Conversion of Sewage Sludge (SS) to biocrude by autothermal hydrothermal liquefaction (AT-HTL)

Challenges to valorization of biocrude

- Traditional methods of HTL require drying SS (energy intensive process)\(^1\)
- SS contains a high percentage of ash (40-60%wt, corrodes reactors and interferes with bio-oil yield)\(^2\)
- Catalysts have not been tested in AT-HTL or after pretreatment of SS to remove ash

These challenges all need to be addressed in order to make this a scalable and valuable process.

Proposed Goals and Solutions

- Optimize AT-HTL reaction: C:O ratio, residence time, reaction temperature
- Characterize AT-HTL products: TOC, elemental analysis, GC-MS; check carbon balances
- Test effect of catalysts on yields: 2% NaCO\(_3\), 5% FeSO\(_4\)\(^3,4\)

Results

Biocrude yield via AT-HTL does not seem to be impacted significantly by temperature or residence time.

Considering the increased energy requirements and mass loss at 350°C, future experiments will be run at 250°C for ten minutes (pending carbon balance data).

References

UN Sustainable Goals

- Renewable
- Easily available
- Affordable
- Ubiquitous
- Net-zero carbon emissions

In the Classroom

Elements of this project will be used throughout the year as a real-world example for a variety of topics:

- Conservation of mass: How much SS needs to be converted to fuel a car?
- Separation of mixtures: How can we isolate bio-oil from a mixture?
- Ideal gas law: How much gas is formed in this process?
- Empirical formulas: What is the composition of bio-crude that is formed through AT-HTL?

Next Steps

- Experiments with catalysts to improve yield
- Experiments with pre-treatment/filtrations of SS to reduce ash

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. EEC-2055507
The work in this project is supported by DOE DE-FOA-0002236
The authors thank Alex Maag (WPI), Geoffrey Tompsett (WPI) and Alex Moseley (WPI) for their helpful conversations and other contributions to this work, as well as the WPI STEM Education Center and RET staff
For more information, please visit https://wp.wpi.edu/ret-stem/