well-known collision avoidance
algorithm which is not based on a MDP-based formulation,
as a control variable on whether MDPs are a suitable way to
represent this collision avoidance problem. Note that for each
algorithm, 10 simulations runs were performed with different

TABLE IV
NEAR MID-AIR COLLINS (NMAC) EVENTS OVER 10 RANDOM SEEDS

SORTED BY MEAN NUMBER OF EVENTS PER SIMULATION HOUR.

Algorithm Mean Std Dev Mean/Hr
MCTS-random 22.4 4.8 0.507
ORCA 11.9 3.0 0.335
MCTS-straight 14.6 3.4 0.331
FastMDP-31 2.0 0.775 0.052
FastMDP-19 0.5 0.671 0.011
MCTS-perfect 0.4 0.5 0.008

TABLE V
LOSS OF SEPARATION (LOS) EVENTS OVER 10 RANDOM SEEDS SORTED

BY MEAN NUMBER OF EVENTS PER SIMULATION HOUR.

Algorithm Mean Std Dev Mean/Hr
ORCA 233.7 16.3 6.578
MCTS-random 153.6 14.7 3.478
MCTS-straight 101.4 8.8 2.295
FastMDP-19 27.1 4.5 0.615
FastMDP-31 21.8 6.7 0.567
MCTS-perfect 14.9 3.4 0.337

random seeds in order to obtain a statistical measurement
of each algorithm’s performance. In the plots, the dark lines
indicate the mean where the shaded regions indicate standard
deviation.

0 20000 40000 60000 80000 100000 120000 140000 160000
Simulated time step

150

160

170

180

190

200

210

220

230

Ai
rc

ra
ft 

to
 g

oa
l p

er
 si

m
ul

at
io

n 
ho

ur

MCTS-perfect
MCTS-random
MCTS-straight
ORCA
FastMDP-19
FastMDP-31

Fig. 4. Throughput per hour of simulated time.

Figure 2 and Table IV show the resulting NMAC events per
hour of simulated time for each algorithm. The data shows

TABLE VI
THROUGHPUT (AIRPLANES ARRIVING AT DESTINATION PER HOUR OF

SIMULATED TIME) OVER 10 RANDOM SEEDS SORTED FROM SLOWEST TO
FASTEST.

Algorithm Mean (ms) Std Dev (ms)
ORCA 162.8 13.2
FastMDP-31 190.1 13.9
FastMDP-19 209.8 14.4
MCTS-perfect 220.8 14.7
MCTS-straight 220.6 14.7
MCTS-random 221.0 14.7




