Introduction

- The paper drying process is energy-intensive, contributing to 12% of total energy used in manufacturing.
- The DOE proposes a smart paper dryer using three new drying technologies to reduce the overall energy consumption by 25%. This research investigates moisture detection methods using terahertz (THz) radiation to be used within the smart dryer.

Objective: Modify experimental setup for reliable measurements to relate the Percent of Power Transmitted (PPT) through paper to its relative Dry Basis Moisture Content (rDBMC).

Power Transmitted and Reflection Through Paper

Setup:
1. Two Face Transmission
 - Paper began to crinkle as it dried, causing gradual increases and decreases in the voltage.
2. Two Off-Axis Parabolic (OAP) Mirrors and Scale
 - Paper was lying flat on the scale, which led to delamination and gradual increases and decreases in the voltage.
3. Four Off-Axis Parabolic Mirrors and Scale

Results and Conclusion

Two stages of paper drying:
1. ≥ 20% rDBMC, free water evaporates
2. < 20% rDBMC, associated water evaporates

Equation Fit:

- **a. two sigmoid functions**

 \[f(x) = \begin{cases}
 94.87 \pm 0.0233 & (0.171 \pm 0.0077)x - 0.045 \pm 0.008x^2 \\
 293.3 \pm 13.57 & 1 + \exp \left(-31.81 \pm 13.78x \right)
 \end{cases} \]

 | x ≥ 20% |

- **b. exponential function in the first stage and a 3rd degree polynomial in the second stage**

 \[f(x) = \begin{cases}
 94.18 \pm 0.3385 & (0.171 \pm 0.0077)x - 0.045 \pm 0.008x^2 \\
 279.2 \pm 13.78 & 1 + \exp \left(-31.81 \pm 13.78x \right)
 \end{cases} \]

 | x ≥ 20% |

In either case, there is a strong correlation between rDBMC and PPT which will aid in the creation of a mathematical model and the implementation of a smart paper dryer.

Future Directions:

- Investigate the effect of the sample’s orientation, and the effect of the room’s humidity and temperature on the PPT and the rDBMC.
- Measure the reflected and transmitted power simultaneously.

Acknowledgements

We would like to thank WPI for sponsoring the REU for Developing a Clean Energy Future. Sincere thanks to Professor Douglas Petkie and Jacob Bouchard for helping and encouraging us in our research.